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ABSTRACT Endometrial cancer (EC) is the most prevalent gynecological malignancy, with
a higher risk in obese woman, indicating the possibility of gut microbiota involvement in
EC progression. However, no direct evidence of a relationship between EC and gut micro-
biota in humans has been discovered. Here, we performed 16S rRNA sequencing to explore
the relationship between dysbiosis of gut microbiota and cancer development in different
types of EC patients. The results clearly show the differential profiles of gut microbiota
between EC patients and normal participants as well as the association between gut micro-
biota and EC progression. Targeted metabolomics of plasma revealed an increased level of
C16:1 and C20:2, which was positively associated with the abundance of Ruminococcus sp.
N15.MGS-57. The higher richness of Ruminococcus sp. N15.MGS-57 in EC subjects not only
was positively associated with blood C16:1 and C20:2 but also was negatively correlated
with betalain and indole alkaloid biosynthesis. Furthermore, the combined marker panel of
gut bacteria, blood metabolites, and clinical indices could distinguish the EC patients under
lean and overweight conditions from normal subjects with high accuracy in both discovery
and validation sets. In addition, the alteration of tumor microenvironment metabolism of
EC was characterized by imaging mass microscopy. Spatial visualization of fatty acids
showed that C16:1 and C18:1 obviously accumulate in tumor tissue, and C16:1 may pro-
mote EC cell invasion and metastasis through mTOR signaling. The aberrant fecal micro-
biome, more specifically, Ruminococcus sp. N15.MGS-57 and spatially distributed C16:1 in EC
tissues, can be used as a biomarker of clinical features and outcomes and provide a new
therapeutic target for clinical treatment.

IMPORTANCE A growing number of studies have shown the connection between gut
microbiota, obesity, and cancer. However, to our knowledge, the association between gut
microbiota and endometrial cancer progression in humans has not been studied. We
recruited EC and control individuals as research participants and further subgrouped sub-
jects by body mass index to examine the association between gut microbiota, metabolites,
and clinical indices. The higher richness of Ruminococcus sp. N15.MGS-57 in EC subjects
was not only positively associated with blood C16:1 but also negatively correlated with
betalain and indole alkaloid biosynthesis. Spatial visualization of fatty acids by imaging
mass microscopy showed that C16:1 obviously accumulates in tumor tissue, and C16:1
may promote the EC cell invasion and metastasis through mTOR signaling. The aberrant
fecal microbiome, more specifically, Ruminococcus sp. N15.MGS-57 and spatially distributed
C16:1, can be used as a biomarker of clinical features and outcomes and provide a new
therapeutic target for clinical treatment.
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E ndometrial cancer (EC) is the most prevalent gynecological malignancy, with in-
creasing incidence rates accompanied by accelerated increasing mortality in some

developed countries (1). Traditionally, EC has been classified into two histological categories,
type I and type II. Type I is mostly associated with obesity and other components of the
metabolic syndrome, which has been identified as an independent risk factor for the devel-
opment of EC. Type II tumors behave more aggressively and are not estrogen driven. It has
been known that type II EC is not completely devoid of associations with hormonal and
metabolic factors. However, recent epidemiological studies indicate a complexity in EC risk
factors, with obesity playing an important role in both types (2). The incidence of obesity
has increased dramatically. Sedentary lifestyles and increased food consumption in combi-
nation with a widespread polygenetic susceptibility are the major causes of the obesity epi-
demic. Microorganisms have developed intimate relationships with humans by colonizing
various body environments, constituting an integrated metaorganism. As a nonnegligible
body component, microbes may directly or indirectly modulate cancer susceptibility and tu-
mor progression (3, 4). The human microflora contributes to 16 to 18% or more of world-
wide malignancies. Oncogenic bacteria and viruses exhibit the capacity to directly modulate
carcinogenesis through specific toxins that can damage host DNA or the integration of
oncogenes into host genomes. Gut microbial dysbiosis has been related to cancer based on
current epidemiological and experimental evidence (5). Commensal bacteria can modulate
host homeostatic processes, and the specific subsets of microorganisms directly influence
the human physiology through their metabolites (6). Microbially driven carcinogenesis is
also frequently related to global changes in the microbiome (7). Helicobacter pylori, which is
known for its association with both lymphoma and gastric epithelial cancer, appears to use
many parallel mechanisms to induce cancer (8). Fusobacterium causes inflammation, prolifer-
ation, and loss of immune surveillance. Multiple laboratories have observed increases in
Fusobacterium species in colorectal cancer samples (9). However, the composition of the gut
microbiota in patients with EC and the relationship between the gut microbiota and EC
have not been clarified so far.

