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SUMMARY Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing
incidence of drug-resistant forms of the disease, gaps in detection and prevention, models
of care, and limited treatment options. The DR-TB treatment landscape has evolved over
the last 10 years. Recent developments include the remarkable activity demonstrated by
the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium
tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of
the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free
regimens and the approval of the 6-month short regimens for rifampin-resistant TB and

Copyright © 2022 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Navisha Dookie,
navisha.dookie@caprisa.org.

The authors declare no conflict of interest.

Published 6 October 2022

December 2022 Volume 35 Issue 4 10.1128/cmr.00180-19 1

REVIEW

https://orcid.org/0000-0001-6878-7282
https://doi.org/10.1128/ASMCopyrightv2
https://doi.org/10.1128/cmr.00180-19
https://crossmark.crossref.org/dialog/?doi=10.1128/cmr.00180-19&domain=pdf&date_stamp=2022-10-6


MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill
burden and shorten the DR-TB treatment duration. While there have been apparent suc-
cesses in the field, some challenges remain. These include the ongoing inclusion of
high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the
inclusion of ethambutol and pyrazinamide in the standard short regimen despite known
high levels of background resistance to both drugs. Furthermore, antimicrobial heterore-
sistance, extensive cavitary disease and intracavitary gradients, the emergence of beda-
quiline resistance, and the lack of biomarkers to monitor DR-TB treatment response
remain serious challenges to the sustained successes. In this review, we outline the
impact of the new drugs and regimens on patient treatment outcomes, explore evi-
dence underpinning current practices on regimen selection and duration, reflect on the
disappointments and pitfalls in the field, and highlight key areas that require continued
efforts toward improving treatment approaches and rapid biomarkers for monitoring
treatment response.

KEYWORDS tuberculosis, drug resistance, antimicrobial drugs, treatment regimens,
short-course treatment, drug-resistant tuberculosis, emerging resistance, individualized
treatment, microbial heteroresistance, standardized treatment

Tuberculosis (TB) is a formidable infectious disease and a leading cause of morbidity
and mortality (1). In 2020, the World Health Organization (WHO) estimated that 1.3 million

people died of TB and approximately 10 million people developed active TB. Of the latter,
approximately 132,222 cases were rifampin (RIF)-resistant or multidrug-resistant tuberculosis
(RR/MDR-TB) (2). Treatment for drug-resistant cases is expensive, protracted, and toxic, with
an average treatment success of approximately 56%, compared to 85% for drug-sensitive
TB (DS-TB) (3). Suboptimal treatment options, slow progress in the development of new
drugs, poor treatment adherence support, and the public health approach to drug-resistant
TB (DR-TB) treatment provision may all be contributing factors to amplifying drug resistance
inMycobacterium tuberculosis (4).

DR-TB results when M. tuberculosis develops resistance to any anti-TB drug. The most
frequently reported form of DR-TB is RR-TB, which refers to an M. tuberculosis strain that
is resistant only to RIF or has additional resistance to isoniazid (INH) (RR/MDR-TB) or is re-
sistant to other first-line or second-line anti-TB drugs (5). Isoniazid-resistant TB (Hr-TB),
i.e., M. tuberculosis strains that are only resistant to INH (5), has become more common
in recent years. Among the 1.4 million cases of INH-resistant TB reported in 2019, 79%
presented as Hr-TB (6). An MDR-TB strain with additional resistance to fluoroquinolones
(FQs) is known as pre-extensively DR-TB (pre-XDR-TB), while MDR-TB strains resistant to
bedaquiline (BDQ) and linezolid (LZD) are known as XDR-TB (7). Pre-XDR-TB and XDR-TB
remain the most severe forms of DR-TB.

The continuous spread of DR-TB remains a significant challenge and threatens global
TB control. DR-TB transmission remains a primary mechanism, whereby an individual gets
infected by a resistant strain (8). Alternatively, drug resistance can emerge during the course
of treatment (acquired) (8). Approximately half of new MDR-TB cases are reported among
patients who have never been previously exposed to TB treatment, which points to trans-
mission (9). Additionally, most of previously treated patients contract DR-TB through trans-
mission rather than acquired resistance (10). Delays in treatment response and treatment
failure increase the risk of transmission within communities (11, 12). Furthermore, DR-TB may
be largely transmitted outside a household (13).

Increasing levels of DR-TB have warranted the development of novel drugs and the
repurposing of alternate drugs to treat DR-TB. Recent years have seen notable advances
in the development of shorter and more efficacious regimens for treatment of RR-TB.
After years of DR-TB patients being subjected to long and toxic injectable-based regi-
mens of 18 to 20 months, introduction of a short-course regimen of 9 to 12 months was
a major advancement. The continuous improvement was observed through introduction
of new drugs, such as BDQ, and all-oral short regimens (14). The recent approval of additional
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shorter RR/MDR-TB and XDR-TB regimens (6 to 9 months) and of BDQ with pretomanid (PTM)
and LZD (BPaL) and BDQ, PTM, LZD, and moxifloxacin (MFX) (BPaLM) have been major shifts
in the history of DR-TB treatment (15).

However, DR-TB treatment needs to be delivered in an optimal health care system.
The characteristics of health care systems are likely to impact the new advancements.
Timely diagnosis, financial systems to offer a full course of treatment and support to
patients with DR-TB, and dedicated and well-trained health care professionals remain
some of the important aspects of an optimized health care system (16). Rapid front-line
diagnostic tests, such as Gene Xpert MTB/RIF Ultra, are now used by most countries and
have improved RR-TB diagnosis (17). In addition, decentralized care has been implemented
in countries such as South Africa to increase access to DR-TB treatment (18). However,
patient risk factors, such as HIV coinfection, alcohol abuse, and treatment adherence, con-
tribute to a stagnation seen in improving treatment outcomes (19).

Health care systems still require assessment to identify factors that could under-
mine or enhance the quality of DR-TB care. Determinations of whether patients with
DR-TB have access to proper and quality care, whether DR-TB infections are transmit-
ted, and whether patients receiving DR-TB treatment have successful outcomes or not,
are crucial.

HISTORY OF DR-TB GUIDANCE

DR-TB treatment has evolved over the last 2 decades with notable continuous improve-
ments (Table 1). The treatment of MDR-TB was formally endorsed in 2000, with a recom-
mendation to use standardized or individualized long-course injectable-based regimens of
18 months (20). The former was referred to as a standard regimen given to all patients with
MDR-TB in the absence of drug susceptibility testing (DST), while the latter was given based
on DST results. In 2006, revised DR-TB treatment guidelines by the WHO (21) concurred with
reports on outbreak of XDR-TB (then defined as MDR-TB with additional resistance to FQs
and injectables) in KwaZulu Natal (22). Further revised DR-TB treatment guidelines were
published in 2008, and they emphasized the use of a standardized regimen (23). The strat-
egy to decentralize MDR-TB treatment was included in the 2011 guidelines (18, 24). In 2012,
after 4 decades of stagnation in the TB drug development pipeline, BDQ was introduced
into TB treatment regimens (25). The drug demonstrated remarkable bactericidal activity
and improved treatment success in DR-TB patients (26–28). This was followed shortly by the
introduction of delamanid (DLM) and PTM (29). In 2016, the WHO endorsed an injectable-
based 9- to 12-month short-course regimen for the treatment of MDR-TB, which marked
a major shift in the treatment of TB, following the success of the regimen in a cohort
study in Bangladesh (30, 31). Data from the STREAM (Standardized Treatment Regimen
of Antituberculosis Drugs for Patients with MDR-TB) trial demonstrated high rates of cure
(78.1%) with this novel 9-month regimen compared to conventional long-course regi-
mens (32). In 2018, the WHO, which had previously endorsed the use of a shorter inject-
able-containing regimen based on observational studies, reaffirmed its recommendation
following release of the STREAM trial data (33). The next breakthrough came with transi-
tion to an all-oral BDQ-containing long-course regimen, in which BDQ replaced the
injectable drug (31, 33). Furthermore, in 2019, the shorter all-oral BDQ-containing regi-
men was introduced, initially for operational research but later for wider clinical applica-
tion (5, 14). A recent ground-breaking innovation was the novel, 6-month all-oral BPaL
and BPaLM regimens, which are recommended for RR/MDR-TB and XDR-TB (15).

The WHO hierarchical reclassification of anti-TB drugs has prioritized FQs, BDQ, and
LZD, which are placed in group A, as they are considered highly effective and strongly
recommended for inclusion in all regimens unless contraindicated (34). In line with this
recommendation, the definition of XDR-TB, which is based on resistance to second-line inject-
ables, became less clinically relevant, leading to the 2021 revised definitions for DR-TB (7).
Although DR-TB remains a significant public health challenge, encouraging novel drugs, diag-
nostic advances, and highly effective therapeutic regimens are emerging. In this review, we
explore the evidence base underpinning the key changes to DR-TB treatment, outline the
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impact of the new drugs and regimens on patient treatment outcomes, explore evidence on
current practices on regimen selection and duration, analyze the effectiveness of a new gener-
ation of antimicrobial treatments, and explore recent innovations in DR-TB treatment. We also
discuss innovative trials under evaluation and reflect on the disappointments and pitfalls in
the field and highlight key areas that require continued efforts toward improving diagnostics,
treatment approaches, and rapid biomarkers for monitoring treatment response.

