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ABSTRACT Nonlinear ecological interactions within microbial ecosystems and their
contribution to ecosystem functioning remain largely unexplored. Higher-order inter-
actions, or interactions in systems comprised of more than two members that can-
not be explained by cumulative pairwise interactions, are particularly understudied,
especially in eukaryotic microorganisms. The wine fermentation ecosystem presents
an ideal model to study yeast ecosystem establishment and functioning. Some pair-
wise ecological interactions between wine yeast species have been characterized,
but very little is known about how more complex, multispecies systems function.
Here, we evaluated nonlinear ecosystem properties by determining the transcriptomic
response of Saccharomyces cerevisiae to pairwise versus tri-species culture. The tran-
scriptome revealed that genes expressed during pairwise coculture were enriched in
the tri-species data set but also that just under half of the data set comprised unique
genes attributed to a higher-order response. Through interactive protein-association
network visualizations, a holistic cell-wide view of the gene expression data was gen-
erated, which highlighted known stress response and metabolic adaptation mecha-
nisms which were specifically activated during tri-species growth. Further, extracellular
metabolite data corroborated that the observed differences were a result of a biotic
stress response. This provides exciting new evidence showing the presence of higher-
order interactions within a model microbial ecosystem.

IMPORTANCE Higher-order interactions are one of the major blind spots in our under-
standing of microbial ecosystems. These systems remain largely unpredictable and are
characterized by nonlinear dynamics, in particular when the system is comprised of
more than two entities. By evaluating the transcriptomic response of S. cerevisiae to
an increase in culture complexity from a single species to two- and three-species sys-
tems, we were able to confirm the presence of a unique response in the more com-
plex setting that could not be explained by the responses observed at the pairwise
level. This is the first data set that provides molecular targets for further analysis to
explain unpredictable ecosystem dynamics in yeast.

KEYWORDS yeast-yeast interactions, higher-order interactions, yeast multispecies
ecosystems, ecoevolution, fermentation bioprocesses, RNA-Seq, wine, microbial
consortia, microbial ecology, microbial interactions, wine ecosystem, yeast interactions

Microbial communities are essential service providers to humans, performing func-
tions ranging from digestion to bioremediation. Microbial ecosystems are geneti-

cally and functionally diverse, allowing them to perform a myriad of bioprocesses with
resilience and a capacity to dynamically respond to fluctuations in their environment
(1, 2). Historically, humans have primarily exploited the functionality of single microor-
ganisms, for example, Saccharomyces cerevisiae, for biotechnological applications, such
as heterologous enzyme production and bioethanol production, as well as food and
beverage production. However, the use of monocultures in biotechnological processes
has reached somewhat of an innovation ceiling in more complex bioremediation and
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fermentative bioprocesses, where emphasis is shifting from modifying a single strain
to perform many functions to trying to exploit complementary properties of multiple
strains and species within a custom-designed microbial ecosystem (3, 4).

There are, however, significant challenges that limit our ability to harness microbial
ecosystems. One of these is the fact that there is a lack of predictive understanding of
the mechanisms that govern the establishment and functioning of these ecosystems
(5). In terms of the molecular mechanisms that govern yeast-yeast interactions, the cur-
rent state of knowledge is largely based on binary, i.e., two-species, systems (6–13).
These are comparatively easier to investigate than multispecies systems, given their
better predictability, and such simpler systems can provide foundationally important
data sets before attempting to unravel more complex systems. These studies have
investigated the responses of yeast species to each other at the transcriptomic and
proteomic level and have focused on the response of S. cerevisiae to other yeast spe-
cies. A few studies have also reported on non-Saccharomyces partner responses,
including Torulaspora delbrueckii and Lachancea thermotolerans, which are both popu-
lar choices for industrial fermentations given their strong fermentative capacity and
contribution to positive sensory qualities (7–9). The focus on S. cerevisiae in most of
these studies is linked to this species playing a dominant role in the wine ecosystem
while also being a model organism with an excellent molecular toolbox and research
archive from which to draw upon. The conclusions of these studies have shown that
there are significant impacts on S. cerevisiae at the transcriptional and translational
level in response to mixed-species culture, and more interestingly, there are indeed
species-specific impacts on S. cerevisiae as well.

In contrast, very little is known about the influence of nonbinary interactions within
yeast ecosystems, and this remains a major research challenge within the broader field
of microbial ecology (3, 5, 14). Higher-order interactions are nonlinear effects on the
existent interactions (and functioning) of a microbial community, which happen when
either pairwise interactions are perturbed by the presence of other interactors or com-
pletely new properties emerge as a result of a specific combination of microbial role
players (15). Currently, the available quantitative data of higher-order interactions in
microbial ecology are dominated by bacterial communities only (3, 4, 14, 16–20). In
yeast, far less is known about higher-order interactions, with the best available data
being population dynamics that have been collected during fermentations with inocu-
lated yeast consortia. These are limited in terms of comparing population dynamics in
cultures of increasing complexity, so the emergence of any higher-order effects is
masked (21–27).

Here, we have sought to study the emergence of higher-order interactions at the
transcriptomic level in S. cerevisiae within the simplest possible consortium of three
wine-associated yeast species. The consortium was comprised of Lachancea thermoto-
lerans, Torulaspora delbrueckii, and S. cerevisiae, three species that are present in signifi-
cant cellular concentrations in natural wine fermentations globally and that can be
considered core elements of the evolutionarily relevant wine microbial ecosystem (28).
Population dynamics, major metabolite concentrations, and the mRNA transcriptome
of S. cerevisiae were compared between mono-, bi-, and tri-species culture. We report
on the species-specific impacts of the pairwise cocultures on S. cerevisiae, contributing
to our understanding of the ecological interactions at play and allowing for compari-
son with previous pairwise studies that investigated similar species. By eliminating the
signature of pairwise interactions from the consortium data set, we were able to reveal
the presence of a response unique to consortium growth, which alludes to a possible
higher-order impact on S. cerevisiae in response to more than one interacting species.
These data contribute to our broader understanding of yeast-yeast interactions within
the wine fermentation ecosystem and, importantly, give a first insight into the poten-
tial mechanisms that allow S. cerevisiae to consistently dominate this ecosystem. These
findings have implications for the future design of synthetic yeast ecosystems, as well
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as our fundamental understanding of the role of biotic stress on the establishment and
functioning of such ecosystems.