Metabolic alteration is a characteristic of malignancy that was first recognized a cen-
tury ago. Many cancer-specific metabolic alterations have been described, including
the aberrant metabolism of amino acids, glucose, nucleotides, fatty acids, and lipids.
Alterations in intracellular and extracellular metabolites that can accompany cancer-
associated metabolic reprogramming have profound effects on gene expression, cellu-
lar differentiation, and the tumor microenvironment (10). Fatty acids determine the
enormous structural complexity. Moreover, fatty acids are energy-rich compounds that
can be degraded to provide ATP and contribute to cellular bioenergetics. The regula-
tion of fatty acid synthesis, modification, uptake, and degradation is therefore essential
for the maintenance of cellular physiology, and perturbation of the processes control-
ling lipid provision can inhibit cell survival. Altered fatty acid metabolism is among the
most prominent metabolic alterations in cancer. Studies highlight the relationship
between oncogenic signaling and fatty acid metabolism to promote cancer cell growth
and survival, to regulate the processes that initiate cell dissemination and metastasis,
and to control communication between cancer and immune cells (11).

Mounting evidence has documented the connection between the gut microbiota,
estrogen metabolism, and obesity, which suggest a potential role of the microbiome in
the etiology of EC (12). The gut microbiota can produce various bioactive metabolites,
which can enter the bloodstream of the host through absorption into the enterohepatic
circulation. Specific metabolites associated with a disease phenotype can be identified
by mass spectrometry or nuclear magnetic resonance-based metabolomics of fecal,
plasma, urine, or other biofluids, making it possible to conduct joint analyses of the
microbiome, metabolome, and host phenotypes to identify potential mechanistic links
(13). In this study, we analyzed and compared the composition and functional potential

Gut Microbiota Exacerbates EC Progression Microbiology Spectrum

November/December 2022 Volume 10 Issue 6 10.1128/spectrum.02612-22 2

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02612-22


of the gut microbiome in EC patients with those in healthy controls, utilizing 16S rRNA
sequencing. By combining metabolomics, we aimed to further explore the gut micro-
biota and metabolome as being altered in association with EC and to determine
whether they play a considerable role in the initiation and progression of this disease.
Obesity, endometrial intraepithelial neoplasia and hypertension as high-risk factors
were also analyzed in a subgroup.

RESULTS

A total of 18 EC patients and 18 control (normal) participants took part in the study
(normal participants included those in the normal weight control [NC, n = 6] group, those
in the normal overweight [NO, n = 6] group, and those in the endometrial intraepithelial
neoplasia with overweight [EIN, n = 6] group; EC patients included those in the EC normal
weight control [ECC, n = 6] group, those in the EC with overweight [ECO, n = 6] group, and
those in the EC with overweight and hypertension [ECOH, n = 6] group). We used body
mass index (BMI) for grouping. According to the World Health Organization (WHO) criteria,
overweight is defined as a BMI greater than or equal to 25 kg/m2 and a normal weight is
defined as a BMI less than 25 kg/m2. The baseline characteristics of the EC group and the
control group are summarized in Table S1 in the supplemental material.

Alterations of gut microbiota composition in normal and EC patients based on
16s rRNA sequencing. As shown in Fig. 1a, a Venn diagram displayed 1,079 common
operational taxonomic units (OTUs) with 176 unique OTUs in the EC group and 167 unique
OTUs in the normal group. The sequencing results showed no significant difference in bac-
terial alpha-diversity and beta-diversity between individuals with EC and normal partici-
pants (Fig. S1a and S1b). At the phylum level (Fig. 1b), the abundance of Proteobacteriawas
decreased in the EC group, while Bacteroidota and Verrucomicrobiota were increased in the
EC group. Several microbial species, such as Coprococcus catus, Rhodobacter blasticus,
Odoribacter splanchnicus, and Alistipes onderdonkii, were strongly correlated with microbial
diversity, which indicates a potential role for these discriminatory species in maintaining
microbiome richness (Fig. 1c). Furthermore, the bacteria belonging to the phyla Firmicutes
and Bacteroidota dominated in EC subjects, with higher proportions (Fig. 1d). Specifically,
Firmicutes phylum members Ruminococcus sp. N15.MGS-57, Lachnospiraceae bacterium
GAM79, and Anaerostipes caccae were enriched in EC patients. Bacteroidota phylum mem-
bers Alistipes indistinctus, Parabacteroides merdae, Prevotellaceae bacterium Marseille-
P2831, and Prevotella sp. DJF_LS16 species were higher in proportion in EC subjects. In
addition, Akkermansia muciniphilawas also higher in EC subjects (Fig. 1e).