THE NEW GENERATION OF ANTIMICROBIAL TREATMENT
Bedaquiline

BDQ, the first new anti-TB drug to be approved in the last 4 decades, has become a
front-line drug recommended by WHO for the treatment of RR/MDR-TB due to its sub-
stantial contribution in improving DR-TB treatment success rates (34). BDQ is a diary-
lquinoline drug which acts by binding to the ATP synthase of M. tuberculosis, which in
turn inhibits the metabolism of mycobacterial energy (35, 36). This unique mechanism
of action, its efficacy against both replicating and nonreplicating M. tuberculosis organ-
isms, and its narrow spectrum of action limited to mycobacteria species are among the
desirable properties of the drug that have contributed to its success (35).

Early in vitro studies demonstrated BDQ’s exceptional bactericidal activity against
M. tuberculosis in phase II and IIb studies (37). A phase II clinical study (C208) aimed at
investigating the effectiveness of BDQ in combination with the background regimen
for MDR-TB was conducted with a cohort of treatment-naive MDR-TB patients from seven
countries (Brazil, India, Latvia, Peru, Philippines, Russian Federation, Thailand, and South Africa)
(37). The study was designed in two stages: BDQ was administered for 2 months in stage one
(n = 47) and for 6 months in stage two (n = 160). The study reported significantly higher rates
of sputum culture conversion in the BDQ group compared to the placebo-controlled group
(78.8% versus 57.6%) (37). However, an increased rate of mortality was reported in the BDQ
group (11.4% [9/79] versus 2.5% [2/81]). High mortality rates in early studies may have resulted
from BDQ having a long half-life and its association with QT prolongation, potentially leading
to arrhythmia and sudden death (28). The follow-on study (C209) was an open-label single-
arm trial (n = 233; 63.5% with MDR-TB, 18.9% with FQ resistance, and 16.3% with FQ and
injectable resistance) that evaluated the safety, efficacy, and tolerability of BDQ in a larger
cohort. The study reported that BDQ was generally well tolerated. The mortality rate was sig-
nificantly lower, at 6.9% (38). The proportions of patients with culture conversion at week 24
was 79.5% and at week 120 was 72.2%, comparable to the C208 study.

Despite the improvement in treatment outcomes, the unexplained higher mortality
risk associated with BDQ in clinical trials retarded access and rapid scale-up of the
drug’s implementation (37). Cost was also a challenge, and early use of BDQ relied on a
donation program that was intended to accelerate access to BDQ (39).

More recent data from cohorts worldwide and an individual-patient data meta-analysis
demonstrated a significant reduction in time of culture conversion, improved treatment suc-
cess, and decreased mortality in patients who received BDQ-based regimens, while allaying
previous safety concerns (26, 40–42). The use of BDQ in programmatic settings in South
Africa demonstrated improved treatment success rates (49% in 2015 versus 19% in 2012)
and reduced the risk of all-cause mortality (41). In a cohort of DR-TB patients receiving a
BDQ-based regimen (n = 200) and with a high prevalence of HIV coinfection (67%), favor-
able outcomes were reported in 73% (146/200), with a mortality rate of 12.5% (25/200) (26).
Similarly, a significantly lower mortality rate of 12.6% (128 deaths) was reported among the
1,016 patients who received BDQ-based treatment, compared to 24.8% (4,612 deaths) among
18,601 patients who received the standard regimen for 18 to 24 months (41). Encouragingly,
long-term outcomes (24 months posttreatment) were substantially improved in patients
receiving BDQ (66.2% [45/68 patients] versus 13.2% [27/204]; P, 0.001) (43). In addition, a sig-
nificantly lower rate of treatment failure was observed in the group of patients who received
BDQ-containing treatment (5.9% versus 26%) (43). Similar results have been reported in other
settings (28, 42, 44–46). More recently, a treatment success rate of 90% when using BDQ in
combination with LZD and PTM for the treatment of XDR-TB and nonresponsive MDR-TB was
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reported in the NiX-TB study (47). There are numerous clinical trials under way evaluating
BDQ-based short-course regimens for DR-TB.

Delamanid and Pretomanid

DLM and PTM belong to the nitroimidazole drug group and are both prodrugs
requiring nitro-reductive activation. Drug activation generates toxic nitrogen species,
which inhibit mycolic acid biosynthesis and cellular respiration (36, 48). Given the simi-
lar mechanisms of action, cross-resistance between both drugs has been reported (49).

Early bactericidal activity (EBA) studies of DLM and PTM demonstrated safety and
antimycobacterial activity in smear-positive patients with pulmonary TB (50, 51). In a
14-day dose-ranging DLM monotherapy study of 48 patients with MDR-TB, drug activity was
observed despite administration of DLM in various doses. The reported bacterial clearance
was similar to that of second-line injectable agents, higher than pyrazinamide (PZA) but lower
than FQ, INH, ethambutol (EMB), LZD, and rifamycin (50, 52). This antimycobacterial activity
translated into significantly improved clinical outcomes at 6 months after DLM treatment ini-
tiation in a randomized phase IIb study with 481 MDR-TB patients. This phase IIb study
assessed efficacy of DLM (at 100 mg or 200 mg twice daily) versus placebo given for 2 months
with an optimized background regimen for MDR-TB in nine countries and showed signifi-
cantly higher sputum culture conversion rates at month 2 (41% versus 29.6% in the placebo
group) among patients receiving 200 mg of DLM (53). In a substudy conducted among 213
patients that received an additional 6 months of DLM, significantly higher rates of favorable
treatment outcomes were observed (74.5% versus 55% in the 2-month DLM group) (54).
Unfortunately, these findings could not be replicated in a larger phase III trial. In the Otsuka 21
randomized study, involving more than 500 participants, DLM administered for 6 months in
combination with a background regimen for MDR-TB yielded no differences in time to culture
conversion (DLM group, 87.6%, versus placebo group, 86.1%), cure at 30 months follow-up
(DLM group, 77.1%, versus placebo group, 77.6%) or mortality rate (DLM group, 5.3%, versus
placebo group, 4.7%) (55, 56).

While data describing performance of DLM under programmatic settings are lim-
ited, all reports point to improved outcomes in recipients of a DLM-containing regi-
men. In a retrospective South African study, sputum culture conversion at month 2
and 6 was reported in 52% (16/31) and 81% (25/31) of patients who received a DLM-
containing regimen, respectively (57). Furthermore, the endTB study (NCT02754765)
reported an 80% culture conversion rate at month 6 among 325 patients, where all
patients were culture positive at baseline, with 20% HIV coinfected and .60% with FQ
and/or injectable resistance (58). In a separate cohort from Latvia, a DLM-containing
regimen was associated with a cure rate of 84.2% (16/19) at 6 months follow-up (59).

The combination of DLM and BDQ has also been explored to increase therapeutic
options and regimen efficacy for MDR-TB patients. Programmatic use of DLM and BDQ
has demonstrated remarkable effects in reducing times to sputum and culture conver-
sion and improving treatment success (60). More than 70% of patients receiving regi-
mens with DLM-BDQ achieve sputum culture conversion by 6 months and treatment
success (61–63). Despite a high rate of HIV coinfection and a high burden of resistance
to FQs and injectables among South African DR-TB patients, most patients experienced
treatment success (62). Furthermore, the effect of DLM-BDQ has been reported to be
similar to that of BDQ use alone (n = 122; 52.5% HIV coinfected), in terms of sputum
culture conversion rates at month 6 (BDQ group, 95.2%, versus combined group,
81.8%) and at month 18 (BDQ group, 63.4% versus combined group, 67.5%) (64), de-
spite the DLM-BDQ group having more extensive drug resistance profiles and higher
rates of previous treatment failure. There is an ongoing clinical trial assessing the safety
and tolerability of combined use of DLM and BDQ (AIDS Clinical Trial Group study;
NCT02583048).

