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ABSTRACT Over the past decade, whole-genome sequencing (WGS) has overtaken
traditional bacterial typing methods for studies of genetic relatedness. Further, WGS data
generated during epidemiologic studies can be used in other clinically relevant bioinformatic
applications, such as antibiotic resistance prediction. Using commercially available software
tools, the relatedness of 38 clinical isolates of multidrug-resistant Pseudomonas aeruginosa
was defined by two core genome multilocus sequence typing (cgMLST) methods, and
the WGS data of each isolate was analyzed to predict antibiotic susceptibility to nine anti-
bacterial agents. The WGS typing and resistance prediction data were compared with
pulsed-field gel electrophoresis (PFGE) and phenotypic antibiotic susceptibility results, respec-
tively. Simpson’s Diversity Index and adjusted Wallace pairwise assessments of the three
typing methods showed nearly identical discriminatory power. Antibiotic resistance pre-
diction using a trained analytical pipeline examined 342 bacterial-drug combinations with
an overall categorical agreement of 92.4% and very major, major, and minor error rates of
3.6, 4.1, and 4.1%, respectively.

IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa isolates are a serious pub-
lic health concern due to their resistance to nearly all or all of the available antibiotics,
including carbapenems. Utilizing molecular approaches in conjunction with antibiotic
susceptibility prediction software warrants investigation for use in the clinical laboratory
workflow. These molecular tools coupled with antibiotic resistance prediction tools offer
the opportunity to overcome the extended turnaround time and technical challenges of
phenotypic susceptibility testing.

KEYWORDS core genome multilocus sequence typing, Psuedomonas aeruginosa, pulse
field gel electrophoresis, whole-genome sequencing

P seudomonas aeruginosa is a Gram-negative bacterium that can thrive in a diverse range
of environments due to tolerance to various growth conditions and temperatures (1).

These traits lend to the classification of P. aeruginosa as an opportunistic pathogen that is
frequently associated with hospital-acquired infections, most notably in burn units and in
intensive care units. P. aeruginosa is also a pathogen in patients with cystic fibrosis.
The species has a large and fluid genome and can possess a diverse array of resist-
ance mechanisms (2, 3). Over the past 5 years, both the World Health Organization
(WHO) and the United States Centers for Disease Control and Prevention (CDC) have
classified P. aeruginosa as a major threat out of concern for the emergence of both
multidrug- and extended-drug-resistant clinical isolates (4, 5). Unfortunately, there is
emerging evidence that the global severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2) pandemic may be accelerating antibiotic selective pressure in this
species (6).

Medical microbiologists have used a variety of tools to determine the relatedness of
P. aeruginosa isolates in suspected outbreaks. Early studies using phenotypic traits such as
pyocin production, serologic studies, and antibiograms eventually gave way to pulsed-field
gel electrophoresis (PFGE) (7). Alternate molecular methods have been proposed and eval-
uated over the past two decades, including multilocus sequence typing (MLST), multiple
locus variable number tandem-repeat analysis (MLVA), microarrays, and mass spectrometry;
however, PFGE remained the most discriminatory method (8–14). Clinical microbiology labo-
ratory access to benchtop next-generation sequencing (NGS) devices and easy-to-use bioin-
formatic tools allowing for bacterial whole-genome sequencing (WGS) and high-resolution
genotyping comparing thousands of alleles has disrupted PFGE as the gold standard typing
method.

Juxtaposed to bacterial typing, antimicrobial susceptibility testing (AST) has remained
largely unchanged. Conventional AST is highly standardized and based on phenotypic
observations of growth inhibition in broth or on solid media. Conventional AST turnaround
may take as long as 3 to 4 days from primary isolation. Further, the laboratory can encounter
isolates that fail to grow on the acceptable AST media, leaving care providers without labo-
ratory data to guide antibiotic selection. Establishment of a molecular approach has the
potential to overcome both extended AST turnaround time and circumvent failure of iso-
late growth for AST.