To further explore potential correlations of key clinical indexes with the altered gut micro-
biome in EC, clinical index and gutmicrobiome correlation analysis was performed.We found
that BMI and 13 metabolic parameters, including serum high-density lipoprotein (HDL) and
alanine aminotransferase (ALT), correlated with gut bacterial alterations (Fig. 1f). Specifically,
Ruminococcus sp. N15.MGS-57 and Dialister sp. Marseille-P5638 were negatively correlated
with circulating HDL, which was mainly produced by the liver and responsible for cholesterol
transport, and were positively correlated with circulating triglycerides (TG) and creatinine
(Cre) concentration, respectively. Moreover, Akkermansia muciniphila, which also increased in
EC individuals, was positively associated with the serum prealbumin (PAB). Furthermore,
Bacteroides coprocola was positively correlated with BMI, indicating that these species distur-
bances may constitute potential biomarkers linking gut microbiota and metabolic status.
Besides, the species cooccurrence network revealed that there was a closer correlation
among Prevotella copri, Parabacteroides sp. CT06, and related species in EC subjects (Fig. S2a).
Normal and EC groups shared only a small proportion of edges (9 edges) but had dramati-
cally different numbers of unique edges (44 versus 31) (Fig. S2b). The eigenvectors of shared
nodes between the normal and EC groups were also quite different (Fig. S2c). Moreover, the
random forest model was used to discriminate individuals with EC from normal participants
based on the species level. The optimal model utilized 9 species, which provided the lowest
cross-validation error (Fig. S2d and e) and a high discriminatory power with the area under
the curve (AUC = 0.74) in the validation set (Fig. S2f).

Gut Microbiota Exacerbates EC Progression Microbiology Spectrum

November/December 2022 Volume 10 Issue 6 10.1128/spectrum.02612-22 3

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02612-22


FIG 1 Gut microbial alterations in normal and EC individuals. (a) Venn diagram of the observed OTUs in normal
and EC groups. (b) Bacterial profile at the phylum level. (c) Correlation between alpha-diversity and gut bacteria.

(Continued on next page)
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Characteristics of metabolic symbols of EC patients. To investigate the extent to
which circulating metabolites were associated with the altered microbiome in the EC
patients, targeted metabolomics profiling of serum was performed in EC patients and con-
trols. We identified 8 metabolites that significantly differed in abundance between two
groups. Specifically, C16:1, C18:1, C20:1, C20:2, C22:6, C24, and C24:1 were enriched in EC
subjects, while a decreased level of threonine was observed in EC patients (Fig. 2a).
Moreover, Spearman’s correlation was generated to explore the potential relationships
between the gut microbiome changes and the altered abundance of circulating metabo-
lites. As shown in Fig. 2b, EC enriched metabolites C16:1 and C20:2 were positively associ-
ated with Ruminococcus sp. N15.MGS-57, Prevotella sp. DJF_LS16, and Anaerostipes caccae,
which dominated in EC patients. Apart from that, Akkermansia muciniphila, Bacteroides
caccae, Parabacteroides merdae, and Lachnospiraceae bacterium GAM79 bacteria were neg-
atively associated with the circulating threonine, which dominated in normal subjects.
More importantly, Ruminococcus sp. N15.MGS-57 bacteria and metabolic products C16:1
and C20:2 demonstrated similar rising trends in abundance from normal subjects to EC
patients (Fig. 2c to e).

Gut microbiota composition in normal weight controls and EC normal weight
controls. As shown in Fig. 3a, the unique numbers of OTUs in the NC and ECC groups
present a significant difference. At the phylum level, the proportions of Bacteroidota
and Proteobacteria were increased in the ECC group but a reduction in Firmicutes,
Actinobacteriota, and Cyanobacteria was observed in ECC subjects (Fig. 3b). To explore
whether the microbial composition of ECC subjects was different from that of NC sub-
jects, alpha-diversity analysis was performed. Even though there was no significant differ-
ence across the two groups in the alpha-diversity indexes (Fig. S1c), overall microbial
composition was significantly different between the ECC and NC groups, as confirmed by
the permutational multivariate analysis of variance (PERMANOVA) test (P = 0.021)
(Fig. 3c). This difference arose from principal component 2 (PC2) (**, P, 0.01) rather than
PC1 (P . 0.05) of the principal-component analysis (PCA). Notably, the genera Prevotella
and Parabacteroides showed a remarkable increase in the ECC group (Fig. 3d). Partial
least-squares discriminant analysis (PLS-DA) showed that there was a distinct clustering
pattern between samples from individuals in the ECC and NC groups (Fig. 3e). Also, the
variable importance in projection (VIP) score for the gut microbiota showed that
Ruminococcus sp. N15.MGS-57 contributed significantly to the group separation (Fig. 3f).
Apart from that, the species Ruminococcus sp. N15.MGS-57, Faecalibacterium prausnitzii,
Prevotella copri, and Parabacteroides sp. CT06, which belong to the Firmicutes and
Bacteroidota phyla, were significantly increased in ECC individuals compared to the NC
group (Fig. 3g).

