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ABSTRACT Most knowledge about Pseudomonas aeruginosa pathoadaptation is derived
from studies on airway colonization in cystic fibrosis; little is known about adaptation in
acute settings. P. aeruginosa frequently affects burned patients and the burn wound niche
has distinct properties that likely influence pathoadaptation. This study aimed to genetically
and phenotypically characterize P. aeruginosa isolates collected during an outbreak of infection
in a burn intensive care unit (ICU). Sequencing reads from 58 isolates of ST1076 P. aeruginosa
taken from 23 patients were independently mapped to a complete reference genome
for the lineage (H25338); genetic differences were identified and were used to define the
population structure. Comparative genomic analysis at single-nucleotide resolution identi-
fied pathoadaptive genes that evolved multiple, independent mutations. Three key
phenotypic assays (growth performance, motility, carbapenem resistance) were performed
to complement the genetic analysis for 47 unique isolates. Population structure for
the ST1076 lineage revealed 11 evolutionary sublineages. Fifteen pathoadaptive genes
evolved mutations in at least two sublineages. The most prominent functional classes
affected were transcription/two-component regulatory systems, and chemotaxis/motility
and attachment. The most frequently mutated gene was oprD, which codes for outer mem-
brane porin involved in uptake of carbapenems. Reduced growth performance and motility
were found to be adaptive phenotypic traits, as was high level of carbapenem resistance,
which correlated with higher carbapenem consumption during the outbreak. Multiple
prominent linages evolved each of the three traits in parallel providing evidence that
they afford a fitness advantage for P. aeruginosa in the context of human burn infection.

IMPORTANCE Pseudomonas aeruginosa is a Gram-negative pathogen causing infections in
acutely burned patients. The precise mechanisms required for the establishment of infection
in the burn setting, and adaptive traits underpinning prolonged outbreaks are not known.
We have assessed genotypic data from 58 independent P. aeruginosa isolates taken from a
single lineage that was responsible for an outbreak of infection in a burn ICU that lasted
for almost 2.5 years and affected 23 patients. We identified a core set of 15 genes that we
predict to control pathoadaptive traits in the burn infection based on the frequency with
which independent mutations evolved. We combined the genotypic data with phenotypic
data (growth performance, motility, antibiotic resistance) and clinical data (antibiotic con-
sumption) to identify adaptive phenotypes that emerged in parallel. High-level carbapenem
resistance evolved rapidly, and frequently, in response to high clinical demand for this anti-
biotic class during the outbreak.
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P seudomonas aeruginosa is a ubiquitous environmental bacterium that persists in a
range of niches, including soil and water. P. aeruginosa is also one of the more versatile

opportunistic human pathogens capable of causing a range of acute and chronic infections
that often withstand antibiotic chemotherapy. P. aeruginosa adapts to the host environment,
modulating the expression of numerous virulence factors and acquiring or developing
means for antibiotic resistance. Understanding precisely how P. aeruginosa evolves during
infection may lead to the identification of antibiotic or antivirulence targets that can be
exploited for future therapy.

Pathoadaptive traits are those that are likely to improve bacterial fitness in a novel environ-
ment (1). Most of what is currently known about P. aeruginosa pathoadaptation (and bacterial
pathoadaptation in general) comes from studies focused on chronic airway infection in
the context of cystic fibrosis (CF) where individuals can be repeatedly sampled for decades
(2–6). Environmental isolates colonize the CF airway and evolve to establish oftentimes
incurable infections (7). Infections are associated with increased tolerance or resistance
to the immune system and antibiotics (8–10), auxotrophy for specific amino acids that are
abundant in patient sputum (11), formation of small colony variants (SCVs) (12), loss of motil-
ity (8), and the overproduction of alginate leading to mucoidy (13), which are postulated to
evolve in response to CF-niche specific stressors that include inadequate antibiotic exposure,
nutrient and oxygen availability, and the presence of other microorganisms (for review, see
reference 14). In contrast, pathoadaptation of P. aeruginosa in acute infection settings is not
well characterized.