RESULTS
Population dynamics of the synthetic yeast consortium. The growth levels of S.

cerevisiae were compared between monoculture, pairwise, and three-species culture
settings (Fig. 1). S. cerevisiae was the dominant species in each mixed-culture scenario
(25, 26, 29–32). In the pairwise cocultures with S. cerevisiae, L. thermotolerans growth
appeared to be more severely attenuated than that of T. delbrueckii (Fig. 1B and C). Cell
numbers of S. cerevisiae throughout growth in both of these pairings were nearly identi-
cal. S. cerevisiae achieved dominance after 8 h of coculture in both pairwise experiments.
These pairwise population dynamics were also reflected in the three-way population dy-
namics, with S. cerevisiae being the dominant species and T. delbrueckii having slightly
higher cell numbers than L. thermotolerans from 8 h onward (Fig. 1D). The growth pat-
terns of S. cerevisiae in pairwise (Fig. 1B and C) and consortium (Fig. 1D) cultures were
highly similar. One significant difference between monoculture and cocultures was that
the monoculture reached stationary phase after 12 h of growth (Fig. 1A) while mixed cul-
tures showed an extended growth phase of S. cerevisiae after 12 h (Fig. 1B to D). Overall,
these cell number-based trends indicate that in terms of relative abundances, the pair-
wise population dynamics were a good predictor for the dynamics in the more complex
tri-species system.

Differential expression analysis of S. cerevisiae in mixed-species cultures. To
characterize gene expression programs of S. cerevisiae associated with potential higher-
order interactions within a three-species yeast consortium, differential expression levels of
genes were compared between the consortium and every possible pairwise combination
within the consortium (Fig. 2). To contextualize these results, it is important to consider
the state of the ecosystem at the sampling point (and therefore the selected experimental
settings and sample point selection), especially given the fact that only one time point is
being evaluated. After 7 h of growth, in all mixed-culture settings, S. cerevisiae has just
begun to dominate competing species in terms of cell numbers and is in the early

FIG 1 Population dynamics of mono-, bi-, and tri-species cultures, grown at 30°C in optimized YNB growth medium
with aeration and agitation. Black arrows indicate sampling point for RNA sequencing. Red circles, Saccharomyces
cerevisiae; purple squares, Lachancea thermotolerans; green triangles, Torulaspora delbrueckii.
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exponential growth phase. This time point represents an important point in the growth of
S. cerevisiae, where its dominant attributes are emerging at the phenotypic level while it
still has similar cell numbers as the other species. At this point, the total biomass and the
sugar consumption rate, and therefore total metabolic activity, in each sample can be con-
sidered similar.

Given the batch culture conditions, it was also essential to keep the nutritional state
of the growth medium as consistent as possible between samples. The sugar (glucose
and fructose), glycerol, yeast assimilable nitrogen (YAN), organic acid (citric acid, tar-
taric acid, malic acid, succinic acid, lactic acid, and acetic acid), and methanol concen-
trations of the cultures were all similar (see Table S2.1 in the supplemental material;
analysis of variance [ANOVA], P � 0.05), which supports the fact that all the cultures
were at similar points of growth, thereby reducing the likelihood that the differences
observed here were due to various physiological states linked to nutrient availability or
growth phases. Overall, ethanol concentrations were similarly low, as expected at early
time points, with slightly lower ethanol concentrations in the coculture samples (aver-
age across all mixed cultures: 0.47% [vol/vol]) than in the monoculture (0.60% [vol/
vol]) (Table S2.1). There were also differences in amino acid concentrations, specifically
serine, aspartic acid, glutamic acid, threonine, valine, isoleucine, leucine, and glutamine
(Fig. 3 and Table S2.2). This is in line with known strain-specific preferential uptake of
amino acids which has previously been observed in monoculture and mixed-culture
contexts (33–35). The causation behind these differences in absolute concentrations of
amino acids cannot be determined here since it is not possible with the current meth-
odology to follow uptake and/or release of amino acids by a particular species during
mixed culture. Still, the fact remains that there are different available absolute concen-
trations of particular amino acids in the extracellular environment of these yeast cells,
and this may indeed be a highly relevant factor of yeast-yeast interaction to consider.

(i) Generalized response of S. cerevisiae to mixed-species culture. In all tested
species combinations, 24 genes were consistently differentially expressed (Fig. 4). These
genes were similarly up- or downregulated under all conditions, and the differential
expression levels were highly correlated between all conditions. Notably, these commonly

FIG 2 Summary of the transcriptomic response of S. cerevisiae to pairwise and three-species consortium
growth. ORFs, open reading frames.
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affected genes were also some of the most highly upregulated and statistically significant
(Data Set S1) under each tested condition.

Two major functional pathways were upregulated within this group, namely, thia-
mine biosynthesis (THI11, THI13, THI22, SNZ3, SNO2) and NAD1 biosynthesis (de novo
pathway: BNA2, BNA4, BNA5, BNA6; salvage pathway: TNA1). Furthermore, a key stress-
protective glycerol synthesis gene, GPD1 (HOR7), oxidative stress-associated genes
(TSA1, MXR1), and a DNA replication stress gene (SOL4) were all upregulated, provid-
ing evidence for a potential link to the stress-protective need for thiamine.