In addition, representative sequences of each OTU were used to predict metabolic
pathways. As shown in Fig. S3a, pathways involved in the renin-angiotensin system and in
betalain and indole alkaloid biosynthesis were present at a significantly lower level in ECC
individuals than in the NC group. And the correlation between altered species and KEGG
pathways revealed that Parabacteroides sp. CT06, Prevotella copri, and Ruminococcus sp.
N15.MGS-57, which increased in ECC patients, were negatively associated with the above-
described pathway (Fig. S3b). Furthermore, a positive association between altered bacteria
and increased circulation lipids such as C16:1 and C20:2 was also observed in lean subjects
(Fig. S3c).

Changes in gut microbiota profile due to overweight condition. To further inves-
tigate the characteristics of the microbiota profile in subjects with overweight statuses,
we compared bacterial compositions across the NO, EIN, ECO, and ECOH groups. As

FIG 1 Legend (Continued)
(d) Volcano plots showing the changes in gut bacteria between normal and EC subjects at the species level.
Significantly different taxa are colored according to the phyla as indicated in the key. The size of the plots
indicates the abundance of the gut bacteria. (e) The absolute abundance of species in the indicated groups (a
two-tailed Wilcoxon test was used to determine significance in normal and EC individuals; *, P , 0.05; **,
P , 0.01). (f) Spearman’s rank correlation between the top 30 species and 14 clinical indices (only species that
correlated with at least one clinical index at a P of ,0.05 [*] or a P of ,0.01 [**] are shown).
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FIG 2 Targeted metabolomics reveals the host circulating metabolite characteristics. (a) Heat map displaying the metabolite signal intensity across
individuals. (b) Correlation of the significant change in metabolites and gut bacteria. (c to e) Abundance of the gut bacterium Ruminococcus sp.
N15.MGS-57 and related metabolites C20:2 and C16:1 in 6 groups.
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FIG 3 Construction and biomarker species in EC patients of normal weight. (a) Venn diagram of the observed OTUs in NC
and ECC individuals. (b) Comparison of the microbiota profiles of NC and ECC groups at the phylum level. (c) Beta-diversity

(Continued on next page)
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shown in Fig. 4a, a large proportion of OTUs was shared by these four groups, and the
number of unique OTUs in the NO group was lower than that in the other groups.
Besides, the number of shared OTUs in the NO, ECO, and ECOH groups was lower than
that in the EIN, ECO, and ECOH groups. A remarkably increased alpha-diversity was
observed in the EIN, ECO, and ECOH groups compared with that of the NO samples,
according to the PD whole tree index (Fig. 4b). Importantly, there was a significant
change in the abundance-based coverage (ACE) estimator index between the NO and
ECOH groups (Fig. 4c). Even though there were nonsignificant distinct microbiota pro-
files among the three groups in beta-diversity, a remarkable change between the NO
and EIN groups in the PC2 was shown (Fig. 4d). Moreover, a distinct difference was
observed between the EIN and ECO groups and the NO group (Fig. 4e). In addition,
Algoriphagus sp. M8-2 and Lysobacter maris were both increased in the EIN and ECO
groups in comparison to NO subjects. Anaerostipes caccae and Bacteroides eggerthii
were uniquely increased species in the ECO group in comparison to the NO group.
Importantly, Parabacteroides goldsteinii and Megasphaera elsdenii were decreased, but
Fusobacterium ulcerans was increased, only in the EIN group. It was noted that even
though a decreased level of Bacteroides coprophilus was observed in both the EIN and
ECO groups, a higher level of Bacteroides coprophilus was observed in ECOH subjects
(Fig. 4f).

