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ABSTRACT Growing evidence indicates an association between gut dysbiosis and
coronary artery disease (CAD). However, the underlying mechanisms relevant to stable
CAD (SCAD) pathogenesis, based on microbe-host metabolism interactions, are poorly
explored. Here, we constructed a quasi-paired cohort based on the metabolic back-
ground of metagenomic samples by the propensity score matching (PSM) principle.
Compared to healthy controls (HCs), gut microbiome disturbances were observed in
SCAD patients, accompanied by differences in serum metabolome, mainly including
elevated acylcarnitine and decreased unsaturated fatty acids in SCAD patients, which
implicated the reduced cardiac fatty acid oxidation. Moreover, we identified Ralstonia
pickettii as the core strain responsible for impaired microbial homeostasis in SCAD
patientsm and may be partly responsible for the decrease of host unsaturated fatty
acid levels. These findings highlight the importance of unsaturated fatty acids, R. pick-
ettii, and their interaction in the pathogenesis of SCAD.

IMPORTANCE Stable coronary artery disease (SCAD) is an early stage of CAD develop-
ment. It is important to understand the pathogenesis of SCAD and find out the possi-
ble prevention and control targets for delaying the progression of CAD. We observed
reduced levels of unsaturated fatty acids (USFAs) in SCAD patients. However, the reduced
USFAs may be related to Ralstonia Pickettii, which was the core strain responsible for the
impaired gut microbial function in SCAD patients, and further affected the host's cardio-
vascular health by altering amino acids, vitamin B metabolism, and LPS biosynthesis.
These findings not only emphasized the importance of USFAs for cardiovascular health,
but also R. Pickettii for maintaining microbial function homeostasis. More importantly, our
study revealed, for the first time, that enriched R. Pickettii might be responsible for the
reduced USFAs in SCAD patients, which adds new evidence on the role of altered gut
microbiota for SCAD formation.

KEYWORDS gut microbiome, Ralstonia pickettii, serummetabolome, stable coronary
artery disease, unsaturated fatty acid

Cardiovascular diseases are the leading cause of death worldwide (1). Coronary ar-
tery disease (CAD) is the most common cardiovascular disease and is divided into

3 categories, according to its clinical symptoms and the degrees of arterial obstruction
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and myocardial damage: stable CAD (SCAD), unstable angina (UA), and myocardial in-
farction (MI), which also represent the different stages of CAD progression (2). CAD is
mainly driven by atherosclerosis, involving complex and diverse causes in formation
and progression. As an early stage of the disease, SCAD only occurs with obvious chest
pain symptoms when the cardiac load suddenly increases, but it is a key node in the
progression of the disease. Hence, understanding the pathogenesis of SCAD is particu-
larly critical to improve clinical outcomes.

Environmental factors are more active than genetic factors in the pathogenesis of
CAD. As a main environmental factor, diet exerts a profound influence on the suscepti-
bility to CAD. Gut microbiota, the “metabolic organ” of diet, convert nutrients in foods
into metabolites, subsequently interacting with the host to affect host metabolism.
With the major advances in microbiome metagenomics and targeted metabolomics
technologies, there is a need to discover microbes and their derived metabolites related to
cardiovascular disease phenotypes, and to conduct corresponding research on the mecha-
nism. The diet-derived microbial metabolites, such as trimethylamine-N-oxide (TMAO) (3),
sphenylacetylglutamine (PAGln) (4), short-chain fatty acids (SCFA) (5), indole derivatives (6),
and 5-hydroxytryptophane (7), were recently discovered to be closely related to CAD pro-
gression. However, the underling mechanisms of SCAD, based on microbe-host interactions,
are largely unknown.

Microbial composition is affected by many factors, with large variation among indi-
viduals that is sometimes even greater than disease-related changes, and that pro-
foundly affects the identification of disease-related microbial characteristics (8–11).
Matching the host variables of comparison groups is the common method for human
microbiota studies to increase robustness and reproducibility. Previous studies have
shown that microbial components and abundance are strictly constrained by the entire
metabolic network in the microbiome (12, 13), and the core metabolic functions of
microbiome are stable among different individuals (functional redundancy) (14, 15).
Thus, based on the microbial metabolic background, propensity score matching (PSM)
is considered a good technique for adjusting inherent known confounder differences,
and to help achieve a better balance between the disease groups and control groups
(16–18).

In this study, stool and serum samples were collected from 42 patients with SCAD
and 46 healthy individuals for whole-genome shotgun metagenomic analyses and tar-
geted metabolomics. PSM was first used to pair the SCAD samples with control samples
with a similar metabolic background in order to minimize the bias of individual diversity
on the results of metagenomics. Based on this strategy, we were able to re-delineate
changes in the composition and function of gut microbes and the profile of serum
metabolites in SCAD patients to further reveal the interaction between gut microbes
and host metabolism, and to discover more about the involvement of gut microbes in
the pathogenesis of SCAD.

RESULTS
The characteristics of the study population based on the PSM strategy.We per-

formed shotgun metagenomic sequencing of fecal samples from 42 SCAD patients and
46 healthy controls (HCs). The demographics and clinical characteristics of the SCAD
patients and HCs are all presented in Table S1. A total of 81% of the SCAD patients were
concomitant with one or more of the conditions of hypertension, diabetes, and hyperli-
pemia, whereas only 57% of the HCs were concomitant with these diseases. Indeed, all
these diseases are risk factors for coronary heart disease. Meanwhile, age, high-density
lipoprotein (HDL), Triglyceride (TG), and fasting blood glucose (FBG) were the main dif-
ferences between the 2 groups.

Due to the limited sample size of the cohort and large individual differences in gut
microbes, gut microbiomes showed no significant differences between SCAD patients
and HCs by conventional analysis, including a-diversity, b-diversity, and metabolic
pathways(PFDR . 0.05) (Fig. S1A and B, Table S2). We next conducted re-analysis based
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on the PSM strategy on metabolic profiles of gut microbes. In doing so, we constructed
a cohort of 78 SCAD-control pairs (for details, please see the materials and methods),
which ultimately included 39 SCAD patients and 28 HCs from the original groups
based on the metabolic background of the samples (Fig. 1). All subsequent analyses
were based on these matching samples, and the new demographics and clinical char-
acteristics of 78 SCAD-control pairs are presented in Table S3. Meanwhile, the influence
of age and FBG difference on the microbial metabolic background were weakened af-
ter matching, fully demonstrating the power of the PSM strategy (Fig. S1C).