(ii) S. cerevisiae shows species-specific transcriptome remodeling during pair-
wise culture. Differentially expressed genes (DEGs) unique to each pairing with either
L. thermotolerans or T. delbrueckii were then comparatively assessed. There was a re-
markable difference in the number of affected genes between the two pairings, with
T. delbrueckii (807 DEGs) eliciting over 20-fold more of a response than L. thermotolerans
(35 DEGs) (Fig. 5).

Pairwise interaction with L. thermotolerans induced upregulation of a few genes
involved in the respiratory electron transport chain, specifically mitochondrial ATP synthe-
sis (COX4, CYT1, QCR2) and ubiquinone biosynthesis (COQ6) genes (Fig. S3). Further, the
lesser-studied putative hexose transporter (HXT8) was downregulated. Taken with the up-
regulation of pyruvate decarboxylase gene PDC5 (expressed under all conditions), this sug-
gests a shift to simultaneous fermentative and respiratory metabolism, common to
Crabtree-positive yeasts under high-glucose, aerobic conditions. Other upregulated genes
included a ubiquitin biosynthesis gene (UBX6), a weak acid stress response gene (YRO1),
and a transcriptional modulator of meiosis, gene silencing, and stress-induced RNR genes
(WTM1), as well as amino acid biosynthesis genes (MET5, MST1). Interestingly, the gene
with the highest statistical significance value (excluding those genes mentioned in Fig. 4)
was an uncharacterized gene (YJR115W), which was downregulated, similarly to a previous
study that evaluated S. cerevisiae and L. thermotolerans pairings (7), highlighting this gene
as a potential target for future functional annotation studies.

T. delbrueckii stimulated a more extensive metabolic shift in S. cerevisiae (Fig. 5). There
was major remodeling of central carbon metabolism, with activation of glucose metabo-
lism, which may be a competitive response to increase uptake of this preferred carbon

FIG 3 Measured absolute amino acid concentrations in the supernatants of S. cerevisiae monoculture
and mixed-species cultures. Values are represented as the mean from four biological repeats. Statistically
significant differences in amino acid concentrations between different cultures are labeled with differing
letters and were calculated by ANOVA followed by Tukey’s multiple-comparison test. Sc, Saccharomyces
cerevisiae; Lt, Lachancea thermotolerans; Td, Torulaspora delbrueckii; ns, not significant.
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source (Fig. S4, clusters 1, 3, and 6). Glucose sensing and carbon catabolite repression
(CCR) regulators were differentially expressed, including two target hexose transporters
(HXT6, HXT7) involved in CCR that had high statistical significance within the data set
(Fig. 5 and Fig. S4, cluster 6). There appeared to also be simultaneous fermentative
(Fig. S4, cluster 10) and respiratory (Fig. S4, cluster 3) metabolism, albeit with more pro-
nounced impacts on respiration. Specifically, there was upregulation of respiratory genes
involved in the mitochondrial electron transport chain (Fig. S4, cluster 3), reorganization
of mitochondrial structure (Fig. S4, clusters 18, 24, and 25), increased flux through the tri-
carboxylic acid (TCA) cycle (Fig. S4, cluster 3), and activation of both the oxidative and
nonoxidative branches of the pentose-phosphate pathway (Fig. S4, cluster 1). Further,
the SIP2 gene, central to the glucose starvation response, was also upregulated.
Interestingly, all genes required for trehalose biosynthesis and regulation (Fig. S4, cluster
1) were upregulated, as well as the two genes involved in trehalose-to-glucose catabo-
lism (NTH1, ATH1; cluster 1), indicating that S. cerevisiaemay be preparing to store excess
glucose and recycle it as a means of competition. Trehalose is also known to be involved
in a number of cellular stress responses (36, 37).

Consistent with a response to starvation, several autophagy and autophagy-associated
genes were differentially expressed. Autophagy is induced during nutrient starvation and

FIG 4 Differentially expressed genes in S. cerevisiae that were present in both pairwise cocultures (with
L. thermotolerans and T. delbrueckii, respectively) as well as in consortium culture with all three yeast species.
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is the process of the cell cannibalizing organelles and using the resultant by-products to
maintain metabolic homeostasis (38, 39). There were signs of activation of signaling cas-
cades mediated by Ser/Thr protein phosphatases (Fig. S4, clusters 5 and 39), which are
essential in nutrient sensing, and upregulation of Ras-like protein 2 (RAS2), which is
involved in responding to nitrogen starvation (Fig. S4, cluster 44). Macroautophagy genes
were upregulated (Fig. S4, clusters 8, 30, and 40), as were associated intracellular vesicular
trafficking and secretion genes including endocytic genes (Fig. S4, cluster 4), soluble N-eth-
ylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-associated
genes (Fig. S4, cluster 20), and endoplasmic reticulum (ER)-associated secretory genes
(Fig. S4, cluster 29). Impacts on transcription were also present, with differential expression
of genes involved in transcription by RNA polymerase II (Fig. S4, cluster 37), upregulation
of RNA helicases (Fig. S4, cluster 14), and upregulation of transcription activators (Fig. S4,
cluster 42). The second largest network cluster, cluster 2 (Fig. S4), illustrated a shift in pro-
tein turnover and stress-related changes in translational programs. Genes involved in cyto-
plasmic translation were downregulated, indicating a cessation of cytoplasmic translation,
while genes involved in proteolysis and protein ubiquitination were upregulated, which is
consistent with autophagy-related protein catabolism and recycling. There was upregula-
tion of genes involved in protein misfolding, including those involved in endoplasmic
reticulum (ER)-associated protein degradation (Fig. S4, cluster 27). Further, lipid droplet ca-
tabolism, which is also a central autophagic mechanism, was upregulated (Fig. S4, clusters
16, 22, 35, and 38) (39).