Next, we found that the phylum Proteobacteria was abnormally increased in the EIN
group. However, ECOH subjects demonstrated a higher level of the phylum Verru-
comicrobiota (Fig. S4a). Furthermore, the genera Faecalibacterium and Dialister were
decreased in the EIN, ECO, and ECOH groups. However, a reverse trend was observed
in the Alistipes genus (Fig. S4b). In addition, the EIN subjects had the lowest proportion
of the genus Parabacteroides compared to other groups. It should be noted that a
decrease in Prevotella was observed in EIN and ECO individuals. Prevotella levels were
more similar between the NO and ECOH groups. Furthermore, predicted pathways,
including those for p53 signaling, the renin-angiotensin system, betalain biosynthesis,
and indole alkaloid and isoflavonoid biosynthesis, were enriched in EIN and ECO sub-
jects compared to those in the NO group (Fig. S4c). Furthermore, a correlation analysis
was performed to explore the interaction between clinical indices and plasma metabo-
lites. As shown in Fig. S4d, C20, C22, and C22:6 kept a positive association with PAB, al-
bumin (ALB), urea, serum glucose (Glu), and calcium (Ca). And the C20 was positively
correlated with total bilirubin (Tbil), direct bilirubin (Dbil), and apolipoprotein a (Apoa),
but a reverse association was shown between C22:6 and HDL. It is worth noting that
C22 was positively correlated with TG and cholesterol. We further compared the circu-
lating metabolites, and, as shown in Fig. S4e, the plasma C20 and C22 levels were
higher in the EIN group than in the NO subjects. In addition, a higher level of C22:6
was observed in ECO individuals. Both plasma alanine and serine levels were decreased
in ECOH subjects compared to those in the ECO group. Asparagine was increased in
ECO subjects only in comparison with the NO group.

Combinatorial biomarkers for discriminating EC from normal subjects and cooc-
currence analysis among bacteria, metabolites, and clinical indices. The potential
value of gut microbiome and metabolomic markers was investigated in EC diagnosis
using three types of diagnostic models based on differential bacteria, blood metabo-
lites, and clinical indices, respectively. We found that individual marker panels could
discriminate normal individuals from EC subjects in both discovery and validation sets
(bacterial species, Ruminococcus sp. N15.MGS-57 and Bacteroides caccae; plasma
metabolites, C16:1 and C20:2; clinical indices, TG and low-density lipoprotein [LDL])

FIG 3 Legend (Continued)
between two groups. (d) Comparison of the microbiota profiles of NC and ECC groups at the genus level. (e) Clustering
analyses of PLS-DA score plot of species abundance in samples from individuals from NC (blue points) and ECC (red points)
groups. (f).VIP scores of PLS-DA. VIP scores were used to rank the discriminating powers of different taxa between the NC
and ECC groups (VIP score of .1). (g) Abundance of significantly changed species in NC and ECC individuals (two-tailed
Wilcoxon test; *, P , 0.05; **, P , 0.01).
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FIG 4 Distribution of intestinal microbiome in overweight subjects. (a) Venn diagram of the observed OTUs in NO, EIN, ECO, and
ECOH groups. (b to d) Comparison of alpha- and beta-diversity among four groups. (e) Volcano plots of differential bacterial
abundance in EIN, ECO, and the two groups together in comparison to the NO group. (f) Significantly different gut bacteria among
four groups (two-tailed Wilcoxon test; *, P , 0.05; **, P , 0.01).
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FIG 5 Multiple markers for diagnosis of EC and cooccurrence network. (a to c) Logistic regression models can
accurately identify the EC individuals based on fecal bacteria, plasma metabolites, and clinical indices,
respectively. (d) This combinatorial marker panel including these 6 markers yielded a more robust diagnostic

(Continued on next page)
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(Fig. 5a to c). Furthermore, a combinatorial marker panel of these biomarkers enabled
discrimination of EC from normal subjects with a higher classification power in both the dis-
covery set (AUC = 0.902) and the validation set (AUC = 0.905) (Fig. 5d). As shown in Fig. 5e, a
cooccurrence network was utilized to explore the potential interactions among dysbiosis of
gut microbiota, serummetabolic patterns, and clinical indices. In this network, these altered
metabolites were mainly involved in unsaturated fatty acid metabolism. For example, the
increased abundance of species Ruminococcus sp. N15.MGS-57 and Bacteroides caccae in all
EC patients was strongly positively associated with two potential metabolic markers, C16:1
and C20:2. In addition, Akkermansia muciniphila and Bacteroides caccaewere strongly associ-
ated with threonine and serine levels, which decreased in EC and lean patients, respectively.
More important, the increased level of the species Prevotella copri and Prevotella stercorea
only in lean patients was also positively correlated with plasma TG. It is worthwhile to note
that the core positions of potential markers imply the importance of these indices in the de-
velopment of EC.