Reduced alpha diversity and alteredmicrobial composition in SCAD. The sequen-
ces were analyzed using MetaPhlAn3 to profile the composition of microbial commun-
ities. In this cohort, most bacterial read counts were dominated by Bacteroidetes (66.15%),
Firmicutes (16.70%) and Proteobacteria (11.70%), followed by Actinobacteria (4.11%) and
Verrucomicrobia (1.18%), which covered 99% of gut microbes in SCAD and HCs. The phyla
did not differ significantly in abundance between the 2 groups (Fig. S2A). The ratio of
Bacteroidetes to Firmicutes had no obvious difference between the 2 groups (Fig. S2B).
Furthermore, about 96% of the microbes were accounted for the 30 most abundant gen-
era. Statistically, all the differential genera between the 2 groups were decreased in
SCAD compared with HCs, including Paraprevotella, Barnesiella, Phascolarctobacterium,
Faecalibacterium, Lachnospira, and Clostridium (Fig. S2C). Besides, there were 21 differen-
tial genera between the 2 groups, of which only 3 were more abundant in the SCAD
patients (Table S4), including Ralstonia, Enterococcus, and Megasphaera. Collectively,
most of the differential genera exhibited a declining variation in the SCAD group.

FIG 1 Construction of quasi-paired cohort by propensity score matching. (A) Samples were matched by propensity score matching with caliper = 0.25 and
ratio = 2 based on their metabolic background profiles. (B) The distribution of propensity score before/after matching. (C) Sample proportion based on
propensity score before/after matching. (D) Covariate balance of the metabolic background principal components before/after matching.
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As shotgun metagenomic sequence can pinpoint the species level of gut microbiota.
Thus, we performed the species rarefaction curve for each sample and found that the
sequencing depth was adequate. Regardless of the number of samples, SCAD patients
always exhibited fewer species richness than HCs (Fig. 2A). Further, a reduced a-diversity
in SCAD in comparison with HCs was confirmed by the less Chao1 Index at the species
level (P = 1.005e-06, Wilcoxon signed-rank test) (Fig. 2B). Then, the principal coordinated
analysis (PCoA), based on Bray-Curtis distance and unweighted_unifrac distance, was
performed to evaluate the variation in community composition. The SCAD groups signif-
icantly deviated in overall composition structure from HCs (Wilcoxon rank-sum test,
P = 3.091e-05; PERMANOVA test, pseudo-F:2.84, and P = 0.001) (Fig. 2C and D).

Moreover, we identified the taxonomic abundances at the species level. A total of 29
species differed significantly between the 2 groups, mainly belonging to Actinobacteria
(5 species), Bacteroidetes (7 species), Firmicutes (16 species), and Proteobacteria (1 species)
(Wilcoxon signed-rank test, PFDR , 0.05), including 8 SCAD-enriched species and
21 HC-enriched species (Fig. 2E and Table S5). Of note, among these significantly altered
species, Megasphaera elsdenii was 55 times more abundant in SCAD patients than in HCs.
Moreover, another interesting thing was that a significant proportion of these differential
bacteria were odontogenic bacteria, such as Bifidobacterium dentium, Streptococcus mitis,
Streptococcus oralis, Rothia mucilaginosa, and Actinomyces spp. (4 species).

Functional alterations of gut microbiome in SCAD. The function of gut microbes
is a key point to elucidate the relationship between intestinal flora and disease, nor is
the function of many specific species not well understood. However, metagenomic
analysis is useful for revealing the microbial functions. After enrichment of differential
gene oncology (GO) terms between the 2 groups, we found that most of the nitrogen
compound metabolic process-related GO terms were differentially enriched in the
SCAD group (n = 180, P = 0.021) (Fig. 3A). We further calculated the relative abundance
of nitrogen metabolic process between the 2 groups, which showed that the SCAD
group was significantly reduced compared to the HCs (P , 0.001) (Fig. 3B). These
results suggest that the intestinal flora involved in nitrogen compound metabolism
were disturbed in SCAD patients.

Meanwhile, a total of 1371 differential KEGG Ontology genes (KOs) of 1990, were
identified between the 2 groups when we aligned the clean sequences to KEGG (431
and 940 KOs enriched in HCs and SCAD patients; PFDR , 0.05) (Table S6). These differ-
ential KOs were involved in 37 metabolic pathways (PFDR , 0.05) (Fig. 3C and Table S7).
Mainly SCAD patients had disturbed amino acid biosynthesis (10 pathways), cofactor
biosynthesis (8 pathways), and carbohydrate metabolism (10 pathways).

Amino acid is a class of important substrates for bacterial energy metabolism. In this
study, we observed that the disturbance of amino acid metabolism in SCAD patients
were the most apparent (Fig. 3C) (Qvalue = 3.79e-24). The metagenomic data of SCAD
patients showed higher abundance for genes involved in phenylalanine, tyrosine, and
tryptophan biosynthesis (PFDR = 3.01e-06), while lower abundance for genes in glycine,
serine and threonine metabolism, lysine biosynthesis, cysteine and methionine metabo-
lism, arginine biosynthesis, valine, leucine, and isoleucine biosynthesis (PFDR , 0.01) (Fig. S3
and 4). The major microbial contributors were Betaproteobacteria spp. (Ralstonia pickettii),
Actinobacteria spp. (R. mucilaginosa, B. dentium), Bacteroidia spp. (Bacteroides clarus,
Bacteroides massiliensis, Bacteroides nordii, Parabacteroides merdae), Bacilli spp. (S. mitis, S.
oralis), Clostridia spp. (Ruminococcus torques), and Negativicutes spp. (M. elsdenii), which con-
tained a relatively large number of amino acids related to KO genes (Fig. 3D). These results
showed the altered intestinal bacteria functions involved in amino acid metabolism in SCAD
patients compared to HCs.