In terms of major carbon and nitrogen metabolism, there appeared to be competi-
tion for glucose, as reported above, and there appears to be remodeling in response to
available nitrogen sources and a need for sulfur-containing amino acids. Specifically, a
general amino acid permease was upregulated (AGP2, cluster 13, Fig. S4), signaling a
lack of preferred nitrogen sources, and the uptake of sulfate and biosynthesis of sulfur-
containing amino acids, particularly methionine, were upregulated (Fig. S4, clusters 12
and 15). Interestingly, the metabolite data largely do not reflect starvation conditions
in terms of available nitrogen and carbon; however, there are indeed differences in the
amino acid concentrations tested here, and preferred amino acid concentrations may
have contributed to stimulating this response. Further, vitamins and trace elements
may have been limiting, since gene targets related to thiamine (Fig. S4, cluster 9) and
zinc (Fig. S4, cluster 23), as well as copper and iron (Fig. S4, cluster 17), were differen-
tially expressed.

General oxidative (Fig. S4, cluster 31) and osmotic (Fig. S4, cluster 11) stress response

FIG 5 Volcano plots of differentially expressed genes in S. cerevisiae in response to coculture with L. thermotolerans (A) or T. delbrueckii (B), excluding the
genes reported in Fig. 4. Minimum 2log10(FDR) of 1.3 and fold change (FC) cutoff of 1 and 21. Genes with the top 10 highest statistical significances are
shown and color coded to the graph.
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genes were upregulated, as well as peroxisome biogenesis genes (Fig. S4, cluster 41),
which are involved in oxidative stress management (40, 41). In addition, genes involved
in DNA repair were also upregulated, indicating some DNA replication stress (Fig. S4,
cluster 43).

Finally, in agreement with the majority of previous coculture analyses, there were
significant alterations in the expression of cell envelope-associated genes (8, 9, 13).
Cell wall organization and biogenesis genes were upregulated (Fig. S4, clusters 7, 26,
and 33), and cell wall mannoproteins were also impacted, with TIR1 having high statis-
tical significance within this group of genes (Fig. 5 and Fig. S4, cluster 33). Components
of eisosomes, which are distinct, dynamic plasma membrane subdomains which have
been shown to play a role in responding to membrane stressors, were also upregu-
lated (Fig. S4, cluster 11) (42).

The overall response showed similarities to the environmental stress response (ESR)
program, a generalized response to varied cellular stresses, which has previously been
observed in other S. cerevisiae and T. delbrueckii coculture studies (8, 9, 13, 43), with no-
table parallels to starvation responses, autophagy in particular.

(iii) Growth in a consortium induces a combination of known pairwise responses
as well as novel higher-order responses in S. cerevisiae. To determine gene expres-
sion programs associated with higher-order interactions, we evaluated the DEGs of S. cer-
evisiae during growth within the three-species consortium. First, the extent to which the
DEGs present during consortium growth could be predicted by the pairwise coculture
DEGs was assessed by matching the genes in common between the pairwise and con-
sortium conditions (Fig. 6A). Overall, 43% of the consortium DEGs were unique, i.e.,
expressed only during consortium growth and not under either pairwise condition, and
57% were present during pairwise coculture. Delving into this 57% of pairwise origin,
100% of the DEGs expressed during coculture with L. thermotolerans were expressed
during consortium growth, and 73% of DEGs expressed during coculture with T. del-
brueckii were expressed during consortium growth. This shows that pairwise ecological
interactions are largely retained during consortium growth. The overall trend is that
some prediction of interactions can be made from pairwise data; however, there indeed
appears to be evidence for higher-order, or unpredictable, expression responses in
S. cerevisiae.

Next, it was necessary to link the higher-order-associated DEGs with their broader
cellular functions. The total list of DEGs was used to create a functional network, and

FIG 6 (A) Bar graph showing the gene categories within the differentially expressed gene list of S. cerevisiae (Sc) in response to consortium growth with
both T. delbrueckii (Td) and L. thermotolerans (Lt). Percentages were calculated for the entire gene list (All), as well as for clusters 1 to 53. Black represents
the percentage of genes common between all coculture conditions tested. Green represents the percentage of genes in common with the pairwise
T. delbrueckii coculture. Purple represents the percentage of genes in common with the pairwise L. thermotolerans coculture. Blue represents the percentage
of genes unique to consortium growth. (B) Volcano plot of differentially expressed genes in S. cerevisiae unique to consortium growth. Minimum
2log10(FDR) of 1.3 and fold change cutoff of 1 and 21. Genes with the top 10 highest statistical significances are shown and color coded to the graph. Genes
that are located in the mitochondria are represented by triangles.
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the DEGs were labeled according to their commonality in the pairwise data sets
(Fig. S5). This approach was followed to contextualize the higher-order DEGs within
the broader functional network and more easily identify functional clusters that are
uniquely associated with the higher-order response. To this end, each functional clus-
ter was also represented by the percentage of DEGs that were in common with pair-
wise coculture or unique to the consortium setting (Fig. 6A and Fig. S5). It was found
that many higher-order genes are functionally relevant to pairwise genes, illustrated
by the distribution of higher-order and pairwise genes within their functional clusters
(Fig. 6A and Fig. S5). For instance, cluster 9 consists of ergosterol biosynthesis genes,
with half being present during the pairwise condition and the other half being stimu-
lated by consortium growth. Other examples include clusters that are involved with
autophagy (Fig. S5, cluster 11) and oxidative stress response (Fig. S5, cluster 18). This
suggests that the cellular responses elicited during pairwise growth may be intensified
in the consortium context.

Within this functional network there were also several clusters that consisted of ma-
jority higher-order interaction DEGs, which are notable as they may point to cellular
responses that are indeed unique to higher-order interactions. This led us to perform
functional enrichment and identify a network of the DEGs unique to the consortium
growth condition in isolation (Fig. 6B and Fig. S6).