Identification and visualization of fatty acids in EC by imaging mass micros-
copy. The distributions of fatty acids in EC tissues were visualized by the novel iMScope with
a mass spectrometry (MS) imaging technology. Direct detection of fatty acids obtained from
EC tissues was made possible without the utilization of antibodies or extensive purification
steps. Tissue frozen sections from two individuals showed the representative optical micro-
scopic image and MS visual mappings of fatty acids on EC tissue and adjacent tissue (Fig. 6a
and b). According to the results of metabolomics, the differential targeted fatty acids include
C16:1, C18:1, C20:1, C22:6, C22:5, and C24:1. The localizations of these fatty acids were distrib-
uted mostly over the area of cancer tissue. To evaluate the relative abundance and distribu-
tion of detectable fatty acids in the sampled tumor tissues, we further analyzed the mass
spectral data by analyses of detectable fatty acids in the region of adjacent tissue and cancer
tissue. As can be seen from the results, significantly higher levels of fatty acid expression in
cancer are consistent with the metabolomics, especially in C16:1 and C18:1. Sectioned tissues
detected by iMScope were subjected to hematoxylin and eosin (H&E) staining to identify the
localization of adjacent tissue and cancer tissue in EC (Fig. 6c). H&E staining more discrimi-
nately demonstrates the adjacent tissue and cancer boundaries, which are highly consistent
with the location and distribution of high fatty acid aggregation in EC determined by
iMScope. Combining high-resolution MS with in situ spatial analysis of the area, abnormalities
in fatty acid synthesis and uptake were clearly observed in EC.

Altered metabolites contribute to EC cell viability and mTOR pathway activity.
To confirm the causal relationship between fatty acid metabolite disorder and EC, cells
were treated with olive oil for 24 h. The results showed that olive oil significantly stimu-
lated Ishikawa cell proliferation in a dose-dependent manner (Fig. S5a). To further investi-
gate the results of metabolome and iMScope analyses in EC, we tested the modulation of
cell function by C16:1, C20:2, and C18:1, the most relevant fatty acids in vitro. C16:1, C20:2,
and C18:1 stimulated cell proliferation, with the highest induction by C16:1 in both
Ishikawa and HEC-1A cells (Fig. S5b). Additionally, C16:1-, C20:2-, and C18:1-treated EC cells
formed a higher number of replicated DNA than the vehicle control (Fig. 7a), which
revealed the improved survival and proliferative capacity of cells incubated with C16:1,
C20:2, and C18:1. Cell migration and invasion ability were also significantly increased by
C16:1, C20:2, and C18:1 (Fig. 7b and c). In addition, the epithelial-mesenchymal transition
(EMT) and cell invasion marker PCNA were examined with or without fatty acids in
Ishikawa and HEC-1A cells by immunoblotting (Fig. 7d). These data demonstrated that
C16:1, C20:2, and C18:1 have tumor-promoting effects in vitro. Oncogenic signaling and
metabolic alterations are interrelated in cancer cells. mTOR is frequently activated in cancer

FIG 5 Legend (Continued)
performance than that of separate markers in both the discovery and validation sets. (e) Cooccurrence network
constructed from the different bacterial species, clinical indices, and blood metabolites in EC subjects versus
normal individuals. Red and blue dots indicate the increased and decreased relative abundances of variables in
EC subjects relative to normal individuals, respectively. Edges between nodes indicate Spearman’s negative
(light blue) or positive (light red) correlation; edge thickness indicates the range of correlation values
(correlation value of .0.3 or ,20.3).
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and controls cell growth and metabolism. mTOR signaling regulates amino acid, glucose,
nucleotide, fatty acid, and lipid metabolism. We analyzed the levels of downstream target
proteins of mTOR in EC cells by immunoblotting. Compared with the findings for the con-
trol group, the analysis showed increased phosphorylation of S6K and 4EBP1 at the protein
level after treatment (Fig. 7e).