Coenzyme is a general term for a large group of organic cofactors, which are essen-
tial factors for enzyme-catalyzed REDOX reactions, group transfer, and isomerization
reactions (19). In addition to dietary supplementation, intestinal bacteria can also par-
ticipate in the metabolism of these compounds (20). Similar to amino acid metabolism,
coenzyme metabolism disorder was another significantly changed microbial function
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FIG 2 Gut microbial alterations in SCAD patients. (A) The species number rarefaction curves. (B) Alpha diversity measured by Chao1 index at
species level. Wilcoxon signed-rank test was used to determine the significance. ***, P , 0.001. (C) and (D) Beta diversity based on Bray-Curtis

(Continued on next page)
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in SCAD patients, with the most altered KO genes, and mainly referring to B vitamins
metabolism (Fig. 3C) (Qvalue = 1.96e-22), although the specific pathways were not
statistically significant between SCAD patients and HCs (Fig. S5). The major microbial
contributors were Betaproteobacteria spp. (R. pickettii), Actinobacteria spp. (R. mucilagi-
nosa, B. dentium), Bacteroidia spp. (B. clarus, B. massiliensis, B. nordii, P. merdae), Bacilli spp.
(S. mitis, S. oralis, Lactobacillus acetotolerans), Clostridia spp. (R. torques), and Negativicutes
spp. (M. elsdenii), which were nearly the same as the amino acid metabolism related
microbes (Fig. 3E). This may be due to the close relationship between amino acids and
coenzymes, since amino acid derivatives are always the precursors of coenzymes, which
are also indispensable molecules in amino acid metabolism.

CAD patients have been reported to have higher fecal LPS levels than controls (21),
and the bowel wall edema and impaired barrier function was often found in heart fail-
ure patients, which leads to translocation of LPS into circulation (22). LPS can promote

FIG 2 Legend (Continued)
distance and unweighted unifrac distance at species level. Wilcoxon rank-sum test and PERMANOVA test were used to determine the
significance. ***, P , 0.001. (E) Relative abundances of 29 differential bacterial species between SCAD patients and HCs (Wilcoxon signed-rank
test, PFDR , 0.05).

FIG 3 Functional alteration of gut microbes in SCAD patients. (A) Key GO groups enriched by differential GO terms between the 2 groups by Fisher’s exact
test. (B) Relative abundance of nitrogen compound metabolic process by GO enrichment analysis. Wilcoxon signed-rank test was used to determine the
significance. ***, P , 0.001. (C) Metabolic pathways enrichment of 1371 differential KO genes (Wilcoxon signed-rank test, PFDR , 0.05) between the 2
groups based on KEGG database by clusterProfiler. (D) to (F) Associated networks constructed from differential gut microbes and their KO genes in amino
acid biosynthesis, cofactors biosynthesis, and LPS biosynthesis. Yellow circulars represent differential gut microbes, and the size denotes the connected
numbers of KO genes. Red squares represent upregulated differential KO genes, and blue squares represent downregulated differential KO genes.
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the development of atherosclerosis by inducing endothelial cell injury, stimulating
monocyte oxidative metabolism and LDL oxidation (23). We observed enrichment of
genes of LPS synthesis in SCAD patients (Fig. 3C) (Qvalue = 1.78e-03). The major con-
tributors were Betaproteobacteria spp. (R. pickettii) and Negativicutes spp. (M. elsdenii)
(Fig. 3F).

Overall, the biosynthesis of amino acid and cofactors was the main functional
change of differential flora in SCAD patients. The R. pickettii and M. elsdenii appeared
to be the most important contributors. Further, we also observed abnormal glycome-
tabolism, such as pyruvate metabolism, glycolysis/gluconeogenesis, and the TCA cycle,
which may cross talk with amino acid metabolism. The changes of these bacterial
derivatives may communicate with the host through different mechanisms, and ulti-
mately have physiological or pathological impacts on the host.

Serum metabolome alterations in SCAD. Given the interplay between the gut
microbiome and host metabolism, we performed targeted metabolomics on serum
samples from parts of SCAD patients and HCs (SCAD n = 25 and HC n = 12), followed
by between-group difference analysis with the same matching method as gut metage-
nome. In this study, we detected a total of 306 metabolites by UPLS-MS/MS, including
60 amino acids, 40 bile acids, 26 carbohydrates, 34 organic acids, 55 fatty acids, 29 ben-
zenoids, 21 carnitines, 9 indoles, and 32 other metabolites. The OrthoPLSDA model
revealed that the serum metabolic signatures of SCAD patients significantly deviated
from HCs (Empirical P-values PQ2 , 0.001 and PR2Y , 0.001) (Fig. 4A).

Compared with HCs, the SCAD patients displayed enrichment in 10 metabolites and
depletion in 24 metabolites, which mainly comprised of 8 amino acids, 17 fatty acids,
and 3 carnitines (Fig. 4B and Table S8). Notably, almost all altered fatty acids were unsat-
urated fatty acids, including polyunsaturated fatty acid, such as n-3 PUFAs (alpha_
linolenic acid, docosahexaenoic acid DHA, eicosapentaenoic acid EPA, docosapentaenoic
acid DPA), n-6 PUFAs (linoleic acid, docosapentaenoic acid 22n_6, 8,11,14_eicosatrienoic
acid), and monounsaturated fatty acids (5_dodecenoic acid, myristelaidic acid, myristo-
leic acid, palmitoleic acid, 10Z_heptadecenoic acid, oleic acid). In addition, among the
8 amino acids altered in SCAD, the majority (n = 6) were decreased in SCAD patients, such
as acetylglycine, L-threonine, methionine sulfoxide, L-cystine, L-pipecolic acid, and L-alpha-
aminobutyric acid (Fig. 4B and Table S8). This feature was consistent with the disorder of
amino acid metabolism in intestinal flora. On the contrary, all the acylcarnitines (myristoyl-
carnitine, lauroylcarnitine, glutarylcarnitine) were elevated in SCAD patients (Fig. 4B and
Table S8).