The data show a large proportion of these DEGs are localized to the mitochondria
(38.4%) (Fig. 6B), with the most significant gene ontology process terms being mito-
chondrial translation and mitochondrial ATP synthesis-coupled electron transport
(Data Set S1). Indeed, within the top five most statistically significant genes within this
data set are two mitochondrial ribosomal large subunit genes (IMG1, MRPL16) and two
mitochondrial respiratory chain complex III genes (QCR7, COR1) (Fig. 6B). As a whole,
this suggests a metabolic shift to respiratory metabolism, with diversion of intracellular
protein metabolism to energy generation strategies. The largest and most intercon-
nected functional cluster, cluster 1 (Fig. S6), showed downregulation in cytoplasmic ri-
bosomal genes and upregulation in mitochondrial ribosomal and translation genes. In
accordance with this increase in mitochondrial translation machinery, there was also
an increase in aminoacyl-tRNA ligases associated with mitochondrial translation
(Fig. S6, cluster 10). In addition, cluster 2 (Fig. S6) showed upregulation of respiratory
and ATP synthesis genes within the mitochondrion, and cluster 13 (Fig. S6) included
upregulation of two major glucose-repressed transcriptional activators (HAP4 and
HAP5) involved in regulation of respiratory metabolism. Cluster 16 (Fig. S6) displayed
upregulation in mitochondrial organization-related genes as well as stress response
genes. The opposing responses in mitochondrial and cytoplasmic translation machin-
ery seen here are an interesting finding, as it is known that these processes are gener-
ally regulated in concert (44), and show a cellular priority for mitochondrial processes
that generate energy. There are also signs of DNA replication stress and alterations to
cell cycle checkpoints (Fig. S6, cluster 3), indicating impacts on proliferation rate as
well. Further, protein trafficking within the cell was also upregulated, indicating
impacts on protein turnover within the cell as well (Fig. S6, cluster 4).

Genes of the flocculin family, involved in cell adhesion and flocculation, were
largely downregulated (Fig. S6, clusters 12 and 15). These genes have been highlighted
in previous studies as a potential regulator of ecosystem dynamics and are an intuitive
target as direct contact between cells influences the nature of their interactions (45–
47). This seemingly indicates that S. cerevisiae may be avoiding direct cell contact with
the other species within the culture, perhaps in an attempt to increase its chances to
access limiting nutrients or to avoid cell wall-associated inhibition mechanisms of com-
peting species (48).

In evaluating highly differentially expressed genes not necessarily associated with
large clusters, the aromatic aminotransaminase, ARO9, was the most highly upregulated
gene and is known to be induced by the presence of aromatic amino acids in growth
media (49). The concentrations of aromatic amino acids (tyrosine, phenylalanine, and
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tryptophan) do not show significant differences between the monoculture and mixed
cultures. This suggests a potential alternative function of this gene related to mixed-
culture growth and has implications in terms of the generation of higher alcohols, which
have previously been highlighted in other yeast-yeast interaction studies as potential
signaling molecules and are of note since they are known to influence wine flavor and
aroma (34, 35, 50, 51). The most downregulated genes included ZNF1, a glucose-
repressed transcription factor, with regulatory roles in alternative carbon source utiliza-
tion, respiration, and stress (52), as well as BDS1, a bacterially derived sulfatase responsi-
ble for utilization of sulfate esters, which suggests some impacts on sulfate import and
metabolism (53).

Lastly, a cluster of interest related to the overarching aim of hypothesis generation
is cluster 5, which consists of primarily uncharacterized open reading frames, which is
significant given how well annotated the S. cerevisiae genome is. These would be good
targets for annotation in a mixed-culture context, as opposed to the gold standard of
high-throughput gene function characterization in monoculture.

DISCUSSION

Higher-order interaction mechanisms within microbial ecosystems are poorly char-
acterized. This study sought to contribute to our understanding of these mechanisms
within a simplified wine yeast consortium. For this purpose, we characterized the
emergence of higher-order interaction at the transcriptional level in a three-way yeast
species interaction model.

S. cerevisiae differentially expressed a significant number of thiamine and NAD1 bio-
synthesis genes in response to coculture, regardless of the cohabitant type or number.
Thiamine (vitamin B1) and its phosphorylated derivatives are important cofactors for
enzymes involved in carbon metabolism, and thiamine is a growth factor of particular
interest within fermentative processes because of its influence on glycolytic flux and
fermentation efficiency (54–56). Competition for thiamine has also previously been
highlighted in interactions of S. cerevisiae with L. thermotolerans and Hanseniaspora
guilliermondii (7, 57). The pyruvate decarboxylase gene PDC5 was also upregulated
within this list and is repressed by thiamine, signaling low intracellular thiamine levels
(55, 58). Interestingly, the upregulation of de novo NAD1 biosynthesis and nicotinic
acid uptake has direct links to thiamine biosynthesis, given that NAD1 is a necessary
cofactor of thiamine biosynthesis enzymes and that these processes are regulated via
the same protein, namely, Hst1p, an NAD1-dependent histone deacetylation protein
(59). Thiamine accumulation has also been linked to providing protection against oxi-
dative and osmotic stress, which is of relevance in the high-sugar growth medium
used here (60). Further, NAD1 homeostasis plays a critical role in maintaining redox
balance within the cell (61). The fact that these genes were impacted regardless of the
species or number of cohabitant species alludes to these responses being indirectly
linked to the presence of other species. It is likely that these responses were more a
result of nutritional competition or other impacts of cohabitant species on the growth
environment, as opposed to a direct and specific ecological interaction mechanism.