Our group has established species-independent standardized clinical laboratory workflows
for extraction, NGS library preparation, and WGS and applied the data for both molecular typ-
ing and antibiotic resistance prediction in a way that laboratory work and preliminary bioinfor-
matics tasks are performed by bench-level medical laboratory science staff (15–17). In this
work, comparative data on two core genome multilocus sequence typing (cgMLST) methods
and PFGE are presented, and the performance of a commercial resistance prediction pipeline
compared to agar dilution AST are evaluated using a collection of 38 drug-resistant P. aerugi-
nosa isolates.

RESULTS
PFGE typing. Two clonal groups consisting of 18 (P6) and 4 (P2) isolates, respectively,

were identified, the remaining 16 isolates had unique banding patterns and were assigned
independent nomenclature (Table 4).

cgMLST typing. (i) Mayo cgMLST. Using the relatedness cutoff of six or fewer allelic
differences, the Mayo cgMLST method identified two clonal clusters of isolates consist-
ing of 18 (M6) and 5 (M2) isolates. The 15 remaining isolates were considered unrelated
and assigned independent nomenclature (Fig. 1, Table 4).

(ii) SeqSphere+ cgMLST. The SeqSphere1 cgMLST method provides a proposed
standardized nomenclature (complex type). The assigned complex types were uti-
lized to define clonal clusters for this analysis. This method identified two clonal clus-
ters of isolates consisting of 18 (2,802) and 6 (2,798) isolates; the remaining 14 iso-
lates were considered unrelated and assigned unique complex type identifiers (Fig. 2,
Table 4).

Statistical comparison of typing methods. Comparison of the three methods by
Simpson’s Diversity Index revealed overlapping 95% confidence intervals for all three
methods, suggesting that all methods had similar discriminatory power (Table 1).
Pairwise comparison of the three methods by the adjusted Wallace showed minor differ-
ences between the three methods. Adjusted WallaceSeqSphere1 cgMLST!Mayo cgMLST = 1.00, and
adjusted WallaceMayo cgMLST!SeqSphere1 cgMLST = 0.954 (95% CI = 0.903 to 1.000); adjusted
WallaceSeqSphere1 cgMLST!PFGE = 1.00, and adjusted WallacePFGE!SeqSphere1 cgMLST = 0.924
(95% CI = 0.874 to 0.973); adjusted WallaceMayo cgMLST!PFGE = 1.00m and adjusted
WallacePFGE!Mayo cgMLST = 0.968 (95% CI = 0.931 to 1.000) (Table 2).

Agar dilution. Resistance rates were high and spanned several drug classes. The
highest phenotypic resistance rates were with meropenem (84%) and the two fluoro-
quinolone antibiotics, ciprofloxacin and levofloxacin (84%). Gentamicin resistance

Susceptibility Prediction of P. aeruginosa by WGS Microbiology Spectrum

November/December 2022 Volume 10 Issue 6 10.1128/spectrum.03920-22 2

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.03920-22


(84%) was slightly higher than tobramycin resistance (82%). Aztreonam, ceftazidime,
and piperacillin-tazobactam resistance were all noted as 79%, and the cefepime re-
sistance rate was 76%.

ARESdb analysis. In total, there were 342 results for the 9 antibiotics surveyed.
Overall categorical agreement (CA) between agar dilution (AD) and ARESdb genotypic
prediction was 92.4% (316 of 342) with a very major error rate (VME) of 3.6% (10 of
279), a major error rate (ME) of 4.1% (2 of 49), and a minor error rate (mE) of 4.1% (14
of 342).

The b-lactam class CA varied within the class. Piperacillin-tazobactam had the
lowest CA (84.2%, 32 of 38) with a VME of 10% (3 of 30) and no ME. CA for ceftazi-
dime was 86.8% (33 of 38) with a 6.7% (2 of 30) VME and no ME. CA for aztreonam
was 89.5% (34 of 38) with a VME of 3.3% (1 of 30) and no ME. Only cefepime and
meropenem had CA values .90% (92.1% [35 of 38] and 97.4% [37 of 38], respec-
tively). Cefepime did not have any VMEs or MEs; inaccuracies were all attributable
to the lack of an intermediate prediction. Meropenem had a 3.1% (1 of 32) VME rate
attributable to a single isolate.