Meanwhile, the KEGG metabolic pathway enrichment showed that fatty acid bio-
synthesis, especially unsaturated fatty acid synthesis, was the most significant change
in the SCAD patients (Fig. S6A). Also, the human disease enrichment analysis showed
that these altered metabolites were significantly correlated with hypertension, myocar-
dial injury, and heart failure, suggesting that these altered metabolites may play a role
in causing cardiovascular diseases (Fig. S6B).

Next, we performed correlation analysis of each differential metabolite with SCAD-
linked microbiota (Fig. 4C). Notably, we observed strong positive associations between
Prevotella timonensis and unsaturated fatty acids that were both decreased in SCAD, as
well as negative associations between R. pickettii, Eubacterium ventriosum, and unsaturated
fatty acids. We first validated that the level of unsaturated fatty acid was significantly
decreased in SCAD patients in another independent cohort (Fig. S7), and the relative abun-
dance of R. pickettii was significantly enriched in SCAD patients using qPCR in the matched
cohort (Fig. 5C). Considering that R. pickettii was the most important contributor of
impaired gut microbial function, we further performed a correlation analysis between the
differential fatty acids and microbial functions (GO: biological process) (Fig. S8). We
observed that most of the unsaturated fatty acids, such as ALA (alpha linolenic acid), LA
(linoleic acid), DGLA (8,11,14_eicosatrienoic acid), 10Z_heptadecenoic acid, oleic acid and
SFAs (decanoic acid), and SCFAs (acetic acid) had a robust association with microbial func-
tion in amino acid metabolism (i.e., selenocysteine biosynthesis process, proline transport,
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FIG 4 Serum metabolome alterations in SCAD patients. (A) The OrthoPLSDA model of serum metabolome analysis was performed on SCAD
patients and HCs (Empirical PQ2 , 0.001 and PR2Y , 0.001). (B) Relative abundances of 34 differential serum metabolites between SCAD

(Continued on next page)
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histidine metabolic process, tryptophan catabolic process, and L-lysine catabolic process)
and cofactors metabolism (i.e., tetrahydrobiopterin biosynthetic process, regulation of
ubiquinone biosynthetic process, and folic acid-containing compound metabolic process).
Further, we analyzed the metabolic process and enzymes of R. pickettii by its genome-scale
metabolic model (Fig. 5A, and B), showing that R. pickettii participated in many biological
activities, including Fatty acid synthesis and Fatty acid oxidation (Fig. 5A). Comparing the
genome with other strains, R. pickettii encoded a relatively complete set of fatty acid
metabolizing enzymes (Fig. 5B), such as phospholipase A1 (EC 3.1.1.32), phospholipase A2
(EC 3.1.1.4), medium-chain acyl-CoA dehydrogenase (EC 1.3.8.7), and long-chain acyl-CoA
dehydrogenase (EC 1.3.8.8). The ability of R. pickettii to metabolize USFAs was confirmed
by our experiments, showing that sodium oleate (300mM) and sodium linoleate (800 mM)
were almost metabolized after co-culturation of R. pickettii (ATCC27511) with sodium ole-
ate and sodium linoleate for 24 h (Fig. 5D).

Moreover, the decreased levels of L-pipecolic acid, one of lysine metabolites,
observed in SCAD patients was positively correlated with HCs-enriched B. massiliensis, R.
torques, while negatively associated with R. pickettii. In addition, B. massiliensis had strong
positive association with L-threonine. The correlation between microbiota abundance
and metabolites concentration may be related to the corresponding threonine and ly-
sine metabolism functions of these microbiota (Fig. 3D). Glutarylcarnitine and myristoyl-
carnitine, a short- or long-chain acylcarnitine, elevated in the SCAD group, had strong
correlation with Bacteroides spp (Fig. 4C).

Integrated analysis between gut microbiome and serum metabolic signatures
of SCAD. To explore the potential of gut microbiota and metabolic profiles in SCAD
prediction, we constructed a random forest classifier based on differential gut taxo-
nomic or metabolic features from this cohort. A 5-fold cross-validated random forest
model was used to screen the key discriminatory microbial species or metabolites. We
were able to detect SCAD patients accurately based on the 6 differential gut microbial
species composed of R. pickettii, M. elsdenii, Firmicutes bacterium CAG83, Lachnospira
pectinoschiza, L. acetotolerans, and P. merdae, as indicated by an area under the re-
ceiver operating curve (AUC) of up to 0.91 (Fig. 6A and B). Besides, the model based on
5 metabolites composed of Methionine sulfoxide, L-pipecolic acid, L-homocitrulline,
myristoylcarnitine, and 5-dodecenoic acid had similar performance to microbial fea-
tures with an AUC of 0.93 (Fig. 6C and D), while the integrated metabolic and microbial
features including 4 species and 4 metabolites had comparable diagnostic power with
an AUC of 0.92 (Fig. 6E and F). Taken together, these data indicated that the predictive
model based on intestinal flora, or the combination with differential metabolites, was
sufficient to distinguish SCAD patients from HCs, highlighting the potential of intesti-
nal flora for the noninvasive detection of populations with SCADs.

Links between the differential gut microbes and serum metabolites with clini-
cal features of SCAD. Besides being able to distinguish between individuals with
SCAD or HCs, the differential gut microbes and serum metabolites showed associations
with numbers of clinical indices. In general, the number of correlations between serum
metabolites and clinical indices was significantly less than that of gut microbiota
(Fig. 7).