P. aeruginosa is the most common Gram-negative pathogen isolated from infected burns
and its presence is associated with significant mortality (15). The burn wound infection set-
ting has unique properties that likely influence bacterial physiology and adaptive evolution.
Burn wounds differ from nonburn-trauma wounds as their coagulation necrosis zones lack
sufficient blood supplies and contain increased oxygen reactive species that impair wound
healing (16, 17), which increases the risk for infection (18). In addition, burn wounds are char-
acterized by a specific microenvironment composed of exudates that, together with necrotic
materials, creates a niche for opportunistic pathogens such as P. aeruginosa (19). P. aeruginosa
readily forms hard-to-treat biofilms within burn wounds (20), the formation of which often
requires, among other factors, quorum sensing (21, 22), the acquisition of iron, and the excre-
tion of exopolysaccharides, including alginate (23). The temporal evolution of pathogenic traits
for P. aeruginosa affecting burn patients, however, is unknown.

In the current report, using genome sequencing data of 58 P. aeruginosa isolates from
a single lineage that caused a well characterized outbreak of infections in a burn intensive
care unit (24, 25), we used comparative genomics to identify pathoadaptive traits associ-
ated with successful adaptation to the burn wound infection milieu.

RESULTS
Outbreak of Pseudomonas aeruginosa infection in a burn intensive care unit.

We investigated a lineage of P. aeruginosa from sequence type ST1076 that was found
previously to be the cause of an infection outbreak in the burn intensive care unit (ICU) at
the Lausanne University Hospital (24). A total of 58 isolates from the lineage were collected
from 23 patients between May 2010 and October 2012 (median of two isolates per patient,
range 1 to 10) (Fig. 1A). One isolate (H25473) was excluded from the analysis due to a discrep-
ancy between whole-genome sequencing data and the actual genotype/phenotype of
the bacterial isolate (see Table S1 for more details). To determine the population structure of
the lineage, sequencing reads from each isolate (n = 57) were mapped to the complete ge-
nome sequence of the earliest isolate, H25883, and comparative genomics was per-
formed. The mean number of reads mapped (6.4� 106) and the mean sequencing depth
(112�) were high (Fig. S3A), as were the mean coverage of the complete H25883 ge-
nome (99.95%) and the mean pairwise identity for the mapped reads (98.71%; Fig. S3B),
confirming the veracity of read mapping to a single reference for subsequent compar-
ative genomic approaches. Two complementary methods (snippy and Geneious
Prime) were used to identify 113 unique genomic differences across the collection
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(Table S2); 12 were insertions, 29 were deletions, and 72 were single nucleotide polymor-
phisms (SNPs). Of these, 66 were nonsynonymous and six were synonymous. Of the deletions,
six were greater than 100 basepairs (bp) in size (largest deletion, 21,140bp). In total, 108 pre-
dicted genes (coding DNA sequences, CDS) were mutated at least once (1.7% of all CDS).

There were 6.9 genomic differences per isolate on average (range 2 to 17; Table S3).
A mutation matrix (Table S2) was used to construct a population structure that revealed a
core consisting of five identical isolates from four patients which likely represents the ancestral
clone (Fig. 1B). From there, 11 distinct branches were identified which will be hereby referred
to as sublineages (median 4 isolates per sublineage, range 1 to 13; Fig. 1B). Interestingly, some
isolates were collected before the “core” clone was identified. This could be explained by the
persistence of ST1076 on various surfaces within the burn ICU (24). The core clone was intro-
duced in multiple patients via this source; isolates collected before identification of the core
clone had likely already begun to acquire niche specific adaptations in the patients.