Gentamicin CA was 89.5% (34 of 38) with VME and ME rates of 6.3% (2 of 32) and
20% (1 of 5), respectively. Tobramycin had a slightly better CA of 94.7% (36 of 38), with
VME and ME rates of 3.1% (1 of 32) and 16.7% (1 of 6), respectively.

Finally, the fluoroquinolones had excellent CA overall. Ciprofloxacin had perfect CA,
and levofloxacin CA was 97.4% (37 of 38). Inaccuracies within the levofloxacin CA were all
attributable to the lack of intermediate results by ARESdb.

FIG 1 Mayo core genome multilocus sequence (cgMLST) typing minimum spanning tree.
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DISCUSSION

The application of WGS for investigation of genomic relatedness in epidemiologic
studies has replaced PFGE in recent years. The current study compared two cgMLST schemes
with a differing number of core genome alleles within the same software (SeqSphere1)
against PFGE. Simpson’s Diversity Index 95% CI values were nearly perfectly overlapping, indi-
cating that the three methods evaluated here had similar discriminatory power (Table 1). In
pairwise comparisons, the three methods were nearly equivalent (Tables 1 and 2). Any two iso-
lates within a cluster predicted by SeqSphere1 cgMLST scheme would have a 100% chance
of falling into the same cluster using the Mayo cgMLST. Conversely, there was a 95.4% chance
of a Mayo cgMLST pairing falling into the same SeqSphere1 cluster. It was not possible to
determine whether the difference between the two methods was due to the allelic threshold
applied in the Mayo cgMLST scheme. A single isolate in cluster SeqSphere1 cgMLST type
2802 was included with a value of 12 allelic differences (Fig. 2). The methods perfectly align if
an allelic threshold of #6 is applied to the SeqSphere1 cgMLST data set. Any two isolates
that fell into a cluster in the SeqSphere1 cgMLST scheme had a 100% chance of falling into
the same cluster by PFGE. Any two isolates falling into a cluster in the Mayo cgMLST scheme
had a 96.8% chance of falling into the same cluster by PFGE. Conversely, there was a 95.4%
chance that cluster pairings identified with PFGE would fall into the same cluster in the
SeqSphere1 cgMLST scheme. Similarly, there was a 96.8% chance that a cluster pairing identi-
fied by PFGE would fall into the same cluster in the Mayo cgMLST. These data align with the
findings of Martak et al. (18). In that study of 65 isolates, the investigators concluded that
PFGE could be used “with confidence” in the investigation of localized P. aeruginosa outbreaks.

TABLE 1 Typing method comparison by Simpson’s Diversity Indexa

Test name No. of partitions
Simpson’s
diversity index

Confidence
interval (95%)

Pulsed-field gel electrophoresis 17 0.768 0.630 to 0.906
SeqSphere1 cgMLST 15 0.760 0.625 to 0.894
Mayo cgMLST 17 0.768 0.630 to 0.906
acgMLST, core genome multilocus sequence typing.

FIG 2 SeqSphere1 core genome multilocus sequence typing (cgMSLT) minimum spanning tree.
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Further, they noted that WGS-based typing was not as affected by recombination events as
PFGE (18). In the data set, isolate MBRL-2439 was missing a single band, which excluded it
from PFGE group P2 affecting the overall agreement of PFGE with the two cgMLST methods.
We hypothesize that the single-band difference may have been due to a recombination event
affecting the restriction enzyme cut site but not comparison at the allele level (19).

In silico resistance prediction in P. aeruginosa using the ARESdb pipeline appears to
be promising. Strong confidence in resistance prediction for the fluoroquinolones (ciprofloxacin
and levofloxacin) was found, with no VMEs or MEs noted and CA values .95%. Meropenem
had a high CA (97.4%, 37 of 38) but had a single false susceptible call, resulting in a VME of
3.1% (1 of 32). Cefepime prediction (CA = 92.1%, 35 of 38) was also acceptable, with no
VMEs or MEs. The overall CA was brought down by mEs, which is a limitation of the ARESdb
prediction pipeline. Finally, tobramycin prediction (CA = 94.7%, 36 of 38) was acceptable,
but a high ME rate was observed, with one false resistant call (16.7%, 1 of 6) (Table 3).