As we know, HCY, TC, and LDL-C are independent risk factors for coronary heart dis-
ease, and CRP, a sensitive marker of chronic low-grade inflammation, is associated with
an increased risk of incident coronary heart disease (24). In terms of metabolites, we
observed that TC and LDL-C exhibited negative associations with eicosapentaenoic
acid (EPA). In addition, we found that CRP was positively linked to B. dentium and

FIG 4 Legend (Continued)
patients and HCs (Wilcoxon signed-rank test, PFDR , 0.05). (C) The heatmap depicts relationships between the SCAD-related gut microbes and
serum metabolites. The signs of change trend for each paired samples in cohort were calculated, and then normalized mutual information
score was used to evaluate the association of change trends. Normalized mutual information score ranges from 0 to 1, indicating that the
association between the 2 trends ranges from weak to strong. The sign of score was evaluated by the direction consistency of 2 trends.
Permutation test (1000 permutations) was performed to determine P-value of correlation. * and + suggest the significance, +, P , 0.05; *,
P , 0.01.
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FIG 5 The relationship of Ralstonia Pickettii and unsaturated fatty acids. (A) The biological processes that R. Pickettii participated in. (B) Comparative
genomic analysis of the fatty acid metabolizing enzymes between R. Pickettii and other species. Gray dot indicates that the taxon has the coding gene of
the corresponding enzyme. Ward map of fatty acid metabolizing enzymes R. pickettii specifically encoded, phospholipase A1 (EC 3.1.1.32), phospholipase

(Continued on next page)
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Firmicutes bacterium CAG83, and inversely correlated with R. torques and P. merdae.
Furthermore, HCY had a strong, negative correlation with Gemella sanguinis.

DISCUSSION

In this study, we investigated the characters and interactions of gut microbes and
host metabolism between SCAD patients and HCs, based on metagenomics and serum
metabolomics approaches. Our results revealed that: (i) Cardiac fatty acid oxidation
was significantly reduced in patients with SCAD, and low unsaturated fatty acid level in
the serum further worsened cardiac energy metabolism; (ii) The serum level of unsatu-
rated fatty acid was also negatively correlated with R. pickettii, which was the core spe-
cies of gut microbe dysfunction in SCAD patients, as well as the most indispensable
species for discriminating SCAD patients from HCs; (iii) R. pickettii may be partially re-
sponsible for the decrease of unsaturated fatty acid in the host.

Given the relatively small sample size, a PSM strategy was adopted to minimize the
impacts of individual heterogeneity and cofounding factors among subjects based on
their metabolic profile, as PSM is a well-established practical strategy for data align-
ment of a small size clinical study (18). Supported by the power of the PSM strategy,
the matched cohort obtained more accurate and causal information compared with
the cohort affected by confounders, while avoiding the blurring of true metabolic sig-
nals as much as possible. Our results showed that PSM strategy reduced the impacts of
some cofounding factors of patients on data distribution, and generated 78 SCAD-HCs
matching pairs for subsequent data analysis.

The heart is the most energy-demanding organ in the body and must constantly
generate a large amount of ATP to maintain its contractile function. Thus, impairment
of cardiac energy metabolism is the key cause of most heart diseases. The heart gets
energy by metabolizing various fuels, such as fatty acids, glucose, lactate, ketone
bodies, and amino acids, in which most of the ATP originate from the oxidation of fatty
acids (25). Acylcarnitine plays an important role in fatty acid transportation through
the mitochondrial membrane for oxidation. In this study, the serum levels of myristoyl-
carnitine and lauroylcarnitine of SCAD patients were significantly higher than those of
the HCs, which suggests impairment of the mitochondrial fatty acid b-oxidation in the
hearts of SCAD patients (26–28). Acylcarnitine has been reported to be a potential
biomarker of cardiac metabolic disease in a growing number of studies (29), and are
significantly associated with the risk of cardiovascular events, such as myocardial infarction
in patients with stable angina (30, 31). Unlike medium- and long-chain acylcarnitines, abnor-
mal levels of short-chain acylcarnitines are mainly attributable to disorders of branched-
chain amino acid metabolism (32), while increased serum glutarylcarnitine levels in patients
with SCAD suggests abnormal metabolism of branched-chain amino acids. Although
branched-chain amino acids make up less than 2% of the total cardiac ATP production (33),
recent studies have shown that branched-chain amino acids affect cardiac function by alter-
ing the cardiac insulin-signaling and mTOR-signaling pathways (34). All in all, our evidence
at least indicates that cardiac energy metabolism of SCAD patients has undergone signifi-
cant changes, mainly manifesting as a decrease in the utilization of fatty acids.

Fatty acid oxidation is critical for energy supply of cardiomyocytes, which is influ-
enced by the availability of substrates of fatty acids and oxygen supply (35). The fluctua-
tion of serum, endogenous metabolites are markers of metabolism status in peripheral
organs like the liver, heart, and muscles (36). In this study, we observed that serum levels
of 13 unsaturated fatty acids were significantly reduced in SCAD patients, including
monounsaturated and polyunsaturated fatty acids. Unsaturated fatty acids, such as oleic
acid, are the main fuels used for cardiomyocytes through oxidation due to its vast

FIG 5 Legend (Continued)
A2 (EC 3.1.1.4), medium-chain acyl-CoA dehydrogenase (EC 1.3.8.7), and long-chain acyl-CoA dehydrogenase (EC 1.3.8.8). (C) The relative abundance of R.
pickettii based on qRT-PCR in the matched cohort. (D) The concentration of sodium oleate and sodium linoleate after cocultured R. pickettii (ATCC27511)
with sodium oleate (300 mM) and sodium linoleate (800 mM) for 48 h (n = 3). Wilcoxon rank-sum test was used to determine the significance. ****,
P , 0.0001.
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FIG 6 Disease status classification using SCAD-related gut microbes and serum metabolites. (A), (C), and (E) Cumulative AUC of model by recursive feature
elimination based on SCAD-related microbial species, serum metabolites and their combination, respectively. Dash line indicated the best features selected
for final model. (B), (D), and (F) ROC of the 5-fold cross-validated random forest classifiers composed of the selected microbial species, serum metabolites,
and their combination, respectively.
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abundance and fast oxidation rate (35, 37). Reduced unsaturated fatty acid levels in
SCAD patients also lead to a reduction in fatty acids supplied to the heart, which further
reduces cardiac fatty acid oxidation, and greatly affects cardiac energy and function.

Polyunsaturated fatty acids are essential fatty acids for the human body. N-3 polyun-
saturated fatty acids are negatively associated with occurrence of cardiovascular risk by
reducing triglyceride levels, anti-inflammatory and anti-arrhythmic functions, lowering
blood pressure, improving arterial and endothelial cell functions, and reducing platelet
aggregation (38). Interestingly, our results also showed that the amount of unsaturated
fatty acids, such as LA, ALA, DGLA, and 10Z_heptadecenoic acid, were significantly corre-
lated with the abundance of P. timonensis and R. pickettii, which varied between SCAD
and HCs groups. These data suggest that the decrease in serum fatty acid levels in SCAD
patients may be related to gut microbes, in addition to diet.