While early studies demonstrated insufficient bactericidal activity with PTM mono-
therapy use, efficacy of optimal drug combinations containing PTM evaluated in mu-
rine models demonstrated a dose-dependent PTM bactericidal activity. This observed
bactericidal activity was similar to that obtained with INH and RIF, highlighting the
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significant potential of the addition of PTM to shorten TB therapy (51). A phase IIb
study assessing the use of PTM in combination with MFX and PZA (PaMZ) for patients
with DS-TB or MDR-TB demonstrated superior bactericidal activity in the DS-TB group
compared to the MDR-TB group. PTM tested in combination with BDQ displayed faster
mycobacterial clearance when used in a BDQ-PTM-MFX-PZA (BPaMz) group compared
to a BDQ-PTM-PZA (BPaZ) group (65). Subsequent phase III studies utilizing BPaZ had
to be suspended, while BPaMZ is currently under evaluation in a phase III study
(SIMPLICITB Study, NCT03338621). The addition of PTM in the BPaL and BPaLM regi-
mens has increased the overall bactericidal activities of the combinations and has sig-
nificantly decreased the duration of treatment required for relapse-free cure (47).

REPURPOSED DRUGS TO POTENTIATE NEW REGIMENS
Clofazimine

Clofazimine (CFZ) belongs to the riminophenazine group and was originally used
for the treatment of leprosy; however, due to its bactericidal activity against M. tuber-
culosis, it now plays an integral role in TB treatment (66). Its putative mechanism of
action is believed to be linked to redox cycling. The drug undergoes enzymatic reduc-
tion, thereby creating toxic reactive oxygen species (67). Renewed interest in the drug
stems from its role in the short-course treatment regimen that achieved substantial
cure rates in a cohort of Bangladesh patients (68). The Damien Foundation trials sug-
gested that CFZ was a critical companion drug in the short-course regimen, as it
replaced the more toxic thioamide in the continuation phase and efficiently compen-
sated for its lost efficacy (68). A large-scale individual-patient meta-analysis that
included 12,030 patients and assessed the safety and effectiveness of CFZ found that it
significantly improved treatment success rates (40). CFZ is currently listed as a priority
drug (group B) for the longer RR/MDR-TB regimen. As with BDQ, resistance to the drug
is linked to mutations in the Rv0678 gene (linked to drug efflux); therefore, cross-resist-
ance between the two drugs is a major concern (69).

Linezolid

LZD is an oxazolidinone that acts by inhibiting the 50S ribosomal subunit during
protein synthesis. It has demonstrated high activity against M. tuberculosis and cur-
rently forms a part of many investigational regimens in phase III clinical trials. LZD is
currently classified as a group A anti-TB drug and is a core second-line agent associ-
ated with the potential to improve survival when used as part of a well-constructed
multidrug regimen (34). Concerns of LZD-associated peripheral neuropathy and myelo-
toxicity have previously limited its use (70). The optimal dose that provides maximum
bactericidal activity while counterbalancing toxicity became an important area of
research. In the absence of a comprehensive understanding of LZD pharmacokinetics
and pharmacodynamics, LZD toxicity has been managed through LZD dose reduction
(47). In vitro preclinical evaluation of an optimal LZD dose in a hollow fiber infection
model demonstrated that a 300-mg dose of LZD administered at 12-h intervals was
associated with high bactericidal activity against M. tuberculosis; however, it was more
toxic than a 600-mg dose administered once daily (71). In further hollow fiber model
work, LZD at a dose of 300 mg/day did not reach or exceed pharmacokinetic-pharma-
codynamic targets for toxicity, while it maintained high levels of microbial killing activ-
ity. A dose of 600 mg/day, or 1,200 mg on alternate days, produced marginally higher
microbial killing but at the cost of breaching the pharmacokinetic-pharmacodynamic
thresholds for mitochondrial toxicity in just under 20% of simulated patients (72).
Clinical trials have shown that LZD doses of 600 mg and 1,200 mg/day in a clinical set-
ting produce similar clinical effects as predicted by the hollow fiber model (47, 73). The
recent results from the ZeNix trial confirmed that a 600-mg dose of LZD per day is suffi-
cient and associated with improved safety compared with 1,200 mg/day (73). Hence,
the WHO now recommends the use of 600 mg of LZD in the recently approved regi-
mens with BPaL and BPaLM, while further clinical studies are needed on the efficacy of
300 mg/day (15).

The Changing Paradigm of Tuberculosis Treatment Clinical Microbiology Reviews

December 2022 Volume 35 Issue 4 10.1128/cmr.00180-19 8

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00180-19


RECENT INNOVATIONS IN THE DR-TB TREATMENT LANDSCAPE: SHORT-COURSE
TREATMENT FOR DR-TB

The introduction of short-course treatment for DR-TB heralded a new era for the
treatment of DR-TB (30). These novel regimens are described in detail in the sections below,
and a landscape analysis of the changes to DR-TB treatment is presented in Table 1.

Short-Course Regimen for RR-TB and MDR-TB

The first major innovation in the treatment of DR-TB was demonstrated with the
introduction of a short-course regimen for MDR-TB, reducing the treatment duration
from .18 months to 9 to 12 months (31). The initial observational study reporting the
effectiveness of this short-course regimen was conducted in Bangladesh, thus attract-
ing the colloquial name, “the 9-month Bangladesh regimen.” The regimen consisted of
9 to 12 months of treatment, comprising a 4- to 6-month intensive phase of treatment with
kanamycin (KAN), gatifloxacin (GFX), prothionamide (PTO), CFZ, and high-dose INH, followed
by a 5-month continuation phase of GFX, CFZ, PZA, and EMB (30). GFX was the core drug of
the regimen and was administered at high doses to ensure relapse-free cure and suppres-
sion of resistant mutants (74, 75). The complex multidrug regimen was based on preclinical
data on individual drug characteristics and real-world iterative regimen modification until
the final regimen was constructed. Injectable KAN was added to ensure early bactericidal ac-
tivity and protect against the development of resistance to FQs (21), CFZ and PZA were
active against organisms with low metabolic activity, preventing relapse of infection (76, 77),
and high-dose INH and PTO were added to protect core drugs (78). The initial evaluation
included patients with proven or suspected MDR-TB (n = 206). Patients received in-hospital
observation for the duration of the intensive phase of the treatment and were followed for
a duration of 24 months; the regimen resulted in an 87.9% cure rate (68). An updated report
on this cohort revealed the continued efficacy of the regimen in 515 patients, 84.5% of
whom achieved relapse-free treatment success (30).

Following the positive preliminary results of the Bangladesh study, five subsequent
prospective cohort studies were conducted in Benin, Niger, Cameroon, and West and
Central Africa. The studies noted minor modifications to the initial regimen (predomi-
nantly in the dosage of FQ or the replacement of GFX with MFX) and in the duration of the
intensive phase of the regimen (30, 79–81). This was followed by a phase III randomized
controlled study, the STREAM study, which evaluated a modified short-course regimen
(high-dose MFX [400 to 800 mg/day, depending on patient’s weight] replacing GFX) com-
pared to the standard 18- to 24-month WHO regimen (82). Following the initial recommen-
dation of the standard short “Bangladesh” regimen by the WHO, the affirmative results of
the STREAM study led to the widespread adoption of the regimen (33).

Another major breakthrough, marking a turning point in the fight against DR-TB,
was the recommendation of the first all-oral (injection-free) long-course regimen (33).
With the overwhelming success of BDQ, the drug was incorporated into the standard
long regimen, replacing the second-line injectable drug. Shortly thereafter, an all-oral
BDQ-containing shortened regimen, based on high levels of efficacy demonstrated in
the South African TB Program, was recommended. This change has significantly
improved treatment outcomes and has improved the retention of RR/MDR-TB patients
in care (83). Furthermore, the continuation of the STREAM trial to stage 2, aimed to
assess whether the 9-month all-oral BDQ regimen is superior to the injectable-based
“Bangladesh” regimen assessed in stage 1 and the WHO-recommended MDR-TB regi-
men in accordance with 2011 MDR-TB treatment guidelines.

The 6-Month BPaL Regimen

Another novel combination advancing the treatment of DR-TB patients is the BPaL
regimen. The Nix-TB study was an open-label, single-group study that evaluated the
safety and efficacy of the novel combination of BDQ, PTM, and LZD for 6 to 9 months in
patients with nonresponsive MDR-TB or XDR-TB (n = 109). Despite extensive drug resistance,
high rates of previous treatment, and a high burden of cavitary disease, 90% of the patients
enrolled in the study had favorable treatment outcomes. Among the 109 patients enrolled,
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63/71 (89%) of XDR-TB and 35/38 (92%) of nonresponsive MDR-TB patients who displayed
poor responses to prior treatment, achieved favorable outcomes on the BPaL regimen at 6
months follow-up (47). Adverse events related to LZD toxicity, documented in 81% of the
participants, was manageable following dose reduction of LZD (47). A follow-up phase III
study evaluated safety and efficacy of various doses and treatment durations of LZD plus
BDQ and PTM in participants with pulmonary TB, XDR-TB, pre-XDR-TB, or nonresponsive or
intolerant MDR-TB (ZeNix study; NCT 03086486). The results of that study were recently pre-
sented, and among 181 patients that were enrolled, the success rate achieved among
patients who received the highest dose of LZD (1,200 mg) for 6 months was 93%, similar to
results observed among those who received 1,200 mg for 2 months and achieved 89% suc-
cess (73). In addition, 91% and 84% success rates were achieved for those receiving 600 mg
LZD for 6 months and 2 months, respectively. There was a clinical efficacy reduction of 2 to
9% in patients who received LZD at a lower dose and/or for a shorter duration; however,
these results demonstrated that LZD dose reduction and duration do not significantly
impact the clinical efficacy of the BPaL regimen. Thus, a dose of 600 mg for 2 months may
be sufficient to achieve adequate efficacy while counterbalancing safety.