Parallel evolution of 15 “pathoadaptive” genes. Pathoadaptive genes were defined
as those that were mutated with nonsynonymous changes at least twice independently, as
parallelism is a useful signal of adaptive evolution (26). Fifteen genes were classified as path-
oadaptive (Fig. 2). Using PseudoCAP classifications (27), most of the genes were classed as
transcriptional regulators or two-component regulatory systems (n = 8, 53%). The second
most frequent predicted function for the pathoadaptive genes was involvement in motility
and attachment (n = 3, 20%). Functional classes “antibiotic susceptibility,” “adaptation, protec-
tion,” “cell wall/LPS/capsule,” and “transport of small molecules” each included two path-
oadaptive genes. The most frequently mutated gene was oprD, which codes for outer
membrane porin D.

Reduced growth rate and motility for isolates adapted to the burn infection
setting. Adaptation of P. aeruginosa to different niches is often accompanied by changes
in growth performance. Adaptation to standard laboratory conditions is associated with
enhanced in vitro fitness and increased growth rate (28, 29). Conversely, long-term adaptation
in chronic infection settings such as CF is associated with reduced growth rate (29). To deter-
mine the effects of adaptation upon in vitro fitness in the context of acute infection, we moni-
tored the OD600 of 47 unique isolates in liquid culture across time. A range of temporal growth

FIG 1 Population structure of P. aeruginosa isolates from an ICU outbreak of infection. (A) P. aeruginosa isolates from a lineage of ST1076 were collected
from 23 infected patients during the outbreak in the burn ICU (2010 to 2012). Patient 01 (P01) was not included as the ST1076 isolate was only distantly related to
those from the outbreak. Each white circle represents a single isolate. Bars indicate patient time in the ICU (adapted from reference 25). (B) Population structure was
inferred from whole-genome sequencing data (Table S2) to create a minimum spanning tree. Sequence reads were mapped to the complete genome of H25883
(in bold font). A common ancestor was inferred when subbranches had a shared mutation. The color of each circle corresponds to the patient shown in panel A.
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dynamics were observed (Fig. 3A), which translated into a bimodal distribution for our mea-
sure of growth rate, DOD600 per hour (Fig. 3B). Isolates close to the core of the population
structure (i.e., H26076) were typically fast growers, and slow growers emerged in most subli-
neages (six of 11; Fig. 3C), which suggests that growth rate decreases following adaptation to
the burn infection setting.

We extended the functional class analysis performed for the pathoadaptive genes
(Fig. 2) to include each of the 108 mutated genes across the collection (Table S4) and
found that genes involved in “chemotaxis” and “motility and attachment” were overrepre-
sented; 11% and 10% of all genes within each class, respectively, were mutated within the
isolate collection (Fig. 4A). To functionally assess the impact of this mutational trend, we
assessed swimming motility by stab inoculating each of the 47 unique isolates into 0.3% LB
agar plates. As was observed for growth performance, isolates at the core of the population
structure were motile, and isolates with impaired motility emerged in most sublineages (six
of 11; Fig. 4B). In fact, there was a positive correlation between DOD600 per hour and swim-
ming motility (motility was inferred by quantifying colony size in pixels2, Pearson r = 0.70,
P, 0.0001; Fig. S1).

Carbapenem use in the ICU is associated with oprD mutation and carbapenem
resistance. Not only was oprD the most frequently mutated gene across the collection
(Fig. 2A), the mutations detected were also highly impactful (seven frameshifts and three
truncations; Fig. 5A). OprD is responsible for influx of carbapenem antibiotics, including mero-
penem and imipenem (30). Further, oprDmutation is a primary resistance mechanism when
P. aeruginosa is exposed to carbapenems in vitro (31). We hypothesized that oprD mutation
during the P. aeruginosa ICU outbreak occurred in response to in vivo carbapenem exposure
and that isolates with mutated oprD would have elevated MIC toward carbapenem class
antibiotics. To test this, we first analyzed published data that reported antibiotic consump-
tion in the same ICU burn center at the time of the P. aeruginosa infection outbreak (32).
Leading up to the outbreak and throughout the sampling period, carbapenems were the
most frequently administered class of antibiotic in the burn center (Fig. 5B). From 2004
to 2012, carbapenem use, reported as defined daily doses per 1,000 burn days, was higher
than the use of other antipseudomonal antibiotic classes, including aminoglycosides (P ,

0.0001), quinolones (P , 0.0001), cephalosporins (P , 0.0001), colistin (P , 0.0001), and
penicillins (namely, piperacillin-tazobactam, P = 0.003, each P-value was determined using
two-way ANOVA with Tukey’s multiple-comparison test).