L. acetotolerans, that has been published to have metabolic function for unsatu-
rated fatty acids (39), was significantly reduced in SCAD patients (Fig. S9A), which may
be related to the decreased levels of unsaturated fatty acids in the host. Meanwhile,
the abundance of enterobacterial metabolic enzymes of polyunsaturated fatty acids
was significantly increased in this study (Fig. S9B), suggesting that, in addition to
Lactobacillus, other bacterial species may be involved in the metabolism of polyunsatu-
rated fatty acids in a responsive mode. In particular, R. pickettii was found to be the
most closely related with host levels of unsaturated fatty acids in our study, mainly due
to its ability to metabolize unsaturated fatty acids, and may be partly responsible for
the decrease in host levels of unsaturated fatty acids. In addition, both R. pickettii and
L. acetotolerans were the main bacteria that distinguished SCAD patients from HCs,
suggesting the importance of interaction between unsaturated fatty acids and gut
microbes in SCAD formation.

As the core strain in the functional changes of intestinal microbiota in SCAD patients,
R. pickettii is a non-fermenting Gram-negative bacillus present in the human gut
(PRJNA375772, PRJNA382889, PRJNA434046, PRJEB11419, https://gmrepo.humangut.info),
and is an opportunistic pathogen that often causes nosocomial infections (40). The LPS

FIG 7 The association heatmap of microbial species, serum metabolites, and clinical parameters. The signs of change trend for each paired samples in cohort
were calculated, and then normalized mutual information score was used to evaluate the association of change trends. Normalized mutual information score
ranges from 0 to 1, indicating that the association between the 2 trends ranges from weak to strong. The sign of score was evaluated by the direction
consistency of 2 trends. Permutation test (1000 permutations) was performed to determine P-value of correlation. * and + suggest the significance, +, P , 0.05; *,
P , 0.01.
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biosynthesis function of intestinal bacteria in SCAD patients was significantly enhanced,
which was mainly related to R. pickettii encoding LPS biosynthesis genes. The previous
study showed that R. pickettii contains the lipid A structure (41), which can increase the
level of circulating LPS in mice (42), resulting in increased inflammatory reaction (41).
Since chronic and systemic LPS-induced low-grade inflammation plays a key role in the
onset and progression of cardiovascular diseases (43), the increased LPS biosynthesis
induced by R. pickettiimay be one of the causes of coronary heart disease. In addition, the
gut microbes of SCAD patients showed disordered functions in amino acids and vitamin B
biosynthesis, and many bacteria were involved in these functional changes (Fig. 3).
However, R. pickettii was the bacterium with the most genes encoding these 2 metabolic
pathways, with 42 and 59 KOs, respectively. Meanwhile, we also found a negative correla-
tion between R. pickettii and serum acetate levels in SCAD patients. Acetic acid is the most
abundant short-chain fatty acid (SCFA) present in serum, and the vast majority of circulat-
ing SCFAs are derived from gut microbial metabolism (44). Studies have shown that
acetate induces endothelium-dependent vasodilation, reduces heart rate through the au-
tonomic nervous system (45), and corrects cardiometabolic disturbances by inhibiting car-
diac histone deacetylase (46), indicating that it may play a role in preventing hypertension
and heart failure (47). R. pickettii may also affect the level of circulating acetic acid in the
host by altering the abundance or function of acetogens, thereby affecting overall cardiac
health.

In conclusion, based on constructing a quasi-matching cohort with PSM strategy,
our study first identified the main changes in cardiac energy metabolism of SCAD
patients, namely, the decrease in the utilization of fatty acids, by analyzing the charac-
teristics of changes in serum metabolomics. The reduction in host unsaturated fatty
acid levels might cause further deterioration of cardiac function in SCAD patients, not
only because it is the main fuel for cardiac energy metabolism, but because it is closely
related to R. pickettii, which holds a core position in the functional changes of intestinal
microbiota and may affect the heart health of the host by changing the amino acid,
vitamin B, LPS biosynthesis, and acetic acid production of intestinal flora (Fig. 8).
Meanwhile, in addition to the diet, R. pickettii may be partially responsible for the
decrease of unsaturated fatty acid. Taken together, we identified the main changes of
microbial and metabolic signatures in SCAD patients and the link between them, high-
lighting the importance of USFAs-microbes interaction in the development of cardio-
vascular disease.

Limitations of the study include the sample size of the cohort, as it was relatively
small, especially the serum samples for metabolomics that could match the intestinal
flora samples. Though PSM based on microbial metabolic background was adopted to
minimize the heterogeneity among individuals for clinical samples, further studies with
larger sample sizes are still warranted to verify the main findings of this study, espe-
cially the diagnostic power of gut microbes or serum metabolites. Further, in line with
the previous reports (20, 48–54), the link of identified differential serum metabolites,
including amino acids, unsaturated fatty acids, vitamin B, or intestinal bacteria species
with cardiovascular disease was reasonable. However, since these metabolites are co-
metabolized by both host and gut microbes, the causative roles or the extent of their con-
tributions of differential metabolites for SCAD development need further investigation.

MATERIALS ANDMETHODS
Study design and participants. The patients with SCAD were from Dongzhimen Hospital affiliated

with Beijing University of Chinese Medicine, between August 2018 to December 2019. The study was
approved by the Ethics Committee of Dongzhimen Hospital affiliated with Beijing University of Chinese
Medicine. All subjects gave written, informed consent.

The inclusion criteria for SCAD patients were: (i) age between 40 and 85 years; (ii) history of angina
pectoris; (iii) myocardial ischemia, at rest, detected by electrocardiogram (ECG), or positive exercise
stress test, or greater than 50% stenosis in at least 1 main branch detected by coronary angiography/cor-
onary CT.