At the pairwise level, interesting differences in transcriptional responses of S. cerevi-
siae to either L. thermotolerans or T. delbrueckii were evident. There was a more exten-
sive response to T. delbrueckii than there was to L. thermotolerans, with the majority of
this response to T. delbrueckii being well aligned with known starvation responses,
which is in agreement with previous studies (8, 9, 13). This may suggest that T. delbrueckii
is more of a competitor for S. cerevisiae than L. thermotolerans, as already suggested by the
relative growth rates. This transcriptional response is, however, displayed before the condi-
tions reflect any imbalances in terms of nutrient availability and medium composition. The
strong response of S. cerevisiae to T. delbrueckii has been noted before (8, 9, 13) and is
hypothesized to be a result of very similar metabolism between the two species, given
their close evolutionary history (62). L. thermotolerans has a similarly close phylogenetic
relationship with S. cerevisiae and has been shown to have carbon and nitrogen
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preferences similar to those of S. cerevisiae and T. delbrueckii under the nutrient conditions
applied here (33), although interstrain variability in nutritional requirements makes com-
parisons of this nature difficult (63). In the case of T. delbrueckii, the data point to a poten-
tial nutrient-sequestering response in S. cerevisiae, emulating a response to starvation, per-
haps due to the similar metabolism of these two species, piquing a more robust response
from S. cerevisiae. However, the precise mode of how this occurs would require further
investigation. Considering the phenotypic evidence, the cell numbers of S. cerevisiae are
largely identical between the two pairings, which shows that these differential responses
resulted in successful maintenance of cell growth in the face of different competitors. The
general similarity in the extracellular environment in terms of the metabolites tested here
gives strong evidence to the hypothesis that the differential response to either species is a
true biotic interaction impact.

Unique genes associated with the higher-order interaction context were observed.
In the limited available literature, similar studies in bacteria have also found that pair-
wise population dynamics and metabolic cross-feeding data are correlated with what
occurs within more complex systems but that there are indeed unpredictable nonlin-
ear interactions that distort these interactions as well (16–20, 64). However, this has
not been investigated at the transcriptomic level yet. Here, we highlight that there are
unpredictable gene expression responses in S. cerevisiae within a yeast consortium at
the early phases of growth. These responses were primarily associated with increasing
mitochondrial translation and components of the electron transport chain needed for
respiratory metabolism, as well as changes in cellular protein turnover. Alteration of
S. cerevisiae’s metabolism to favor respiration is well studied in the context of cases
where extracellular glucose drops below a particular level, although other nutrients
may also play a role in this shift but are less well understood (65–67). However, the
sugar concentrations show that glucose in the medium is nowhere near exhausted,
and concentrations are highly similar between the compared conditions. Further, while
nitrogen availability has also been implicated in stimulating respiratory metabolism
(68), the available YAN was at similarly high concentrations between monoculture and
mixed-culture samples. Interestingly, this switch to respiratory metabolism and adjusted
protein turnover (particularly of the mitochondria) has been associated with longevity and
aging mechanisms in S. cerevisiae and may perhaps be a mechanism to outlast its competi-
tors (69). The trends suggest that S. cerevisiae employs a rapid diversification of its metabo-
lism, as well as avoiding cell aggregation, in order to increase its chances of access to essen-
tial nutrients and thereby ensure its survival. In combination with the phenotypic and
metabolite data presented here, the results add to a growing body of evidence that biotic
stress is an extremely relevant selection pressure in the context of adaptive evolution.

Conclusion. Understanding yeast-yeast ecological interactions is a major research
challenge, and the importance of characterizing and quantifying higher-order interac-
tions in multispecies systems is clear. We know that S. cerevisiae strains of wine origin
are competitive, dominate natural fermentations, and act as keystone drivers for the
ecological dynamics of these systems. For the first time, we have shown the potential
mechanisms behind how S. cerevisiae interacts within a multispecies yeast ecosystem
at the transcriptional level. The functional networks generated by this study provide
the most comprehensive functional overview of the complex mRNA transcriptome
involved within these interactions. The data set provided here also contributes to a
growing -omics database on yeast ecological interactions within mixed cultures. The
limitations of the current study lie in the fact that only one (well-considered) time point
was evaluated, and no confirmation of the relevance of the mRNA transcripts at the
protein or metabolite level was done. Addressing these limitations should be priori-
tized in future studies while making use of the comprehensive transcriptional data
reported here as a resource for hypothesis generation.

MATERIALS ANDMETHODS
Yeast strains. Three yeast species representatives of wine-related origin were used to construct a

synthetic yeast consortium. The three species were fluorescently labeled, each with a different
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fluorescent label, namely, S. cerevisiae VIN13 (Anchor Yeast, Cape Town, South Africa) labeled with
TagRFP657, L. thermotolerans IWBT Y1240 (CBS: 16374) labeled with mTagBFP2, and T. delbrueckii LO544
(CRBO: LO544) labeled with enhanced green fluorescent protein (eGFP) (70). All yeast strains were stored
as glycerol stocks (25% [wt/vol] glycerol) at 280°C. Prior to inoculation, glycerol stocks were streaked
out onto Wallerstein Laboratory (WL) nutrient agar (Sigma-Aldrich, Johannesburg, South Africa) and
incubated at 30°C for 3 days.

Growth medium design. The synthetic defined growth medium, yeast nitrogen base (YNB) with
amino acids and ammonium sulfate (BD Difco, ThermoFisher Scientific), was adjusted to create a wine-
like high-sugar cultivation medium that supported growth of all three yeast species within the consor-
tium, referred to here as optimized YNB (OYNB). A summary of the growth medium design process is
reported in the supplemental material (Table S1.1 and S1.2, Fig. S1, and Text S1). The optimized growth
medium selected for culturing consisted of 6.7 g/L YNB with amino acids and ammonium sulfate, 100 g/
L glucose, 100 g/L fructose, and 1� amino acid stock solution (Table S1.2 and Text S1).