INNOVATIVE TRIALS UNDER EVALUATION

There are several DR-TB studies assessing novel regimens for the treatment of DR-TB
with the overall aim of reducing treatment duration, pill burden, and drug toxicity and
improving treatment outcomes. Among the ongoing studies, there are significant overlaps
and striking similarities, including various combinations of four to five group A or repur-
posed drugs and treatment durations ranging from 6 to 12 months, and BDQ and LZD are
the most common drugs in all regimens. The studies are grouped according to their treat-
ment duration in Table 2.

The WHO recently considered the results of two major clinical trials, TB PRACTECAL
and ZeNIX, to strengthen the evidence on the use of 6-month regimens for RR/MDR-
TB. The TB-PRACTECAL and ZeNIX trials evaluated similar regimens, except that ZeNIX
did not evaluate BPaLM and its primary objective was to evaluate various doses and
durations of LZD exposure within the BPaL regimen. The results from the ZeNIX study
showed that a 600-mg dose of LZD offered the best balance of safety and efficacy (73).
Furthermore, data from the TB PRACTECAL trial revealed improved safety and efficacy
of the BPaLM regimen compared to the standard-of-care RR/MDR-TB regimen (15). In
addition, the BPaL (600-mg) regimen retained excellent efficacy without addition of
MFX in the presence of FQ resistance (pre-XDR-TB patients).

The NExT trial, which evaluated the efficacy of an all-oral 6- to 9-month regimen
against an injectable-containing long regimen (24 months), demonstrated that a 6-
month injectable-free MDR-TB regimen (containing BDQ, LZD, and levofloxacin [LFX])
significantly improved treatment outcomes (84). The endTB clinical trial, which is pres-
ently evaluating five different short MDR-TB regimens, completed enrollment in 2021;
results are anticipated soon (NCT02754765).

All of the described new regimens for DR-TB are expected to improve the treatment
outcomes for DR-TB. However, the future concern may be implementation of these
regimens on a larger scale, especially in countries with high TB burden and limited
resources. Further, emergence of drug resistance to drugs such as BDQ, which repre-
sents a backbone in most of these new regimens, may compromise the overall efficacy
provided by the regimens.

CLINICAL MANAGEMENT OF DR-TB IN CHILDREN AND ADOLESCENTS, PREGNANT
WOMEN, AND PEOPLE LIVINGWITH HIV
Children and Adolescents

Children and adolescents have suffered neglect in DR-TB research for years. However,
recent steps have been taken to improve care in this population. Though the majority of
children do not suffer from severe forms of TB, many still get infected with DR-TB. Research
in improved diagnostics, shorter regimens, practical formulations, and palatable medication
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for children has gained momentum (85). Regimens shorter than those used to treat adults
may be effective in children and can solve problems such as costs to families and health
care systems, reduced toxicity, and lower risk of drug-drug interactions among HIV-coin-
fected children and also improve adherence (86). Steps have been taken toward conducting
clinical trials in children and adolescents. Though the SHINE (Shorter Treatment for Minimal
Tuberculosis in Children) trial focused on DS-TB, it achieved a milestone as a TB clinical trial
in children and paved a way for DR-TB clinical trials in the future (87). In the latest WHO DR-
TB guidelines (2021), BDQ is recommended as part of an all-oral short regimen in children
,6 years of age (6). Additionally, BDQ may be included in longer RR/MDR-TB regimens in
patients aged 6 to 17 years. Furthermore, DLM is also recommended to be included in the
treatment of children and adolescents with RR/MDR-TB (6). These new drugs have shown
outstanding activities for adults and are expected to offer the same benefit for children and
adolescents.

Pregnant Women

DR-TB treatment in pregnant women has always been challenging, because anti-TB drugs
used for treatment are potentially harmful to the fetus and these patients are often excluded
from clinical trials (88). Anti-TB drugs used in previous regimens, i.e., aminoglycosides and
ethionamide, are known to be teratogenic to the fetus (88). Hence, the previous guidelines of-
ten excluded the use of these drugs in short and long RR/MDR-TB regimens in pregnant
women (34, 89). The WHO has downgraded the use of injectable drugs and recommends the
use of all-oral regimens in pregnant women. However, the data on safety of drugs such as
BDQ and DLM during pregnancy or breastfeeding are limited. It will be some time before
there is evidence on the outcomes from the use of these new regimens in pregnant women,
given the low incidence of pregnancy during RR/MDR-TB treatment (90). Individualized regi-
mens consisting of drugs with known safety profiles are often recommended (34).

People Living with HIV

Timely diagnosis of DR-TB and treatment initiation among people living with HIV
(PLHIV) remains the first step toward improving treatment outcomes. Even though DR-TB
and HIV coinfected patients receive the same treatment as non-HIV-coinfected patients, HIV-
coinfected patients may frequently experience serious adverse events and require treatment
observation for any DR-TB and HIV treatment complications (91).

PLHIV have often been excluded in clinical research studies; however, progress in recent
years has been made, and this population has increasingly been included in major trials,
e.g., the STREAM and NiX TB trials. In the STREAM trial, one-third of the enrolled patients
were PLHIV; even though the analysis based on HIV status was not done, this study achieved
treatment success of 78.8% and 79.8% for short and long regimens, respectively (32).
Similarly, the NiX-TB study experienced successful treatment outcomes (90%), despite 51%
of patients having HIV coinfection (47). HIV status did not impact treatment outcomes, as
results were consistent regardless of HIV status. It has been reported that an MDR-TB short-
course regimen is generally tolerated among PLHIV, even though adverse events such as
hearing loss are more frequently reported in this population (81).

There has been increasing interest in using new and repurposed drugs in PLHIV
with DR-TB, with promising treatment outcomes. The NExT-TB study reported that 55%
of patients were HIV coinfected, and the use of a new drug (BDQ) and a repurposed
drug (LZD) in the regimen was associated with improved outcomes (84).

THE GRAY AREAS
The Composition of DR-TB Regimens: Drug Selection and Treatment Duration

A hallmark feature of M. tuberculosis infection is its long periods of latency, which is linked
to the ability of the organism to persist in the host tissues. TB disease therefore requires an
extended duration of combination antibiotic treatment to achieve complete sterilization of
both actively multiplying and dormant bacilli. Thus, the main objectives of combination drug
therapy for TB are the following: (i) to rapidly reduce the mycobacterial burden, thereby reduc-
ing disease transmission; (ii) to eradicate persistent mycobacterial populations and prevent
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relapse infection; and (iii) to prevent the acquisition of drug resistance (92). In order to meet
these objectives, TB treatment regimens are comprised of core drugs, which drive the efficacy
of the regimen, complemented by companion drugs that support the activity of the core
drugs. Core drugs have both bactericidal and sterilizing effects, essential for relapse-free cure,
and are ideally administered throughout the treatment period (74). In the absence of a core
drug, a regimen is substantially ineffective or almost entirely loses its efficacy (81). Companion
drugs are used to ensure the core drug is protected by preventing the selection of resistant
mutants and preventing relapse after treatment completion (74). In Table 3, we present an
update on microbiological characteristics of drugs according to the recent WHO classification
and outline their roles in long-course RR/MDR-TB treatment (updated from Van Deun et al.
summary in 2018 [74]). Individual-patient meta-analyses and published efficacy data have
been used by WHO as the basis to grade anti-TB drugs (93). Given that relatively few new
anti-TB drugs are available amid the increasing severity of drug-resistant strains, the diverse
microbiological activity of individual drugs is often not taken into consideration when con-
structing a regimen. Instead, grouping is prioritized on the most effective drugs currently avail-
able. As opposed to the prior classification, there is a breadth of data available on the new
and repurposed drugs to support their prioritized grading in group A. Drug combinations
using group A drugs have treatment success rates as high as 90% for the most severe forms
of TB (47).