The exclusion criteria were: (i) history of angina pectoris caused by heart valve disease, coronary ar-
tery embolism, cardiomyopathy; (ii) combined with heart diseases, autonomic dysfunction, obvious ane-
mia, obstructive emphysema, or electrolyte disorder; (iii) medication of digitalis.
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HCs lacked typical history of angina pectoris or relevant symptoms and signs. Gut microbiota are
highly susceptible to external stimuli, the composition and function of which can be influenced by the
host’s metabolic changes associated with age, sex, genetic background, diet, living environment, exer-
cise, and drugs. To minimize the influence of confounding factors on the gut microbiota and relevant
metabolites, we adopted the strategy of propensity score matching to re-match subjects in the disease
group and control group, based on the metabolic background of gut microbiota.

Blood samples were drawn after fasting for 12 h, and serum samples were prepared and immedi-
ately frozen at 280°C. The fecal samples were collected by the subjects using the MGIEasy stool sample
collection kit (1000003702, MGI). Fecal Genomic DNA Extraction Kit (DP328, TIANGEN Biotech) was used
for isolating metagenomic DNA of gut microbes.

Metagenome sequencing, taxonomical, and functional annotation. Metagenome sequencing
was performed by Shanghai Majorbio Bio-pharm Technology Co. Ltd. DNA extract was fragmented to an
average size of about 400 bp using Covaris M220 (Gene Company Limited) for paired-end library con-
struction. Paired-end library was constructed using NEXTflexTM Rapid DNA-Seq (Bioo Scientific).
Adapters containing the full complement of sequencing primer hybridization sites were ligated to the
blunt-end of fragments. Paired-end sequencing was performed on Illumina NovaSeq (Illumina Inc.) at
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using NovaSeq Reagent Kits according to
the manufacturer’s instructions (www.illumina.com).

The KneadData (http://huttenhower.sph.harvard.edu/kneaddata, V.0.6) tool was used to ensure the
data consisting of high-quality microbial reads free from contaminants. Low quality reads were removed
using Trimmomatic (SLIDINGWINDOW:4:20 MINLEN:50 LEADING:3 TRAILING:3). The remaining reads
were mapped to the human genome (hg38) by bowtie2 (V.2.3.5) (55) and the matching reads that were
potentially host-associated and laboratory-associated sequences were removed as contaminant reads.
Taxonomic profiling was performed using MetaPhlAn3 (v3.0), and only taxa detected in .10% of the
number of samples were kept. Functional profiling (gene families, gene ontology, and pathways) was
performed using HUMAnN3 (v3.0) with default settings.

To identify microbial genes of specific enzymes, hidden Markov models (HMMs) were constructed
using HMMER (3.1b2) (56). Representative protein sequences of target enzymes were obtained from
Uniprot database, and then high-quality sequences were selected and aligned in Clustal Omega (57).
HMMs of enzymes were built on the sequences via hmmbuild in HMMER. Seed sequences from HMMs
were realigned using hmmalign (default mode), and HMMs were rebuilt based on these alignments until
both model length and relative entropy per position were constant. The constructed HMMs were used
to screen specific enzymes from all microbial gene sequences via hmmsearch. Gene with e-value .1025

were considered to express the enzymes.
Targeted metabolomics profiling of serum samples. A total of 25 SCAD patients and 12 HCs were

randomly selected for targeted metabolomics analysis. All the serum samples were stored at 280°C until

FIG 8 The cross talk between host and gut microbiota in SCAD patients. The increased acylcarnitine (Acs) levels suggests impairment of the
mitochondrial fatty acid b-oxidation in SCAD patients, and the reduced unsaturated fatty acid levels would further reduce cardiac fatty acid
oxidation and greatly affects cardiac energy and function. More importantly, the reduced unsaturated fatty acid level might be caused by
Ralstonia pickettii, which holds a core position in the functional changes of intestinal microbiota. Further, R. pickettii may affect the heart
health of host by changing the amino acid biosynthesis, B vitamin biosynthesis, LPS biosynthesis, and acetic acid production of intestinal
flora.
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analyzed. We performed the targeted metabolomics analysis using the Q300 Kit (Metabo-Profile) using
UPLC-QTOF-MS system (ACQUITY UPLC-Xevo TQ-S, Waters Corp.). All the standards of targeted metabolites
were obtained from Sigma-Aldrich, Steraloids Inc., and TRC Chemicals. All the standards were accurately
weighed and prepared in water, methanol, sodium hydroxide solution, or hydrochloric acid solution to
obtain individual stock solution at a concentration of 5.0 mg/mL. Appropriate amount of each stock solution
was mixed to create stock calibration solutions.

Serum sample aliquots of 25 mL was mixed with 120 mL ice-cold methanol with partial internal
standards. After centrifugation, 30 mL supernatant was mixed with 20 mL freshly prepared derivative
reagents and incubated at 30°C for 60 min. Then, 330 mL ice-cold 50% methanol solution was added,
and the sample was stored for 20 min, followed by centrifugation at 4°C for 30 min. A total of 135 mL su-
pernatant was mixed with 10 mL internal standards in new wells.

A UPLC-QTOF-MS system (ACQUITY UPLC-Xevo TQ-S, Waters Corp.) was used to quantitate the
metabolites. ACQUITY UPLC BEH C18 1.7 mM analytical column (2.1 � 100 mm) was used for separation
with the column temperature set at 40°C. The elution solvents were water with 0.1% formic acid (A) and
acetonitrile/IPA (vol/vol = 70/30, B), with a flow rate of 400 mL/min. The gradient condition: 0 to 1 min
(5% B), 1 to 11min (5 to 78% B), 11 to 13.5 min (78 to 95% B), 13.5 to 14 min (95 to 100% B), 14 to
16 min (100% B), 16 to 16.1 min (100 to 5% B), 16.1 to 18 min (5% B). The MS was operated at positive
and negative electrospray ionization modes with a capillary voltage of 1.5 and 2.0 kV. The source tem-
perature was set to 150°C, and the desolvation temperature was set to 550°C with a desolvation gas
flow rate of 1000 L nitrogen per hour.