Preculture conditions. Single colonies of each yeast strain were inoculated into 5 mL of yeast pep-
tone dextrose (YPD) broth (Sigma-Aldrich, Johannesburg, South Africa) in a test tube and incubated on
a test tube rotator at 30°C for 18 h. Four biological repeats were conducted, with a biological repeat
defined as a culture originating from a separate colony. Cells were harvested by centrifugation, resus-
pended in OYNB, and transferred to 50 mL OYNB, at a concentration of 1 � 106 cells � mL21, in a 250-mL
Erlenmeyer flask with a cotton plug and foil covering. The flask was incubated at 30°C, with agitation
(150 rpm), for 8 h, until mid-exponential phase, after which the preculture was harvested by centrifuga-
tion at 5,000 � g for 5 min at room temperature and resuspended in OYNB at a volume of 10-fold less
than the initial culture volume, before being inoculated.

Culture conditions. The culture conditions were selected to minimize the influence of abiotic stress
to best evaluate biotic stress impacts. This was done by ensuring consistent extracellular conditions and
biomass concentrations across different coculture combinations. This allowed for the evaluation of the
response of S. cerevisiae to the presence of another species as opposed to nutrient limitation because of
inconsistent concentrations of metabolizing yeast cells. Preculture biomass density was measured by op-
tical density at 600 nm (OD600), and all cultures were inoculated to a final total density of an OD600 of 0.3.
Four biological repeats of each species were inoculated into either single-, double-, or triple-species cul-
tures (Table 1). Each species representative was inoculated at equal cell biomass, as determined by
OD600 values. Cultures were conducted in 40 mL OYNB in 100-mL Erlenmeyer flasks with a cotton plug
and foil covering. Growth medium was prewarmed to 30°C with agitation. Cultures were incubated at
30°C with agitation (150 rpm) until samples were removed for RNA extraction. All cultures were con-
ducted on the same day to minimize batch variation.

Monitoring consortium population dynamics. Consortium population dynamics were determined
by quantitative flow cytometry as previously described (70), with the exception that all analyses were
conducted on a single CytoFLEX flow cytometer (Beckman-Coulter), equipped with blue, violet, and red
lasers. Briefly, viable cells, as determined by propidium iodide staining (Invitrogen, ThermoFisher,
Waltham, MA, USA), were quantitatively measured by volumetric counting of fluorescently labeled yeast
cells of each respective species.

RNA Sequencing. (i) Sampling and RNA extraction. The sampling point was chosen at a time
where the total metabolic activities (taking sugar degradation as a proxy) between the monoculture and
coculture settings were similar. To avoid intraspecific competition, the point was selected where all
nutrients were in abundance (evidenced by metabolite data) but enough time for interaction had
occurred. Samples were taken after approximately 7 h, when all cultures were in similar phases of early
exponential growth, at a total cell concentration of 7.4 6 0.1 log10 viable cells/mL (see Table S2.1 in the
supplemental material), roughly a third of the way through the exponential phase. The sample point
was selected to ensure that the monoculture would be in a growth phase comparable to those of both
pairwise cultures as well as the consortium culture. For sampling, 2 mL of culture was removed, centri-
fuged at 5,000 � g for 3 min, resuspended in 500 mL cold RNAlater (ThermoFisher Scientific, South
Africa), and stored at 4°C for 18 h until extraction. The sample supernatant was frozen at 220°C and
kept for characterization of selected metabolites to contextualize the extracellular environment of the
cells. Immediately before RNA extraction, a 1:1 volume of cold diethyl pyrocarbonate (DEPC)-treated
phosphate-buffered saline (PBS) was added to the sample to reduce sample viscosity and aid in centrifu-
gation of the samples. RNA extraction was performed using the Qiagen AllPrep DNA, RNA, and protein
kit. The resultant RNA was checked for genomic DNA (gDNA) contamination by PCR of the ITS1/ITS4
region, with a positive gDNA control. RNA was stored at280°C until sequencing.

(ii) mRNA sequencing. The total RNA samples were assessed for RNA integrity (RNA integrity num-
ber [RIN]) and quantity on the Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany) using the

TABLE 1 Summary of species composition and inoculation density of cultures tested

Culture
Inoculation density
(OD600/species) Species included

Single species 0.3 S. cerevisiae
Double species 0.15 S. cerevisiae plus L. thermotolerans

S. cerevisiae plus T. delbrueckii
Triple species 0.1 S. cerevisiae plus L. thermotolerans plus

T. delbrueckii
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RNA 6000 Nano Chip and reagents. mRNA was captured from 800 ng total RNA using the Dynabeads
mRNA Direct Micro kit (ThermoFisher Scientific). The diluted mRNA was bound to the Dynabeads oligo
(dT)25, washed, and eluted in 15 mL nuclease-free water. The Ion total transcriptome sequencing (RNA-
Seq) kit v2 (ThermoFisher Scientific) was used to convert expressed mRNA transcripts into a representa-
tive cDNA library for strand-specific RNA sequencing on the Ion Torrent Ion S5 system. This library was
purified and assessed for yield and fragment size distribution on the Agilent Bioanalyzer 2100 using the
high-sensitivity DNA chip and kit (Agilent Technologies). The libraries were diluted to a target concentra-
tion of 80 pM and pooled in equimolar amounts for template preparation using the Ion 540 Chef kit
(ThermoFisher Scientific). Enriched ion sphere particles were loaded onto an Ion 540 chip (ThermoFisher
Scientific).

Massively parallel sequencing was performed on the Ion Torrent GeneStudio S5 Prime system using
sequencing solution reagents according to the manufacturer’s protocol. Flow space calibration and
basecaller analysis were performed using standard analysis parameters in the Torrent Suite version
5.12.2 software.