The remaining compound predictions were all ,90% CA and encompassed the drug
classes of b-lactams and aminoglycosides. Aztreonam had a CA of 89.5% and a single
false susceptible prediction (VME = 3.3%, 1 of 30), with a mE rate of 7.9% (3 of 38) lowering
overall CA. Ceftazidime prediction experienced two false susceptible calls (VME = 6.7%, 2 of 30),
piperacillin-tazobactam prediction experienced three false susceptible calls (VME = 10%, 3 of
30), and gentamicin prediction experience two false susceptible calls (Table 3).

It has been noted in several studies that genotypic prediction of resistance in P. aeru-
ginosa is complex, especially for the b-lactams and aminoglycosides. P. aeruginosa is
known to harbor a drug-inducible AmpC b-lactamase Pseudomonas-derived cephalo-
sporinase (PDC) leading to natural resistance to the penicillins and first and second
generation cephalosporins (20, 21). Some mutations in PDCs extend the spectrum of the
natural activity of these enzymes to include piperacillin-tazobactam, the antipseudomo-
nal cephalosporins, and the monobactam aztreonam (20). Further complicating this
landscape, overexpression of PDCs, modifications of OprD, upregulation of the efflux
pump system (mex), interplay with other b-lactamases such as the group D oxacillinases,
and the mucoid phenotype of this species can affect b-lactam MICs (20, 22–25).
Similarly, in silico prediction of aminoglycoside resistance is complex and has also been
demonstrated to be multifactorial. P. aeruginosa can inactivate aminoglycosides with a

TABLE 2 Typing method comparison by adjusted Wallace testsa

Test name
Pulsed-field gel
electrophoresis

SeqSphere+
cgMLST Mayo cgMLST

Pulsed-field gel
electrophoresis

1.000 (1.000 to 1.000) 0.968 (0.930 to 1.000)

SeqSphere1 cgMLST 0.954 (0.903 to 1.000) 0.954 (0.903 to 1.000)
Mayo cgMLST 0.968 (0.930 to 1.000) 1.000 (1.000 to 1.000)
a The values are shown as the adjusted Wallace test result (95% confidence interval). cgMLST, core genome
multilocus sequence typing.

TABLE 3 ARESdb prediction statisticsa

Compound CA VME ME mE
Aztreonam 89.5% (34 of 38) 3.3% (1 of 30) 0.0% 7.9% (3 of 38)
Cefepime 92.1% (35 of 38) 0.0% 0.0% 7.9% (3 of 38)
Ceftazidime 86.8% (33 of 38) 6.7% (2 of 30) 0.0% 7.9% (3 of 38)
Ciprofloxacin 100.0% (38 of 38) 0.0% 0.0% 0.0%
Gentamicin 89.5% (34 of 38) 6.3% (2 of 38) 20.0% (1 of 5) 2.6% (1 of 38)
Levofloxacin 97.4% (37 of 38) 0.0% 0.0% 2.6% (1 of 38)
Meropenem 97.4% (37 of 38) 3.1% (1 of 32) 0.0% 0.0%
Piperacillin-tazobactam 84.2% (32 of 38) 10.0% (3 of 30) 0.0% 7.9% (3 of 38)
Tobramycin 94.7% (36 of 38) 3.1% (1 of 32) 16.7% (1 of 6) 0.0%

Overall 92.4% (316 of 342) 3.7% (10 of 269) 4.3% (2 of 47) 4.1% (14 of 342)
aCA, categorical agreement; VME, very major error; ME, major error; mE, minor error.
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number of aminoglycoside-modifying enzymes that have various activities against the
different agents in this class. Additionally, this species can possess 16S rRNA gene methyl
transferases, which can render aminoglycosides inactive (26–28). Finally, the efflux pump
system MexXY-OprM has been demonstrated to contribute to aminoglycoside resistance
(29).

We attempted to use the National Center for Biotechnology (NCBI) antibiotic resist-
ance gene identifying tool AMRFinderPlus, which was recently added into SeqSphere1 (30).
AMRFinderPlus has several species-specific pathways included that allow for more precise
predictions. Currently AMRFinderPlus does not have a P. aeruginosa resistance prediction
pathway. Users are still able to analyze assembly FASTA files without defining the species
queried, and gene-call results with color-coded confidence scores are provided. The end
user must have broad knowledge regarding single-gene and gene-environment interplay
mechanisms that confer resistance to manually correlate identified antimicrobial resistance
genes with resistance prediction. In our hands, this task was difficult and time consuming,
and the results had poor CA (data not shown).