Meropenem and imipenem MICs were determined for each unique P. aeruginosa isolate.
Using EUCAST susceptibility breakpoints, 24 of the isolates were susceptible to meropenem

FIG 2 Fifteen frequently mutated “pathoadaptive genes.” Pathoadaptive genes were defined as those with at least two independent mutations across
the isolate collection. CDS, coding DNA sequence; LPS, lipopolysaccharide; TCRS, two-component regulatory system.
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(MIC#2mg/mL), three were susceptible at increased exposure (MIC between 2 and 8mg/mL)
and 20 were resistant (MIC. 8mg/mL) (Fig. 5C; Table S1). In contrast, none of the isolates
were fully susceptible to imipenem (MIC #0.001 mg/mL), 22 were susceptible at increased
exposure (MIC .0.001, #4 mg/mL) and 25 were resistant (MIC .4 mg/mL; Table S1). MIC
values for meropenem and imipenem were positively correlated (r = 0.7070, P , 0.0001,
Pearson correlation), and as such, only meropenem MICs will be used/discussed further.
Each isolate with high meropenem MIC (i.e., susceptible at increased exposure or resistant,
.2mg/mL) had an oprDmutation and the isolates were spread across six of the 11 distinct
sublineages (55%; Fig. 5D).

The list of pathoadaptive mutations included additional genes known to confer antibiotic
resistance when mutated, includingmexZ,mexR,mexS, dacB, ampR, pmrB (33–37) (Fig. 2).
Accordingly, resistance to additional antibiotic classes, including penicillins, cephalosporins,
and quinolones was observed across the collection, albeit less frequently than for carbape-
nems (Fig. S4).

Parallel genetic mutation correlated with phenotypic convergence. To test whether
parallel evolution of the 11 sublineages (Fig. 6A) correlated with phenotypic convergence
toward adaptive traits (slow growth, loss of motility, elevated meropenem MIC), we per-
formed a cluster analysis and visualized the data in three dimensions (Fig. 6B). Each of the
phenotypically characterized isolates (n = 47) was categorized within four robust clusters
(good cohesion and separation; Fig. S2) that were predicted a priori: cluster A included 12
isolates with comparatively high growth rate (mean DOD600/h 0.20 1/2 standard devia-
tion [SD] 0.02) and swimming motility (0.61 pixels2 1/2 0.18), and low meropenem MIC

FIG 3 Reduced growth rate is an adaptive trait for P. aeruginosa lineages evolving during the outbreak in the
burn ICU. (A) Temporal in vitro growth dynamics of P. aeruginosa from the burn ICU. An isolate at the core of
the population structure, H26076, is presented in bold text. (B) Bimodal distribution of isolates based on the
change in optical density at 600 nm (OD600) per hour during the exponential phase of growth. (C) Change in
OD600 per hour in the context of population structure for the P. aeruginosa lineage.
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(median 0.19mg/mL, 95% confidence interval [CI] = 0.125 to 0.38); cluster B included 11 iso-
lates with low growth rate (DOD600/h 0.46 6 0.02) and swimming motility (0.09 pixels2

1/2 0.09) and low meropenem MIC (0.25 mg/mL 95%CI = 0.19 to 0.75); cluster C included
nine isolates with comparatively high growth rate (DOD600/h 0.17 6 0.06) and swimming
motility (0.51 pixels2 1/2 0.28), and high meropenem MIC (.32mg/mL 95% CI = 8 to.32
[the highest concentration for meropenem Etest is 32 mg/mL]); cluster D included 15 iso-
lates with low growth rate (DOD600/h 0.05 6 0.03) and swimming motility (0.13 pixels2

1/2 0.14), and high meropenem MIC (.32 mg/mL, 95% CI = .32 to .32) (Fig. S5; Table
S1). Adapted clusters (B, C, D) each had representatives from multiple sublineages (three,
five, and five sublineages, respectively) suggesting that the adaptive traits were evolving in
parallel (Fig. 6C).