DISCUSSION

The connection between gut microbiota and endometrial cancer in humans, to our
knowledge, has been identified for the first time. Ruminococcus sp. N15.MGS-5 and
metabolic products C16:1 and C20:2 demonstrate similar rising trends from normal
subjects to EC patients. In addition, Ruminococcus sp. N15.MGS-5 contributed signifi-
cantly to the EC group separation and was significantly increased in ECC individuals
compared to the NC group. Meanwhile, the increased abundance of Ruminococcus sp.
N15.MGS-5 in all EC patients was strongly positively associated with C16:1 and C20:2.
The localization of C16:1 was identified and spatially visualized by imaging mass mi-
croscopy, and C16:1 showed a high distribution within the tumor area in comparison

FIG 6 MS imaging-based visual mapping profiles of fatty acids portraying the distribution of the indicated fatty acid ion species in tumor tissue and
adjacent tissue in two EC patients. (a and b) Distribution profiles of fatty acids in EC tumor tissues were studied through comparisons of relative intensities
of fatty acids by P values between adjacent and cancer tissues. Signal intensities of targeted fatty acids in adjacent and cancer tumor tissues of EC patients
are depicted, was normalized by measuring pixel per 100 mm. “p” denotes the statistical P value of the comparison. Significant differences are highlighted
in green font, while insignificant differences are highlighted in red font. (c) H&E staining of EC tumor tissues from these two EC patients.

Gut Microbiota Exacerbates EC Progression Microbiology Spectrum

November/December 2022 Volume 10 Issue 6 10.1128/spectrum.02612-22 12

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02612-22


FIG 7 C16:1, C20:2, and C18:1 supplementation promoted EC proliferation, migration, and invasion in vitro. (a) Percentage of EdU-positive Ishikawa
and HEC-1A cells after C16:1, C20:2, and C18:1 treatment at 5 mM for 24 h by EdU staining (magnification, �100). Data are shown as the mean 6

(Continued on next page)
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to that in adjacent tissues. Further study confirmed that C16:1 may stimulate Ishikawa
and HEC-1A cell proliferation through the mTOR pathway.

Here, the connection between the gut microbiota, obesity, and fatty acid metabo-
lism has been identified, and it strongly indicates a key role of the microbiome in the
etiology of EC. The current epidemiological evidence clarifies the relationship between
obesity and EC incidence and mortality risk. Obesity, measured and defined by
BMI (.30 kg/m2 and ,35 kg/m2), was associated with a 2.6-fold increase in EC risk,
while severe obesity (BMI, .35 kg/m2) was associated with a 4.7-fold increase in risk
compared to women of normal weight (BMI, ,25 kg/m2) (14). Obesity is hypothesized
to increase EC risk, including increased endogenous sex steroid hormones. Research
has confirmed that estrogen plays a crucial role in the development of EC. Hormonal
imbalance, especially adipose-derived unopposed estrogen in obese postmenopausal
women, is the most established. The increased amount of adipose tissue in obesity
results in an increased level of estrone conversion. Estrogen, by binding to endometrial
cell DNA, activates the proliferative PI3K/AKT/mTOR signaling pathway and also posi-
tively modulates the expression of genes linked to endometrial proliferation, leading
to uncontrolled cellular proliferation and the accumulation of replication errors that
predispose to malignancy (15). Our results showed that the b-activity of gut micro-
biota based on the unweighted UniFrac of ECC subjects was significant lower than that
of NC subjects, indicating a more similar community structure among EC patients.
Furthermore, beta-diversity trended higher with increasing comorbidities, which
seemed to further explain the role of gut microbiota in EC progression. At the phylum
level, the abundances of Bacteroidota, Verrucomicrobiota, and Firmicutes were higher,
while the abundance of Proteobacteria was lower in patients with EC. The members of
Bacteroidota have been reported to be associated with immunity and metabolic proc-
esses. Bacteroidota interact with the host by glycoprotein secretion, short fatty acid
imbalance, toxin production, and molecular mimicry, which are involved in many dis-
eases, such as autoimmune diseases, metabolic syndrome diseases (obesity, diabetes
mellitus, atherosclerosis, hypertension), and neurodegenerative disorders (16). The
metabolic syndrome can not only predict endometrial cancer risk occurances, but also
be associated with worse overall and disease-free survival in endometrial cancer survi-
vors. By analyzing the association between clinical indicators and gut microbiota, we
found that in comparison with the normal group, triglycerides increased and high-
density lipoprotein decreased in the EC group. Significantly, the abundance of
Ruminococcus sp. N15.MGS-5, which increased in EC subjects, was positively associated
with serum TG and negatively with HDL. According to the International Diabetes
Federation and the WHO, increased TG and reduced HDL are components of metabolic
syndrome. High levels of serum TG can further accumulate adipose tissue, convert
androgens into estrogen under the action of aromatase, and further increase the level
of estrogen in the body. A previous study used genetic markers to predict low-density
lipoprotein (LDL) and HDL cholesterol levels and to analyze EC risk. When lower LDL or
higher HDL levels were predicted, EC risk was increased (17). Thus, our results indi-
cate that Ruminococcus sp. N15.MGS-5 may participate in EC development through
HDL and TG metabolism. These data clearly show the connection between gut micro-
biota and EC, and the microbiome could be a potential regulator and therapeutic tar-
get of EC.

