Performance metrics computed for the third and fourth-generation ML models. MAE is reported in eV for all models. The best R2 and MAE for each property are in bold. The values are averaged over five-fold cross-validation models. The fourth-generation ML models include molecular descriptors concatenated to the MPNN output.
| Property | 3rd gen | 4th gen | ||
|---|---|---|---|---|
| R 2 | MAE | R 2 | MAE | |
| HOMO | 0.60 ± 0.01 | 0.796 ± 0.446 | 0.61 ± 0.01 | 0.330 ± 0.028 |
| LUMO | 0.76 ± 0.01 | 0.291 ± 0.044 | 0.76 ± 0.01 | 0.289 ± 0.028 |
| H–L | 0.47 ± 0.02 | 1.264 ± 0.696 | 0.50 ± 0.01 | 0.548 ± 0.029 |
| VIE | 0.86 ± 0.01 | 0.202 ± 0.043 | 0.86 ± 0.00 | 0.191 ± 0.024 |
| AIE | 0.87 ± 0.01 | 0.176 ± 0.015 | 0.87 ± 0.01 | 0.173 ± 0.006 |
| CR1 | 0.37 ± 0.01 | 0.054 ± 0.001 | 0.38 ± 0.02 | 0.055 ± 0.002 |
| CR2 | 0.40 ± 0.01 | 0.061 ± 0.001 | 0.44 ± 0.01 | 0.053 ± 0.001 |
| HR | 0.38 ± 0.02 | 0.126 ± 0.022 | 0.43 ± 0.02 | 0.133 ± 0.019 |
| VEA | 0.92 ± 0.01 | 0.193 ± 0.052 | 0.93 ± 0.00 | 0.157 ± 0.018 |
| AEA | 0.93 ± 0.01 | 0.160 ± 0.027 | 0.94 ± 0.01 | 0.154 ± 0.027 |
| AR1 | 0.46 ± 0.02 | 0.057 ± 0.002 | 0.47 ± 0.02 | 0.051 ± 0.001 |
| AR2 | 0.45 ± 0.01 | 0.048 ± 0.002 | 0.43 ± 0.02 | 0.052 ± 0.001 |
| ER | 0.50 ± 0.01 | 0.093 ± 0.002 | 0.50 ± 0.01 | 0.098 ± 0.006 |
| S0S1 | 0.76 ± 0.01 | 0.252 ± 0.017 | 0.76 ± 0.01 | 0.249 ± 0.013 |
| S0T1 | 0.87 ± 0.00 | 0.148 ± 0.012 | 0.87 ± 0.00 | 0.150 ± 0.028 |