Despite decades of TB treatment research, the optimal number of drugs required to
construct an effective regimen remains an area of uncertainty. The Preserving Effective
TB Treatment study (PETTS) and an earlier individual-patient meta-analysis demon-
strated the inclusion of at least four effective drugs improved treatment success and
decreased mortality rates (40, 93). The latest meta-analysis suggested that the inclusion
of new drugs and a later-generation FQ contributed to the overall treatment success
rate observed in that analysis (93). On the basis of these findings, WHO recently reclas-
sified anti-TB drugs into three main groups according to the available evidence on
effectiveness and safety of the drugs (34). To design an appropriate regimen, WHO rec-
ommends a stepwise process to construct a regimen of at least four drugs likely to be
effective. DR-TB drugs are ranked into three main groups (Table 1) (34). Regimens are

TABLE 3 Core and companion drugs and their bactericidal and sterilizing activities in the treatment of MDR-TB (long-course regimen)a

Characteristics Use in MDR/XDR-TB treatment regimens

Drugs (grouping
according to WHO)

Bactericidal
activity

Sterilizing
activity

Resistance
prevention

Core
drug

Companion drug used
for its bactericidal
or sterilizing effect

Other companion
drugs

Group A
FQs (LFX and MFX) High High High X
BDQ High High High? X
LZD High Low High X

Group B
CFZ Low High High Sterilizing
Cycloserine or terizidone Moderate Low Moderate Bacteriostatic

Group C
EMB Low Low Moderate Bacteriostatic
DLM High High High X
PZA Low High Low Sterilizing

Imipenem-cilastatin OR
meropenem

High High Moderate? Bactericidal

Second-line injectables
Ethionamide or PTO High Low High Bacteriostatic and

bactericidal
PAS Moderate or high Low Moderate Bacteriostatic
INH high-dose Low or moderate Low High Bactericidal

aUpdated from Van Deuen et al. 2018 [74]. Abbreviations of drug names are defined in Table 1, footnote a.
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selected in a stepwise process prioritizing the inclusion of all three group A drugs
(BDQ, LZD, and MFX or LFX) drugs. If all three group A drugs cannot be included in the
regimen, selection is made from the group B list. Group C drugs are included in the
regimen when an effective regimen cannot be derived from the former groups.

Innovations in DR-TB treatment have resulted in a substantial reduction in treatment du-
ration in programmatic regimens. However, the optimal duration following culture conver-
sion and the lack of effective biomarkers to guide treatment duration contribute to this area
of uncertainty. An increasing number of new studies aim to reduce treatment duration
(described in the previous section and in Table 2).

Role of High-Dose INH in Treatment of MDR-TB

INH has been the cornerstone of TB treatment and remains an essential component
in the treatment of DS-TB. However, the utility of the drug has been severely compro-
mised with the emergence of M. tuberculosis variants displaying resistance to INH. INH
displays potent EBA against M. tuberculosis, allowing for rapid clearance of ;95% of
the bacterial load within 2 days of treatment using standard doses of the drug (4 to
6 mg/kg) (94). Resistance to INH is mediated by mutations in the inhA gene and its pro-
moter region, which lead to a minimal increase in the MIC, ranging between 0.25 and
2 mg/L (95). Additionally, mutations in katG confer higher levels of INH resistance, with
MICs ranging between 1 and 16 mg/L (95). Given that INH displays a dose-dependent
EBA, higher doses of the drug (up to 20 mg/kg) may result in exposures likely to over-
come resistance mediated by inhA and katG mutations.

The perceived clinical benefit of high-dose INH is supported by many lines of evidence.
A randomized placebo-controlled trial among MDR-TB patients conducted in India reported
reduced time to culture conversion and improved treatment outcomes in patients treated
with high-dose INH (16 to 18 mg/kg) compared to patients who received the standard dose
of INH or placebo (96). Similar results of reduced time to culture conversion in a high-dose
INH group versus a standard dose INH group were reported in a retrospective cohort study
in Haiti (7 weeks versus 9.1 weeks) (97). The inclusion of high-dose INH in treatment-shorten-
ing studies for MDR-TB have demonstrated treatment success rates of;55% to 70%. These
studies led to the WHO endorsement of high-dose INH in the standard short-course regimen
for MDR-TB (68, 79, 80). An individual-patient meta-analysis on 975 children supported the
role of high-dose INH in achieving treatment success (98). A more recent meta-analysis on
12,030 patients lacked sufficient data to support the role of high-dose INH (40). It has been
demonstrated that an INH dose of 10 to 15 mg/kg displayed similar EBA among M. tubercu-
losis strains with inhA mutations compared to the standard dose efficacy against DS-TB
strains (99). However, there is a delayed drug activity in patients infected withM. tuberculosis
strains bearing inhA mutations. In contrast to the rapid clearance observed between days 0
and 2 in patients infected with drug-susceptible strains, the average daily killing of mutant
strains was higher on days 2 to 7 (99). Further work is under way to assess the activity
against katGmutants, which confer higher levels of resistance than inhAmutants.

In addition to the underlying mycobacterial resistance, host genetics also impact
the availability of INH. In the host, INH metabolism is mediated by the by N-terminal
acetyltransferase 2 (NAT2). The presence of a mutation in the NAT2 gene leads to sub-
stantial differences in INH clearance, thereby classifying individuals into either “slow”
or “fast” acetylators (100). The prevalence of NAT2 mutations differs geographically, with slow-
acetylator status being prevalent in over two-thirds of individuals in Egypt and the United
States but rare in northern Asia (101). Nonetheless, NAT2 genetic diversity has a complex evo-
lutionary history, and significant heterogeneity is seen between people of different ancestries
within geographic locations such as the United States (102, 103). Slow acetylators with inhA
mutations may still benefit from the normal dose of INH; however, fast acetylators may require
higher doses of 15 mg/kg (101). In the case of katG mutations, it has been postulated that
even at high doses, effective levels of the drug cannot be achieved, even in individuals with
slow-acetylator status. Optimal dosing of INH therefore requires consideration of the host
genetics and pathogen mutation profiles. In a South African study, fast acetylators were less
common than intermediate and slow acetylators, presenting at rates of 18, 43, and 34%,
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respectively (104). Further, that study demonstrated that fast acetylators had faster INH clear-
ance (2.3 times faster) than slow acetylators, suggesting that INH dosage should depend on
the acetylator status of an individual (104). Thus, the impact of resistance-conferring muta-
tions could potentially compromise treatment success rates and long-term outcomes in
such patient populations. Importantly, further research is required to identify those patients
likely to benefit from an INH high dose in the presence of INH resistance-conferring muta-
tions and also on the potential role of the drug in new regimens.

Roles of Ethambutol and Pyrazinamide

EMB and PZA form a part of group C agents in the recent guidelines of DR-TB treat-
ment (5), playing a supporting role to core drugs such as BDQ. PZA is used for its
relapse-preventing properties, as it displays excellent sterilizing effect, assists in treat-
ment shortening (74), and demonstrates excellent TB lung tissue penetration (105).
EMB has low bactericidal and sterilizing effects but demonstrates moderate resistance
prevention, thereby helping to complete the DR-TB regimen and prevent selection of
mutant strains. High rates of resistance to both drugs have been reported among
MDR-TB isolates, ranging from 44.1% to 80% for EMB (106, 107) and 36% to 85% for
PZA (106, 108, 109). Notwithstanding this high background burden of resistance
among MDR-TB isolates and the technical difficulties associated with phenotypic DST
of EMB and PZA, these drugs have been part of the standard short regimen for a long
time. Thus, they may have had less than the desired effect in protecting the core drugs
and could potentially compromise long-term outcomes. In a retrospective study where
PZA resistance correlated with RIF resistance, treatment success for the cohort ranged
from 19 to 63% (110). This implies the importance of susceptibility testing to these
drugs, as mandated by the WHO guidelines. Contrary to the previous guidelines, which
precluded the use of the standard short-course regimen in patients with preexisting re-
sistance to EMB and PZA, the results from the Bangladesh cohort showed 93.3% treat-
ment success among participants (n = 242) with preexisting resistance to PZA and EMB
(111). The success rate was similar (93.8%) to that in participants who were susceptible
to both drugs (n = 81). The individual-patient data meta-analysis showed that the
patients with resistance to PZA and EMB were at higher risk of treatment failure and
relapse than were susceptible patients (40). However, the negative effects of PZA and
EMB resistance on treatment outcomes were wholly mitigated in patients with FQ sus-
ceptibility. Studies have shown that despite resistance to PZA and EMB being present
and associated with adverse outcomes, if FQ susceptibility is preserved the effect on
the clinical outcomes is not significant enough to justify systematic DST at baseline
(111). Several studies have found that resistance to PZA and EMB in patients with FQ-
susceptible TB did not negatively affect clinical outcomes (30, 79, 81). In contrast, the
results from the STREAM trial showed that background PZA resistance was associated
with unfavorable outcomes in the per-protocol analysis (112).