Cortes-Lara et al. employed a laboratory-developed in silico prediction tool and conducted
a similar resistance prediction study with a larger collection of P. aeruginosa isolates (31). The
laboratory-developed tool utilizes a logic-based scoring system that takes into account the
presence/absence of genes and point mutations associated with increased resistance or sus-
ceptibility. The team compared European Committee on Antimicrobial Susceptibility Testing
(EUCAST)-interpreted AST data for five antibiotics to predictions made with the analytical
tool. The reported sensitivities were 86.5% (meropenem), 95.5% (ciprofloxacin), 97.7% (ceftazi-
dime), and 100% (ceftolozane-tazobactam and tobramycin). These data suggest an advantage
of built-in “logic” to assist in making resistance predictions for this species (31). In another
recent study using a machine learning approach, investigators combined a DNA antimicrobial
resistance (AMR) identification tool with and without transcriptome sequencing to enable par-
allel expression analysis. They noted improved performance in prediction of antibiotic resist-
ance when expression analysis was included (32). Future studies will require the development
of optimized in silico resistance tools and databases and assessment of these tools in a multi-
center approach. Limitations of this study include the use of a small number of isolates with
moderate diversity and a limited antibiotic prediction panel, which does not include some of
the new b-lactam inhibitor combinations that can inhibit PDCs.

Resistance prediction using WGS data is an emerging arena in clinical microbiology.
WGS resistance prediction from bacterial isolates has the potential to be a bedrock to enable
future resistance prediction from data derived from culture-independent molecular techni-
ques, such as shotgunmetagenomics. Any in silico resistance prediction tool used for P. aerugi-
nosa will require a robust database and a degree of logic or artificial intelligence to account
for the diverse genetic pathways that can lead to antibiotic resistance.

MATERIALS ANDMETHODS
Bacterial isolates. The study used 38 isolates submitted to the Mayo Clinic Clinical Bacteriology

Laboratory for PFGE analysis. Isolates were revived from cryopreservation by two serial passages onto trypti-
case soy agar with 5% sheep blood (Becton Dickinson, Sparks, MD) and incubated in an ambient atmosphere
at 35°C. The second serial passage was used for both conventional AST and molecular methods.

Pulsed-field gel electrophoresis (PFGE). PFGE was performed on all 38 isolates by visually captur-
ing and comparing banding profiles. Briefly, PFGE was performed by creating cell suspensions for all iso-
lates in Tris-EDTA buffer to an optical density of 45 to 55% transmittance at 590-nm turbidity (Dade
Behring, Deerfield, IL). Normalized cells were embedded in sample agarose plugs and digested in a lysis
buffer containing 200 mg/mL lysozyme and 0.05% sarkosyl for 4 h at 35°C. At the conclusion of incubation, lysis
buffer was neutralized and washed away. Each plug was transferred to a microcentrifuge tube containing
restriction buffer H and 30 units of XbaI enzyme (Sigma-Aldrich, St. Louis, MO) and incubated for an additional
4 h at 35°C. PFGE was performed on a CHEF Mapper XA system (Bio-Rad, Hercules, CA). PFGE gels were stained
with ethidium bromide and visualized on a GelDoc system (Bio-Rad). Comparison of banding patterns was
manually performed.

Whole-genome sequencing (WGS). DNA was extracted and purified using the Quick-DNA fungal/
bacterial miniprep kit (Zymo Research Corp.) in 200 mL of the kit-provided elution buffer. DNA was measured
and normalized to 0.2 ng/mL using the QuantiFluor ONE dsDNA system with a Quantus fluorometer (Promega,
Madison, WI). NGS libraries were prepared from the normalized DNA with Nextera XT (Illumina, San Diego, CA)
and dual-indexed. Sequencing was performed on a MiSeq benchtop sequencer (Illumina) utilizing a V2 500 cycle
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paired-end kit with a maximum pooling targeting 200� mean genome coverage. The reads were processed for
adapter and index cleaning using MiSeq reporter software in real time.