Other adaptive traits in burn infection.Of note, one of the more frequently mutated
pathoadaptive genes was lasR (four independent mutations; Fig. 2) which correlated with
enhanced blue-pigment and colony autolysis on agar plates (Fig. S6A). Additionally, while
not classed as pathoadaptive (i.e., only one independent mutation across the collection),
two isolates harbored mucA mutation which corresponded with a mucoidy phenotype on
agar plates (Fig. S6B).

DISCUSSION

P. aeruginosa is a notorious cause of acute infections in hospital settings, particularly
those afflicting burn patients. The infection outbreak that serves as the focus of this study
is a perfect example; epidemiological studies identified a dominant lineage belonging to
ST1076 that persisted in the hospital environment (specifically on sink traps and mat-
tresses in the hydrotherapy room) and spread between 23 patients in a burn ICU (24, 25).
As a complement to these findings, we focused our analysis on specific gene mutations

FIG 4 Motility is an adaptive trait for P. aeruginosa in the burn infection setting. (A) Each of the 108 mutated genes was functionally classified using
PseudoCAP. A percentage of genes’ mutated measure was determined by relating the number of mutated genes to the total number of genes
within each functional category. (B) Each unique P. aeruginosa isolate was stab inoculated into 0.3% LB agar plates. Plates were imaged after 24 h of
incubation at 37°C. Images of each plate was then plotted in the context of population structure. PTM, posttranslational modification; LPS,
lipopolysaccharide; RMR, recombination, modification, repair; TCRS, two-component regulatory system.
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and pathoadaptive traits that may have underscored the success of the lineage. We found
evidence for parallel evolution across distinct sublineages, most notably toward reduced
growth performance, loss of a virulence determinant (motility), and antibiotic resistance.

Reduced growth rates are a hallmark of well-adapted P. aeruginosa strains, particularly
in the context of CF where growth in situ has been measured (38). Slow growing bacteria
can emerge due to a wide range of mutations, and they are difficult to kill with conventional
antibiotics, each of which may explain their frequent selection in vivo (39–41). It has been
proposed that antibiotic tolerance facilitated by slow growth provides an adequate opportu-
nity to support the development of targeted mutations that are responsible for high level
antibiotic resistance (29). Our study provides some support for this notion; five of the 10 in-
dependent introductions of oprD mutation and elevated carbapenem MICs were preceded
by a slow growing isolate, and slow growth and antibiotic resistance emerged concurrently
for two more. For the remaining three, however, oprD mutation was not preceded by or
associated with slow growth.

We have shown that in a “real-world” outbreak scenario, motility is a dispensable trait,
and that its loss may provide a selective advantage during persistent infection. This appears

FIG 5 OprD mutation is associated with carbapenem use in the ICU and the emergence of carbapenem resistance. (A) Schematic representation of
the impact of oprD mutation to predicted OprD amino acid sequence. oprD_WT is the “wild-type” unmutated gene (translates to a sequence 444
amino acids in length) and oprD_1 through to oprD_10 are mutations that emerged during the infection outbreak. Regions in green show 100%
identity with oprD_WT sequence. Regions in gray are different to oprD_WT (disparate region). (B) Defined daily dose (DDD) of antibiotics from
different classes used before and during the ICU infection outbreak (adapted from reference 31). (C) Distribution of meropenem MICs across tested
isolates (n = 47) as determined by Etest (the highest concentration in the meropenem Etest is 32 mg/mL). The color corresponds to clinical
breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). (D) Meropenem MIC plotted in the context of
population structure. Each green number corresponds to the OprD schematic from panel A.
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in contrast with findings frommultiple reports that have highlighted the importance of motility
for full pathogenesis in models of burn infection due to P. aeruginosa (42–44). Taken together,
a plausible explanation may be that motility is required only during the early stages of pathoa-
daptation, and that its loss could be beneficial over the course of infection (or infection out-
break) by limiting, for example, phagocytosis (45).