(iii) Data analysis. All sequencing data were processed and analyzed using Partek Flow software at
the Central Analytical Facility for Next Generation Sequencing at Stellenbosch University. During prepro-
cessing of the generated reads, two read-length cutoff parameter options, namely, 8 bp and 12 bp, were
compared. It was found that the DEGs unique to each of the tested read-length cutoff conditions were
mostly of borderline statistical significance under the cutoff condition under which they did not appear
(see Data Set S1 in the supplemental material), with no notable differences in postalignment quality pa-
rameters. Therefore, instead of random selection of a particular cutoff parameter, the union of the gene
sets produced by both of these cutoff conditions was used for functional analysis. This reduces introduc-
tion of bias in the analysis due to trimming (71). Labeled gene lists are provided in the supplemental ma-
terial (Data Set S1) for separation of these gene sets, if required for other hypothesis testing.

Processed reads were mapped to a concatenated three-species genome, consisting of S. cerevisiae
R64, L. thermotolerans CBS 6340, and T. delbrueckii CBS 1146, as it is planned to include analysis of all
species in future, thereby keeping the analysis pipeline consistent. Read alignment was performed in
two steps, first using STAR (2.6.1), followed by input of unaligned STAR reads into Bowtie2 (2.2.5), and
finally combining the two alignment outputs. Non-uniquely mapped reads were randomly assigned to a
particular portion of the reference. Aligned reads were then filtered to include only reads aligning to the
S. cerevisiae genome. Reads mapping to annotated portions of the reference genome were then quanti-
fied by the expectation/maximization (E/M) algorithm applied in Partek. Quantified counts were then
normalized by counts per million (CPM).

Gene set analysis (GSA) was performed to quantify differentially expressed genes, and the list was fil-
tered to include genes with false-discovery rate (FDR) values of #0.05 and log2 fold change values of
,21 or .1. Monoculture samples were respectively compared to both pairwise samples, as well as to
the tri-species (i.e., consortium) samples (Table 1).

Extracellular metabolite analyses. Sample supernatants were analyzed for glucose and fructose
concentrations using enzymatic kits (Enzytec fluid D-fructose identifier [ID] no. E5120 [Roche, R-Biopharm])
and an automated analyzer (Konelab Arena 20XT; Thermo Electron Corporation, Finland) at the Chemical
Analysis (CA) Laboratory of the Central Analytical Facility (CAF), Stellenbosch University. Glycerol and alcohols
(methanol and ethanol), as well as selected organic acids (citric acid, tartaric acid, malic acid, succinic acid,
lactic acid, and acetic acid), were quantified by high-performance liquid chromatography (HPLC) analysis
(Agilent 1260 Infinity liquid chromatography system equipped with a m-degasser [G1379B], 1260 binary
pump [G1312B], 1260 standard autosampler [G1329B], 1260 thermostated column compartment [G1316A],
1260 diode array, and multiple wavelength detector [G4212C]) according to the method in reference 72 with
chromatographic separation achieved using a Hi-Plex H (300- by 7.7-mm) column. Yeast assimilable nitrogen
(YAN) was quantified using a Fourier transform near-infrared (FT-NIR) spectrometer equipped with a multi-
purpose analyzer (Bruker Optics, Ettlingen, Germany), where all controls and selections were made using the
Opus/Quant software (Opus for Microsoft; Bruker Optics, Ettlingen, Germany). HPLC and YAN determinations
were conducted at the CA Laboratory of CAF, Stellenbosch University. Amino acids (except cysteine and as-
paragine) were quantified at the Mass Spectrometry Unit of CAF, Stellenbosch University, using ultraperform-
ance liquid chromatography (UPLC) (Waters Acquity) and photodiode array detection after derivatization
with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Instrument control and data acquisition were per-
formed by MassLynx software.

Functional enrichment analysis and visualization of gene expression data. For interpretation of
the generated DEG lists, a cell-wide, pattern-based approach was taken, in order to better highlight
major functional trends within the data set, rather than taking a specific, gene-for-gene approach which
would focus on highly statistically significant gene targets in isolation. Functional enrichment analysis of
the generated DEG lists was conducted through the STRING (v11) database functional enrichment tool.
To generate a holistic view of the gene expression data, potential protein interaction networks were
generated in STRING and interactive visualizations of the networks were created using Cytoscape (3.8.2)
(73). The generated networks were visualized in Cytoscape (3.8.2) and clustered based on the distance
matrix calculated from STRING global interaction scores, using the Markov CLustering (MCL) algorithm
within the clusterMaker application (granularity = 2.5, unless otherwise stated). The clustered gene net-
works were colored by fold change values, while the size of the nodes was proportional to statistical sig-
nificance. Functional enrichment analysis was then repeated on each cluster (with n. 4), and the results
of this were summarized in a simple table (see Data Set S1 for overall and per-cluster functional enrich-
ment analysis results). Using the clustered interaction networks, the main affected metabolic processes
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were identified, and highly statistically relevant genes could be contextualized within particular func-
tional clusters (Fig. S2 to S6).

These networks were created for (i) DEGs that were commonly differentially expressed between
both pairwise and consortium culture conditions, (ii) DEGs that were differentially expressed during pair-
wise coculture with L. thermotolerans, excluding DEGs in group i, (iii) DEGs that were uniquely differen-
tially expressed during pairwise coculture with T. delbrueckii, excluding DEGs in group i, (iv) all DEGs that
were differentially expressed during consortium growth, and (v) DEGs unique to consortium growth, fil-
tered to remove DEGs that were present in pairwise DEG lists (Data Set S1).

Data availability. All supporting sequencing read data have been submitted to the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject no. PRJNA783452.
All generated network files which include all relevant metadata (gene lists, gene descriptions, gene-
interaction significance values, FDR values, and specific fold change values) are available at the DOI link
https://doi.org/10.25413/sun.20556033. Readers are encouraged to make use of these files to visualize
the networks within Cytoscape as intended.
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