Skip to main content
. 2022 Nov 17;14(1):203–213. doi: 10.1039/d2sc04676h

Performance metrics computed for the fourth-generation ML models with DFT and ML predicted DFT (ML-DFT) properties for AIE, AEA, VIE, and VEA concatenated to the MPNN representation. For ML-DFT, the required input DFT values were predicted from the fourth-generation ML model with molecular descriptors (see Table 5 for the performance of the model). MAE is reported in eV for all models. The values are averaged over five-fold cross-validation models.

Property DFT ML-DFT
R 2 MAE R 2 MAE
HOMO 0.81 ± 0.01 0.327 ± 0.140 0.68 ± 0.01 1.105 ± 1.661
LUMO 0.93 ± 0.00 0.132 ± 0.009 0.82 ± 0.01 0.235 ± 0.020
H–L 0.84 ± 0.01 0.415 ± 0.169 0.59 ± 0.01 0.872 ± 0.291
CR2 0.69 ± 0.01 0.036 ± 0.003 0.44 ± 0.00 0.057 ± 0.006
HR 0.92 ± 0.01 0.039 ± 0.011 0.44 ± 0.01 0.107 ± 0.005
AR2 0.77 ± 0.01 0.034 ± 0.008 0.47 ± 0.02 0.057 ± 0.009
ER 0.94 ± 0.01 0.045 ± 0.014 0.52 ± 0.02 0.117 ± 0.032
S0S1 0.90 ± 0.01 0.396 ± 0.041 0.80 ± 0.01 0.322 ± 0.042