Perhaps the most significant finding of the comparative genomic analysis was the
rapid and repeated evolution toward carbapenem resistance facilitated by impactful oprD
mutations. The mutational response correlated with the high clinical use of antibiotics from
the carbapenem class. These findings are in accordance with a separate molecular study
that identified loss of OprD as the primary driver of antibiotic resistance emergence for
P. aeruginosa isolated from ICU patients at a separate center (46). Similarly, a recent study
highlighted the rapid emergence of oprD mutants after administration of meropenem in
a patient with acute lung infection; however, these mutants were eventually replaced by
isolates with mutated MexAB-OprM (47).

Although the sampling period for the current study was short (;2.5 years), a remarkable
number of pathoadaptive traits were identified; in addition to reduced growth rate, loss of
motility, and antibiotic resistance, we also identified lasR mutants with phenotypes consist-
ent with altered quorum sensing, as well as mucoid variants (Fig. S6), all of which have been
described previously in the context of chronic CF infection (13, 48). These findings, taken
with a recent report showing SCV emergence in an infected burn patient (49), suggest that
while the niches are fundamentally distinct, evolutionary pathways toward infection are sim-
ilar between acute (i.e., burn) and chronic (i.e., CF) settings. Additionally, while sampling in
CF studies has been performed over many decades, it is apparent that significant adaptation
occurs in the first 2 to 3 years (50), which is similar to the time frame assessed in this study,
and further highlights the rapid nature of P. aeruginosa reprogramming for persistence in
the human host.

In summary, we have characterized the pathoadaptation of a single lineage of P. aerugi-
nosa taken from human patients hospitalized in a burn ICU during an outbreak of infection.

FIG 6 Parallel evolution of adaptive traits for P. aeruginosa sublineages isolated during an ICU infection
outbreak. (A) Eleven distinct sublineages were identified based on population structure. (B) TwoStep cluster
analysis was used to identify four distinct phenotypic clusters (clusters A to D). (C) Each phenotypic cluster
contained representative isolates from a range of sublineages. Conversely, most sublineages contained
isolates from multiple phenotypic clusters. GR, growth rate (GR), as inferred from DOD600 per hour; MER MIC,
meropenem MIC.
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Future studies are certainly warranted to determine if the same adaptive traits identified
here are common and convergent across distinct lineages in acute and/or outbreak infection
settings.

MATERIALS ANDMETHODS
Bacterial isolates and growth conditions. P. aeruginosa isolates analyzed in this report (n = 58)

were collected from hospitalized patients between 2010 and 2012 in the context of previous epidemio-
logical studies (24, 25) of an outbreak of infection in a burn ICU (Table S1). Authorization for analyzing
anonymized bacterial isolates and anonymized already published data were not required. Phenotypic
experiments were performed for 47 isolates with unique genotypes. P. aeruginosa were routinely propa-
gated in Luria-Bertani (LB; BD, NJ, USA) broth at 37°C with constant shaking.