EMB and PZA resistance is challenging to identify in clinical practice, mostly
because the front-line molecular diagnostic assays, Gene Xpert Ultra and the line probe
assay, do not cover these drugs and phenotypic DST is insufficiently reliable (113).
Potential sources of inaccuracy may arise from uncertainty around critical concentra-
tions for these drugs and the lack of standardized methods for culture-based MIC
determinations (114). More recently, next-generation sequencing (NGS) has been used
to detect mutations in the pncA gene and embCAB operon for PZA and EMB, respec-
tively; however, not all mutations detected in these genes conferred phenotypic resist-
ance (115, 116). Instead, sequencing results of embCAB and phenotypic DST have
shown significant discordance (113, 116). Similarly, isolates bearing mutations associ-
ated with PZA resistance have demonstrated susceptibility by phenotypic DST (117).
Unreliable phenotypic DST from these drugs complicates the clinical determination of
false-negative and false-positive results from genotyping (118). Greater standardization
of laboratory methods for phenotypic DST is needed, and greater certainty around crit-
ical concentrations and clinical breakpoints needs to be achieved.
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Antimicrobial Heteroresistance

Heteroresistance in M. tuberculosis infection is common, i.e., where the M. tuberculo-
sis population contains a mix of both susceptible and resistant organisms (119). The
prevalence of mixed-strain M. tuberculosis infections has been reported in the range of
10 to 20% in settings in which TB is endemic (120, 121). Heteroresistance, commonly
referred to as mixed-strain infection, has been reported for a number of key anti-TB
drugs, including FQs, RIF, INH, PZA, second-line injectable agents, and BDQ (122). This
phenomenon arises from suboptimal drug treatment, i.e., it is acquired resistance, or
from mixed infection by strains with different susceptibilities, e.g., superinfection with
a resistant strain in a patient with DS-TB (123). Consequently, heteroresistance compli-
cates therapeutic management of TB and poses a threat to TB treatment success. Until
recently, each TB episode was assumed to be caused by a single M. tuberculosis strain
that elicited an immune response, serving to protect the host against infection with a
secondary strain (124). However, molecular technology has demonstrated multiple TB
disease-causing strains co-occurring in the same patient.

Heteroresistance has been associated with poor treatment outcomes, such as per-
sistent infection and treatment failure in MDR-TB patients (119). In a study evaluating
the impact of heteroresistance on treatment outcomes, using 24-locus mycobacterial inter-
spersed repetitive unit variable number tandem repeat analysis in 66 DR-TB patients, 35/66
(53%) displayed mixed infection after 6 months of treatment. Heteroresistance was observed
among 16/35 (45.71%) with mixed infection, of which 8/35 (22%) experienced treatment fail-
ure (125). While individualized treatment tailored by utilizing deep sequencing could over-
come the challenge of heteroresistance, this may not be feasible in low-income countries.

Micro-heteroresistance for BDQ has been demonstrated through targeted sequencing of
the Rv0678 gene (126). In that report, initial phenotypic DST demonstrated BDQ susceptibil-
ity, while targeted sequencing done later during treatment showed an insertion in the
Rv0678 gene. Importantly, the newly discovered insertion, which was not present in the iso-
late before BDQ treatment, occurred at a frequency of .90% among isolates obtained after
BDQ exposure (126). Heteroresistance was reported in approximately 11/158 MDR-TB iso-
lates obtained from four countries (Thailand, Bangladesh, Tanzania, and Russia) by using
NGS to sequence 11 gene regions. Heteroresistance was most commonly detected in the
gyrA gene (codon 94; linked to FQ resistance), the rpoB gene (codons 526 and 531; linked to
RIF resistance), and the EmbB gene (linked to EMB resistance) in 11–26% of isolates (122).

Extensive Cavitary Disease and Intracavitary Gradients

Pulmonary cavitation is the classic hallmark of TB disease associated with an increased
bacterial load (127). Cavitary disease is often associated with drug resistance and treatment
failure (128). Cavitary disease is highly contagious, as it is associated with a highM. tuberculo-
sis load of approximately 1,011 bacilli/g, contributing to ongoingM. tuberculosis transmission
(127). Given the associated risk of relapse and treatment failure (128), the use of the standard
short treatment regimen is contraindicated.

A significant challenge associated with cavitary disease is the development of intracavitary
gradients, arising from uneven penetration of anti-TB drugs in the various lung cavity compart-
ments and leading to one of two scenarios: (i) acquisition of drug resistance due to inadequate
drug exposure (129), or (ii) increased MICs due to low intracavitary drug concentrations (130).
It was demonstrated that the pretreatment sputum MIC had an accuracy of 49.4% in predict-
ing cavitary MICs in that study, and there were large concentration-distance gradients for each
antibiotic. The location-specific concentrations were inversely correlated with MICs (P , 0.05)
and therefore with acquired resistance (130). Additionally, findings from a study conducted in
Georgia found multiple M. tuberculosis strains with varied resistant profiles in lung specimens
obtained during resection surgery compared to sputum samples (40% versus 0 to 5%) (131).
That study further demonstrated that strains were genetically distinct and the DST profile
across samples was fully reversed, i.e., the caseum DST profile and sputum sample (from pre-
XDR-TB to pan-susceptible TB) (131).

Various anti-TB drugs demonstrate varied abilities to penetrate the lung cavity, thereby
resulting in suboptimal drug concentrations within cavities (105, 129). The potential of the
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anti-TB drugs LZD, MFX, CFZ, PZA, KAN, INH, and RIF to penetrate TB cavities and the result-
ing concentrations have been evaluated (132). These studies demonstrated that the stand-
ard doses of INH and RIF had poor penetration to the cavitary lesions, and the resulting con-
centration at the site of disease was inadequate. However, a combination of MFX and CFX
or CFZ and LZD standard doses in multidrug-level simulations demonstrated optimal pene-
tration into caseous lesions, with adequate concentrations achieved at the site of disease
(132). A recent study used a combination of positron emission tomography and computed
tomography scanning and hollow fiber time-kill simulations and demonstrated heterogene-
ity in RIF concentrations across pathologically distinct cavitary lesions (133). In contrast, LZD
and FQs have been reported to have great tissue penetration, making them an excellent
choice in the treatment of cavitary disease (134, 135). There is an urgent need for innovative
strategies to overcome challenges resulting from intracavitary gradients and more studies
focusing on factors such as drug dosing and novel modes of delivery.

Individualized versus Standardized Treatment Approaches

A significant challenge in low-income high-TB burden settings is that care for DR-TB
is offered as part of a simplified standardized programmatic response aimed at achiev-
ing the best possible public health outcomes. Using this approach, all patients with
DR-TB receive a standard DR-TB regimen upon diagnosis of RR-TB, constructed based
on predominant resistance patterns in the community without phenotypic resistance
test results and thereby enabling immediate access to treatment (20). While this
approach improves programmatic provision of care, it does not account for patient
genetics and variabilities in pathogen susceptibility and is associated with a number of
disadvantages, such as treatment failure in those with preexisting drug resistance to
the selected regimen and risk of drug resistance amplification, including development
of resistance to new drugs (136–138).

On the contrary, individualized regimens are tailored to respond to individual patient
needs, as the regimens are constructed based on patient-specific DST results and clinical in-
formation (34). Recent data indicate that individualized study approaches improve the prob-
ability of treatment success and long-term treatment outcomes (136, 139). NGS technology
has been explored extensively for individualized care approaches for DR-TB and is fast
becoming the standard-of-care practice in some settings (140–142). However, in resource-
limited settings with the highest burden of TB disease, it may be a long way from becoming
routine practice (143). Given the persistently low treatment success rates and increased risk
of amplified drug resistance, the continued used of standardized regimens that adopt a
one-size-fits-all approach to all DR-TB in an era of increasing drug resistance is a serious pub-
lic health concern (136). Individualized treatment approaches in resource-limited settings
will require substantial investment in research, including operational and implementation
research to enhance capacity in such settings (138).

Isoniazid Monoresistance Detection and Treatment Regimens

In 2019, 1.4 million incident cases of INH-resistant TB, among which 1.1 million cases were
INH monoresistant, were reported for the first time by the WHO (6). INH resistance, now the
most common form of TB drug resistance, is a serious concern, given that genomic evolution
studies have shown that INH resistance is the first resistance type to develop along the path-
way to multiple drug resistance (144). Of further concern is that detection of resistance to INH
is not currently available using front-line TB diagnostic assays, such as Gene Xpert Ultra (144).
Current diagnostic pathways focus on the detection of RIF resistance as a surrogate marker of
MDR-TB and test for INH in a reflex manner. Thus, in the absence of routineM. tuberculosis cul-
ture and phenotypic testing, patients with INH monoresistance are undiagnosed and receive
standard DS-TB treatment; resistance is detected later when they demonstrate a poor treat-
ment response (145). A systematic review analyzing treatment outcomes of patients with INH-
resistant TB treated with the recommended first-line anti-TB drugs reported pooled rates of
failure or relapse, or both, and acquired drug resistance at rates of 15% (95% confidence
interval [CI], 12 to 18%) and 3.6% (95% CI, 2 to 5%), respectively, compared to 4% (95% CI, 3
to 5%) and 0.6% (95% CI, 0.3 to 0.9%) in those with DS-TB (146). The 3-fold increase in poor
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TB treatment outcomes and 6-fold increase in acquired TB drug resistance associated with
undetected INH resistance warrants urgent attention. Patients with confirmed INH-monore-
sistant tuberculosis require 6 months of treatment with RIF, EMB, PZA, and LFX (34), yielding
improved treatment success rates, reduced mortality, and reduced acquisition of drug resist-
ance compared to patients receiving the standard 6-month regimen (34, 147).