cgMLST analysis. Adapter- and index-clipped read files were imported into SeqSphere1 (Ridom,
Münster, Germany) software version 7.2.6. SKESA de novo assembly and two cgMLST analyses were exercised
within the software suite following default settings. An ad hoc cgMLST method developed at Mayo Clinic in 2019
that analyzes 4,041 alleles based on the PAO1 reference genome (NC_002516.2) was run in parallel and com-
pared to the cgMLST method of Tönnies et al., which employs the same reference genome (albeit with fewer al-
leles) but offers a proposed standard cgMLST nomenclature and has been incorporated within the SeqSphere1
software (33). Minimum spanning trees were generated using the comparison data from both methods. The fol-
lowing laboratory-validated allelic thresholds of relatedness were applied to the Mayo cgMLST method:#6 allelic
differences, related; 7 to 100 allelic differences, possibly related; and.101 allelic differences, unrelated.

Statistical comparison of typing methods. PFGE and Mayo cgMLST groupings were assigned arbi-
trary values in the absence of formalized nomenclature (Table 4). Typing data were uploaded for analysis into
the Comparing Partitions tool (www.comparingpartitions.info). The three methods were analyzed collectively
with Simpson’s Diversity Index and pairwise with the adjusted Wallace test (34, 35).

Agar dilution. Phenotypic AST was performed using AD following quality control and breakpoints
using the Clinical and Laboratory Standards Institute M100 32nd edition document (36).

ARESdb analysis. Adapter- and index-clipped read files were uploaded into the ARESdb platform,
release 2020-04 (Ares Genetics GmbH, Vienna, Austria) for genomic prediction of antimicrobial susceptibility. The
platform used susceptibility/resistance (S/R) stacked classification models trained per species-compound pair on
the AMR reference database ARESdb (37). Nine compound-specific stacked classification models were used for
genomic prediction of susceptibility based on the uploaded data. Intermediate phenotypes were treated as
minor errors, because the ARESdb platform did not predict the intermediate interpretive category. Very major
error (VME), major error (ME), and minor error (mE) rates were calculated following CLSI M52 guidelines (38).

TABLE 4 PFGE and cgMLST typing dataa

Isolate ID
SeqSphere+ cgMLST
complex type

Mayo cgMLST
complex type

PFGE
grouping

MBRL2368 2814 M1 P1
MBRL2423 2798 M2 P2
MBRL2424 2799 M3 P3
MBRL2425 2800 M4 P4
MBRL2426 2801 M5 P5
MBRL2427 2802 M6 P6
MBRL2428 2809 M7 P7
MBRL2429 2798 M8 P2
MBRL2430 2804 M9 P9
MBRL2431 2802 M6 P6
MBRL2432 2802 M6 P6
MBRL2433 2802 M6 P6
MBRL2434 2805 M10 P10
MBRL2435 2802 M6 P6
MBRL2436 2798 M2 P2
MBRL2437 2806 M11 P11
MBRL2438 2802 M6 P6
MBRL2439 2798 M2 P12
MBRL2440 2802 M6 P6
MBRL2441 2802 M6 P6
MBRL2442 2802 M6 P6
MBRL2443 2807 M12 P13
MBRL2444 2808 M13 P14
MBRL2446 2809 M14 P15
MBRL2447 2810 M15 P16
MBRL2448 2798 M2 P2
MBRL2449 2802 M6 P6
MBRL2450 2802 M6 P6
MBRL2451 2802 M6 P6
MBRL2452 2802 M6 P6
MBRL2453 2802 M6 P6
MBRL2454 2802 M6 P6
MBRL2455 2802 M6 P6
MBRL2456 2798 M2 P2
MBRL2457 2811 M16 P18
MBRL2458 2802 M6 P6
MBRL2459 2812 M17 P19
MBRL2460 2802 M6 P6
acgMLST, core genome multilocus sequence typing; PFGE, pulsed-field gel electrophoresis.
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Data availability. Sequences from isolates in this study are available in the National Center for
Biotechnology (NCBI) Sequence Read Archive (SRA) under Accession PRJNA855929.
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