Comparative genomics. For 54 isolates, illumina sequencing reads generated in a previous study
(25) were downloaded from the Sequence Read Archive (SRA) public database using the SRA accession numbers
listed in Table S1. For an additional four isolates (see Table S1), complete genomes were generated as follows:
genomic DNA was extracted using a DNeasy Ultraclean Microbial kit (Qiagen, Hilden, Germany) then sequenced
using PacBio RS and Illumina NovaSeq 6000 sequencing platforms. PacBio long reads were used to assemble a
single, circular chromosome using Flye version 2.6 (51) and the assembly was polished with Illumina short read
data using Pilon (52). Complete genome sequences were annotated using the NCBI Prokaryotic Genome
Annotation Pipeline (53) and were submitted to DDBJ/ENA/GenBank, and illumina reads were submitted to
SRA, each using accession numbers listed in Table S1.

Two complementary strategies were used to identify mutations at single nucleotide resolution, each involv-
ing the use of the high-quality complete reference strain H25338 (54). First, SNPs and small insertion deletion
(InDel) mutations were detected for each isolate using snippy (https://github.com/tseemann/snippy). Second, to
validate the snippy results and to search for large deletions, reads were mapped to the reference using Geneious
Prime software (version 2022.1.1). Genomic differences were detected using the Find Variations/SNPs function
(minimum coverage 10, minimum variant frequency 0.75, maximum variant P-value 1026), and mapping was
assessed visually. A mutation matrix was generated (Table S2) which was used to infer phylogeny and generate a
minimum spanning tree using PHYLOViZ (55), which implements the goeBURST algorithm (56).

Growth assays. Overnight cultures of P. aeruginosa were diluted 1:1,000 in 150mL volumes of sterile
LB media in 96-well microtiter plate wells. Plates were incubated at 37°C and optical density (OD) at
600 nm was measured every 15 min using a SpectraMax i3 system (Molecular Devices, CA, USA). Plates
were shaken prior to each measurement. Assays were performed in biological duplicate and the mean was
used to generate growth curves. To provide a measure of growth rate, a 3-h period within the exponential
phase of growth (between 5.5 h and 8.5 h) was used to infer the change in OD per hour using the following
equation: DOD600/hr = OD600 at 8.5 h2 OD600 at 5.5 h/3.

MIC determinations. Clinical antibiotic susceptibility data were generated at the Institute of Microbiology
of the University of Lausanne. MICs for meropenem and imipenem were determined on Mueller-Hinton agar
using Etest (bioMérieux, France) according to the manufacturer’s instruction. MIC values were recorded following
24 h of incubation at 37°C. MIC breakpoints were defined by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST v12.0).

Motility assays. Swimming motility was assessed using previously described methods (57). Briefly, a
sterile toothpick was dipped into overnight cultures of P. aeruginosa and then used to stab inoculate the center
of 0.3% LB agar plates. Plates were incubated at 37°C for 24 h and then imaged using an iBright 750 imaging
system (Invitrogen, USA). Quantification of swimming area was performed using imageJ (58).

oprD sequencing. The oprD was amplified by PCR using primers (59 to 39) GAACCTCAACTATCGCCAAG
and TGTCGGTCGATTACAGGATC. The oprD containing fragment was sequenced via sanger sequencing using
primers (59 to 39) CAAGAAGAACTAGCCGTCAC, GCTACGCAATCACCGATAAC, and GGATCGACAGCGGATAGTC.

Cluster analysis. Growth, motility, and log2 transformed meropenem MIC data (Table S1) were used
to classify each isolate into phenotypic clusters. First, correlations between one variable (i.e., MIC) and a second
variable (i.e., growth) were determined (Fig. S1). A significant positive correlation existed between growth rate
and motility, leading to the a priori hypothesis that phenotypic data are likely to result in four clusters: (i) unad-
apted; (ii) low growth, low motility; (iii) high meropenem MIC; (iv) low growth, low motility, high meropenem
MIC. To test this, data were z-transformed and clusters were identified using the two-step cluster algorithm speci-
fying detection of four clusters. Cluster quality received the highest classification (“good,” score . 0.5) based on
the Silhouette measure of cohesion and separation (Fig. S2). Analyses were performed in SPSS (IBM, version 25).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.6 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.04 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 5, XLSX file, 0.02 MB.
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