More recently, a multicountry analysis of aggregate TB drug resistance using data
collected between 2003 and 2017 involving 156 countries and 211,753 patients reported a
global prevalence of INH-resistant TB of 7.4% (95% CI, 6.5% to 8.4%) among new TB patients
and 11.4% (95% CI, 9.4% to 13.4%) among previously treated TB patients (148). Data analysis
describing the prevalence of LFX and PZA resistance in addition to INH resistance was con-
ducted for Azerbaijan, Bangladesh, Belarus, Pakistan, the Philippines, and South Africa and
revealed a resistance prevalence to both PZA and LFX of 1.8% (95% CI, 0.2 to 6.4%) in the
Philippines and 5.3% (95% CI, 0.1 to 26.0%) in Belarus, with no reported cases of additional
PZA and LFX resistance in the other four countries (148). The overall low prevalence of resist-
ance to PZA and FQs among patients with INH-monoresistant TB supports the use of the
WHO-recommended modified treatment regimen.

Host-Directed Therapy

Host-directed therapy (HDT), a new and promising additional strategy, improves the effi-
cacy of anti-TB treatment by modulating the host immune response to the infecting M. tu-
berculosis pathogen (92). Our improved understanding of M. tuberculosis pathogenesis and
immunological mediators has contributed to novel and innovative host-directed approaches
for use as adjuncts to antibiotic-based anti-TB treatment. The term HDT is used to describe
all treatment options that potentially provide an antimicrobial or additive benefit through (i)
interplay with host mechanisms exploited by M. tuberculosis to persist and replicate in the
host, (ii) boosting host immune defense mechanisms against M. tuberculosis, (iii) targeting
pathways contributing to disease or immunopathology, and/or (iv) modulating host factors
associated with pathogenic responses (149, 150). HDTs can be used to target specific path-
ways that play a causal role in M. tuberculosis pathogenesis or can be used to ease symp-
toms, such as targeting inflammation (149). Thus, several HDTs have emerged as candidates
for adjunctive use with current anti-TB treatment without additional risk of developing drug
resistance, as they target highly conserved host pathways (151).

Even though most HDT studies have focused on DS-TB, few studies have shown that
adjunct HDT can have a similar effect on DR-TB. Metformin (MET) is one of the most promis-
ing adjunctive HDTs. In M. tuberculosis-infected mice, MET regulated the growth of drug-re-
sistant M. tuberculosis strains by improving lung pathology, reducing chronic inflammation,
and enhancing the specific immune response (152). Furthermore, in a retrospective cohort
of patients, MET improved the rate of sputum culture conversion in diabetes mellitus
patients with cavitary disease (odds ratio [OR], 10.8; 95% CI, 1.22 to 95.63) (153). Similarly,
in a separate case-control study, the protective effect offered by MET against TB was 3.9-
fold higher in patients with diabetes (OR, 0.256; 95% CI, 0.16 to 0.40) (154).

Ibuprofen, carprofen, and 3,5-dinitro-ibuprofen showed a similar effect against
three MDR-TB clinical isolates and H37Rv, with MIC values ranging from 20 to 50 mg/
mL (155). These results demonstrated a potential effect that could lead to new TB ther-
apy. A phase II study assessing the safety and efficacy of using adjunctive ibuprofen for
XDR-TB (NCT02781909) has been completed; however, the results of this study are still
pending. The initiation of this prospective, randomized, pilot study was highly influ-
enced by the results obtained by Vilaplana and coworkers, in which treatment of M. tu-
berculosis-infected mice with ibuprofen resulted in statistically significant decreases in
the size and numbers of lung lesions (P = 0.0003), decreases in the bacillary load
(P, 0.0001), and improved survival (P = 0.0094) (156).

There is growing evidence that statins play a role in containing M. tuberculosis infection.
Statins are primarily cholesterol reducers; however, they have also shown immunomodulatory
and anti-inflammatory activities (157). In vitro studies have shown that statins reduce M. tuber-
culosis growth in infected cells (158, 159). M. tuberculosis-infected peripheral blood mononu-
clear cells and monocyte-derived macrophages from hypercholesterolemic individuals on
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statin therapy showed reduced M. tuberculosis load or were more resistant to M. tuberculo-
sis infection than were healthy individuals (160). Simvastatin in particular has been shown
to increase the bactericidal effects of INH, RIF, and PZA in in vitro and in vivo murine mod-
els (158, 161, 162). Additionally, treatment with simvastatin reduces the time to lung cul-
ture conversion in mice (163). HDTs in combination with anti-TB treatment could poten-
tially shorten treatment duration, reduce the number of drugs required for combination
treatment, and potentiate the efficacy of DR-TB regimens (151).

ELEMENTS OF THE HEALTH CARE SYSTEM

A well-optimized health care system is one of the key components required to
deliver effective treatment and care and improve treatment outcomes. There are chal-
lenges with accessing TB diagnostics and treatment which have resulted in increased
TB deaths (2). The adoption of rapid molecular diagnostics, such as use of GeneXpert Ultra,
has allowed rapid diagnosis of TB and RIF resistance directly from sputum (164) and has
been found to be suitable for implementation at lower levels of health care systems. The
recently introduced GeneXpert MTB/XDR has eliminated the concerns of missed Hr-TB case
detection, as it has additional probes for detection of INH, FQ, ethionamide, and injectables
resistance (165). The current challenge with these diagnostic techniques is their inability to
differentiate between dead and viableM. tuberculosis (166).

While the use of sputum culture conversion to monitor treatment response has
remained the most effective way over the decades, its limitation is that it can only detect via-
ble M. tuberculosis and is therefore unable to predict clinical outcomes. There are other
methods currently being explored, such as the tuberculosis molecular bacterial load assay,
which quantifies viable M. tuberculosis. This is advantageous over culture due to its rapid
turnaround time, near-zero rates of contamination, reproducibility, and providing informa-
tion on the rate ofM. tuberculosis decline during treatment (167). Unfortunately, there is lim-
ited evidence on its use on a larger scale, and its use in place of culture in resource-con-
strained countries is likely to be limited by its high installation costs (166).

Patients receiving DR-TB treatment are often discouraged by the long treatment
duration and the high burden of adverse events. Patient-centered and personalized
counseling and support for treatment adherence are crucial (168). Reporting of clinical
events is one of the major components of patient safety. Health care workers should
be encouraged to report patients’ adverse events, missed visits, and treatment
response. Different barriers to in-hospital reporting have been reported, including the
absence of feedback, fear of blame, and the lack of positive changes emanating from
the reporting process (169). Health care systems require optimization to deliver better
and improved care to patients with DR-TB.

DISAPPOINTMENTS AND PITFALLS
Emerging Resistance to BDQ

Despite the apparent success of BDQ, recent demonstrations of treatment-emer-
gent BDQ resistance pose a significant threat that could potentially reverse recent and
anticipated gains associated with novel BDQ-containing regimens. A retrospective
analysis of a South African cohort evaluated five patients (5/92; 5.4%) with preexisting
BDQ resistance and a further five patients (5/87; 5.7%) that acquired BDQ resistance
over the course of BDQ treatment (170). All five patients had preexisting FQ-resistant/RR-TB
at initiation of the BDQ-containing regimen, and 4/5 patients failed treatment. Despite inclu-
sion of at least four likely effective drugs as per WHO recommendations, these patients
acquired resistance to BDQ, confirming that the complementary activity of included drugs is
relatively more important to prevent acquired drug resistance than the number of active
drugs in a regimen. Similarly, development of acquired BDQ resistance in 7/124 (5.6%) of
patients was reported in a cohort study, despite 4/7 patients receiving an individualized
WGS- and DST-based regimen (171). Emergence of BDQ resistance despite individualized
treatment administered within a highly controlled in-patient setting suggests that patient
nonadherence is not the only contributor to acquired TB drug resistance. Suboptimal
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protection provided by remaining companion drugs to a core drug(s), in this case BDQ/
CFZ, warrants further exploration. More recently, a study in Pakistan reported BDQ resist-
ance in 8/26 patients (30.8%) and the rates of acquired BDQ resistance were found to be
significantly higher among patients who did not receive a second-line injectable drug
compared to those that did (172).