The raw data files generated by UPLC-MS/MS were processed using the QuanMET software (v2.0,
Metabo-Profile) to perform peak integration, calibration, and quantitation for each metabolite. The rela-
tive abundance of metabolites was used for subsequent analysis.

Construction of a quasi-paired cohort. Metabolic background matching of metagenomic samples
was performed to construct a quasi-paired cohort. The metabolic background of each individual was
described by the abundance of microbial metabolic pathways. To extract the main metabolic informa-
tion, principal-component analysis (PCA) was used to reduce the dimension of metabolic pathways. The
principal components with cumulative explained variance .0.85 were retained for the propensity score
calculation using logistic regression. Metabolic background was matched based on the propensity score
by the nearest neighbor matching algorithm, and the optimal parameters (caliper and ratio) were deter-
mined through the covariate balance analysis using the standardized mean difference. “Caliper” defines
the maximum distance of the propensity score between 2 samples, and “ratio” defines how many con-
trol samples could be matched to each disease sample. Finally, the optimal parameters (caliper = 0.25
and ratio = 2) (Fig. 1) of the PSM were determined through the covariate balance analysis. The above
PSM was performed in the MatchIt (v4.3.2) package.

According to the above matching process, a total of 78 pairs of metagenome samples were
obtained, including 28 unique healthy samples and 39 unique SCAD samples. A total of 34 pairs of me-
tabolism samples were obtained, including 12 unique healthy samples and 25 unique SCAD samples
(Fig. 1).

Correlation analysis of gut microbial species, metabolites, and clinical characteristics. For the
quasi-paired cohort, a novel algorithm was utilized to evaluate the association of a change trend
between gut microbial species, metabolites, and clinical characteristics. The signs of a change trend for
each paired samples in the cohort were calculated, and then a normalized, mutual information score
was used to evaluate the association of the change trends. Mutual information is the distance between
2 probability distributions based on entropy reduction, which could capture nonlinear relationships
compared to linear correlation. Further, mutual information is helpful to mining causality in research,
that is, information causality (58). Normalized mutual information score ranges from 0 to 1, indicating
that the association between the 2 trends ranges from weak to strong. The sign of score was evaluated
by the direction consistency of 2 trends. Permutation test (1000 permutations) was performed to deter-
mine the P-value of correlation.

Disease diagnosis model based on metagenome and metabolome. The machine-learning proce-
dure, random forest classifier in the Scikit-learn package of Python (3.6.0) was used to predict pheno-
types based on the metagenome and metabolome data. The AUC of 5-fold cross-validation was utilized
to measure the discriminative ability of the model. The hyperparameters of the model were optimized
by grid-search over a parameter grid. The hyperparameters with the highest AUC were used in subse-
quent modeling. The best features were selected by recursive feature elimination. Finally, the best
model was determined by the optimal hyperparameters and features.

qPCR validation. To validate the relative abundance of R. pickettii between the SCAD patients and
HCs, qPCR analysis was performed in the matching cohort. DNA from R. pickettii (ATCC27511, purchased
from BeNa Culture Collect) was used to produce standard curves for relative quantification using a forward
primer (59-ATGATCTAGCTTGCTAGATTGAT-39) and reverse primer (59-ACTGATCGTCGCCTTGGTG-39) (59). The
adopted qPCR program was as follows: pre-denaturation at 95°C for 2 min; denaturation at 95°C for 15 s and
annealing at 60°C for 60 s for 40 cycles, followed by a melt curve analysis. The relative abundance of R. picket-
tii was obtained by dividing the concentration of R. pickettii by the total DNA concentration of fecal bacteria
based on the standard curve and CT values of each sample.

Targeted metabolomics validation with an independent cohort. As an external test, we used
additional independent data to validate the changes of unsaturated fatty acid in SCAD patients. These
clinical samples were collected at the same time as the main cohort. A total of 30 SCAD patients and
30 HCs were randomly selected for targeted metabolomics analysis.
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The relationship of unsaturated fatty acid and R. pickettii validation. We cocultured R. pickettii
(ATCC27511, purchased from BeNa Culture Collection) with sodium oleate (300 mM) and sodium linole-
ate (800 mM) for 48 h. The bacterial solution was collected at the time points of 0 h, 6 h, 12 h, 24 h, and
48 h, and were centrifuged at 12000 rpm for 2 min (n = 3). The OD values of the supernatant were
detected at 600 nm to observe the effect of unsaturated fatty acid on the growth of R. pickettii. The other
part of the supernatant was used to detect the changes of oleic acid and linoleic acid content by
Targeted metabolomics.

Bioinformatics and statistical analysis. Statistical significance was determined by the one-sided
Fisher's exact test, two-sided Wilcoxon rank-sum test, or permutation test where appropriate. When not
specified otherwise, the statistical analyses were performed with Python (3.6.0) and referenced in the
description of the analyses. Wilcoxon signed-rank test was applied to compare the difference between
paired samples. False-discovery rate (FDR) was calculated according to Benjamini-Hochberg under multi-
ple comparisons. Differences were considered statistically significant when FDR , 0.05. Alpha diversity
of metagenomics was measured by Chao1 index, and beta diversity was measured by Bray-Curtis dis-
tance and unweighted unifrac distance in the scikit-bio (v0.5.6) package. Distribution of metabolites
between different groups was displayed using the opls-da in ropls (v 1.24.0) package. Functional enrich-
ment analysis was performed for microbial genes and metabolites by hypergeometric test in self-build
codes, clusterProfiler (v4.2.1), or MetaboAnalyst (v5.0). All networks were constructed and visualized in
Cystoscape (v3.9.0). Comparative genomic analysis of the metabolic process and enzymes were analyzed
through the genome-scale metabolic models obtained from AGORA (60). Enzymes were annotated by
the ENZYME (61) and BRENDA (62) databases.

Data availability. All data can be viewed in NODE (https://www.biosino.org/node) by pasting the
accession OEP003421 into the text search box or through the URL: https://www.biosino.org/node/project/
detail/OEP003421. Data are available upon reasonable request. All the software packages used in this
study are open source and publicly available, and the code used in this study is available at GitHub at
https://github.com/ddhmed/SCAD2022.
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