There are currently no rapid molecular-based methods for detection of BDQ resist-
ance, as mutations linked to this drug are scattered around the whole genome. WGS is
currently used to identify mutations in the RV0678, atpE, Rv1979c, and pepQ genes,
which have been reported to be associated with BDQ resistance (173). Although WGS
utilization has increased in most countries, it is still not part of the standard of care
except in high-income countries with a low TB burden (174–176). Hence, BDQ resist-
ance detection relies mostly on phenotypic DST. The MGIT 960 system has been
reported to have the most reproducible results for BDQ resistance detection (177).

While RV0678 mutations in BDQ are associated with cross-resistance to CFZ, it has
been shown that only one-third of CFZ-resistant strains are resistant to BDQ, while all
strains resistant to BDQ are CFZ resistant (178). These findings lead to the suggestion
that CFZ resistance cannot be confidently used as a marker for BDQ resistance.
Additionally, DST is required to confirm susceptibility or resistance, and the role of
Rv0678 mutation needs better understanding (178). The wide adoption of all-oral regi-
mens which contain both BDQ and CFZ emphasizes the need of routine phenotypic
DST; the rollout of these drugs in settings with limited phenotypic DST could result in
continuous spread of drug resistance (179).

Poor Performance of DLM and Emerging Drug Resistance

Initially, DLM use outside of clinical trials was limited; however, reports citing DLM’s
success made it an appealing choice for DR-TB treatment (180). The concerning high
rates of acquired DLM resistance during treatment suggest a significantly lower thresh-
old for development of acquired drug resistance (46, 181). Data from a single patient
initiated on a DLM-containing regimen for TB relapse following previous treatment
with a BDQ-containing regimen demonstrated a 125-fold increase in the MIC at treat-
ment failure, corresponding to $2.0 mg/mL, compared to the pre-DLM treatment MIC
of 0.016 mg/L (181). Furthermore, in a prospective observational study, there was a
higher rate of acquired resistance in the DLM group than in the BDQ group (36% ver-
sus 10%) (46), highlighting its increasing propensity for the development of resistance.

A phase II global study (Trial 204) reported a very low MIC for DLM in 460 isolates from
DLM-naive patients with TB. Various degrees of resistance to other anti-TB drugs did not
affect the distribution of the MICs. Furthermore, there was no difference observed in MIC dis-
tributions in most regions or countries for patients with drug-resistant isolates. However, 2/
460 isolates from Egypt and Korea (both of which have high TB prevalence) were reported
to have high MICs of 1 mg/L and .8 mg/L, respectively (182). Baseline and naturally occur-
ring resistance to DLM appeared to be rare (,1%), from geographically diverse populations,
and against DS-TB, MDR-TB, and XDR-TB strains. Adherence to the recent WHO recommen-
dation that DLM may only be added to a well-constructed MDR-TB treatment regimen is
necessary to prevent the emergence of additional resistance.

Furthermore, in a randomized clinical trial 213 (NCT01424670), .90% of the population
had previous TB treatment exposure before enrollment and randomization. DLM resistance
was reported in 2/327 patients at baseline, and acquired resistance was detected in 4/327
patients in the group receiving DLM, compared to none in the control group receiving a
standard-of-care regimen (183). All four patients with acquired resistance to DLM were hos-
pitalized; this indicated that nonadherence may not be the only factor contributing to
acquired drug resistance. Moreover, these four participants only received two anti-TB drugs
that were likely to be effective, in addition to DLM (183). In a Korean study, DLM resistance
was reported in 41/420 clinical isolates from patients with no previous exposure to DLM; the
clinical breakpoint of 0.2 mg/L was used to determine the resistance (48). The same critical
concentration was used in a similar study from China, and 7/220 MDR and XDR clinical iso-
lates were found to be resistant to DLM (184).
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Lack of Biomarkers To Assess DR-TB Treatment Response

TB biomarkers are a potentially useful tool to monitor the curative response to treatment
and are crucial to assess if an M. tuberculosis-infected host is responding effectively to anti-
TB treatment (185). Sputum culture conversion, described by at least two consecutive nega-
tive cultures or smears taken on different occasions at least 7 days apart, is the current mea-
sure for assessing bacteriological response (7). Several innovative approaches have been
described as predictive markers in monitoring treatment response. Certain chemokines and
inflammatory markers were identified as candidate predictive markers in delayed sputum
culture conversion in MDR-TB patients (n = 50) (186). Furthermore, that study demonstrated
that among culture-positive patients at baseline, some patients showed significant positive
correlations between plasma levels of C-reactive protein (CRP), serum amyloid A (SAA), vas-
cular endothelial growth factor A (VEGF-A), soluble interleukin-2 receptor alpha (sIL-2Ra
[CD40]), and interferon gamma-induced protein 10 (IP-10) and delayed sputum culture con-
version. In addition, a combination of monocyte chemoattractant protein (1MCP-1 [CCL2]),
IP-10, sIL-2Ra, SAA, CRP and a positive acid-fast bacilli smear could differentiate fast from
slow responders and was predictive of delayed sputum culture conversion with high sensi-
tivity and specificity. However, this must be evaluated on a larger scale (186). Markers of bac-
terial burden can thus effectively measure bactericidal activity; however, they are at the mar-
gins of detectability during the crucial subsequent sterilizing phase (187).

Relapse is mediated by a small subset of subpopulations of residual M. tuberculosis
that survive the sterilizing phase of the treatment. Thus, the prediction of relapse will
likely require a biomarker that is capable of quantifying sterilizing drug activity and
survival of very small subpopulations of residual M. tuberculosis (187). The identification
of more accurate biomarkers predictive of TB outcomes is a key research priority (188).

CONCLUSION AND FUTURE PERSPECTIVES

Even though there have been significant developments made within the DR-TB treat-
ment landscape, the disease remains a major concern in public health. The COVID-19 pan-
demic has resulted in disruptions across the TB care cascade. The diagnosis and appropriate
treatment of patients with RR was already challenging prepandemic, with fewer than half of
an estimated 500,000 patients benefitting from diagnostic and treatment advances.
However, incredible advances in reducing DR-TB treatment-related toxicity and treatment
duration with improvements in DR-TB treatment outcomes have been achieved with the
introduction of new antimicrobial drugs and the widespread use of repurposed drugs to
potentiate new regimens. These antimicrobials have proven to be highly active in DR-TB
regimens and have achieved excellent treatment outcomes. Furthermore, another major
advancement was the introduction of the Bangladesh short-course regimen for treatment
of MDR-TB. This regimen was associated with improved treatment outcomes and offered
patients a chance to complete their treatment in 9 months. The recent transitioning of this
regimen to an all-oral regimen has significantly improved outcomes and retention of RR/
MDR-TB patients in TB care (47, 73, 83, 84, 189). The BPaL and BPaLM regimens added to
these already-existing developments by providing the first-ever 6-month regimen for the
treatment of DR-TB (14). Other studies are under way and are aiming to reduce the treat-
ment duration and pill burden. These regimens are expected to be more efficacious in eradi-
cating M. tuberculosis, thereby reducing the potential of relapse (74). Notwithstanding the
availability of several new treatment strategies, getting the right drugs to the right patients
in time to positively impact outcomes is essential, requiring access to rapid and accurate
diagnostics to meet emerging public health needs.

Regardless of the successes observed, areas of uncertainty remain. The specific number
of drugs required to construct an effective regimen remains uncertain; though that may be
the case, it is important to ensure that constructed regimens provide maximum protection
against acquired resistance and efficiently sterilize dormant subpopulations. Failure to detect
pretreatment resistance enhances the vulnerability of new drugs to acquired resistance, cre-
ating further setbacks for patients and programs. Further, the use of high-dose INH in the
absence of evidence for its effectiveness requires urgent attention, as it may render this
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drug useless in the future due to an increased burden of resistance. In addition, the use of
drugs such as PZA and EMB, ignoring the burden of resistance reported on these drugs, is
concerning, as patients may be subjected to suboptimal treatment. Other clinical aspects
requiring attention, as they are associated with poor treatment outcomes, are antimicrobial
heteroresistance and intracavitary disease. Better approaches in diagnostics and treatment
are required to offer patients improved clinical outcomes. Individualized treatment approaches
may offer better treatment outcomes; however, implementing them on a larger scale may be
a challenge for resource-limited countries, and so the treatment remains standardized. A new
approach of using adjunct HDT in combination with a background regimen has demonstrated
a potential to reduce treatment duration and the number of drugs required to complete a
regimen and further potentiates the efficacy of DR-TB regimens.

All the substantial development achieved may be reversed by the emergence of re-
sistance to new drugs, especially BDQ. This suggests that new potential core drugs
should be used only for defined recommendations and within defined regimens, to
prevent further resistance acquisition (74). Furthermore, the lack of biomarkers to mon-
itor treatment response, including prediction of treatment failure or relapse, may be a
contributor in reversing the major advancements achieved (185).
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