The gastrointestinal tract microbiota in adults is dominated by two divisions of bac-
teria, the phyla Firmicutes and Bacteroidota (18). The Firmicutes are composed mainly

FIG 7 Legend (Continued)
SD (*, P , 0.05). (b and c) Migration (b) and invasion (c) assays were performed by transferring Ishikawa cells to serum-free medium in the
absence or presence of C16:1, C20:2, and C18:1 (5 mM) in inserts with 8-mm-pore-size membranes coated with Matrigel or not. Migration and
invasion times were 12 h and 24 h, respectively. Cell numbers are given as the average number 6 SD per field and were counted at
�100 magnification (n = 6). *, P , 0.05 compared with controls. (d) Immunoblotting analysis of PCNA and E-cadherin in Ishikawa and HEC-1A cells
treated with or without C16:1, C20:2, and C18:1 (5 mM) for 24 h. b-Actin served as an internal control. (e) Immunoblotting analysis of S6K, P-S6K,
and P-4EBP1 in Ishikawa and HEC-1A cells treated with or without C16:1, C20:2, and C18:1 (5 mM) for 24 h. b-Actin served as an internal control.
Results are representative of at least three independent experiments.
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of the class Clostridia, which is divided into three major Clostridium clusters, IV, IX, and
XIV. The genus Ruminococcus falls into Clostridium clusters IV and XIVa and is defined
as strictly anaerobic, Gram-positive, and nonmotile cocci (19). Ruminococcus plays an
important role in the digestion of resistant starch, but it is also associated with intesti-
nal diseases (irritable bowel syndrome [IBS], irritable bowel disease [IBD], and Crohn's
disease), immune diseases (allergies, eczema, and asthma), nervous system diseases
(autism and depression), and metabolic diseases (obesity and diabetes) (20–22). Some
studies have also found a relationship between Ruminococcus and cancer. Rumino-
coccus plays an essential role in prostate cancer progression, possibly through the acti-
vation of the “Ruminococcus-LPCAT1-DNA repair” pathway (23). The relative abundance
of Ruminococcus is also higher in lung cancer patients (24). FishTaco analysis identified
Ruminococcus and Coprococcus as the taxa potentially contributing to enriched KEGG
pathways for the biosynthesis of amino acids and to the metabolisms of pyruvate, glyc-
erophospholipid, and nicotinate and nicotinamide (25). Notably, the involvement of
Ruminococcus in lipid metabolism has been reported in several studies (26). Bacteroides
caccae is a ubiquitous, anaerobic bacterium and is regarded as an opportunistic patho-
gen. It can invade the mucosa of the intestine and cause various infections (27). Many
clinical studies have confirmed the association between metabolic syndrome and
endometrial cancer (28). Obesity and the metabolic syndrome are associated with
microbiota alterations. The gut microbiota has also been related to the development
of obesity, and it is known that overweight and obese women have a higher risk of EC
than women of normal weight, especially during the postmenopausal period (29). The
presence of Ruminococcus also differed in the EC versus normal uteri in obese mice
(P , 0.05). These data suggest that the microbiome may play a role in obesity-driven
EC (30). Based on the International Agency for Research on Cancer (IARC) Working
Group, there is convincing evidence that excess body weight is associated with an
increased risk for cancer in at least 13 anatomic sites (31). In addition, the higher intake
of palmitic acid could increase the abundance of intestinal Ruminococcus sp. (32). Thus,
our data indicate that lipids may play a key role in EC development through the
microbiome.

With reference to the results for the above-described intestinal bacteria and clinical
tests and in order to further study the relationship between gut microbiota and lipid
metabolism, we quantified plasma metabolites using targeted metabolomics. By inte-
grating data on the host gut microbiome, and fasting serum metabolome, we were
able to demonstrate clear metabolome signatures of EC phenotypes distinguished
from those of the normal control. The EC-associated metabolome associates with func-
tional components of the EC-linked gut microbiome, notably the increase for fatty acid
biosynthesis. Numerous studies have since confirmed the importance of fatty acids for
cancer cell growth and survival (33). Several blood-based EC diagnostic metabolomic
biomarkers have been reported in the literature, mostly byproducts of lipids and amino
acids. They include acylcholines, monoglycerols, acylcarnitines, phenylalanine, phospho-
choline, modified phosphatidylcholine derivatives, lactic acid, progesterone, indole acetic
acid, homocysteine, stearic acid, valine, tetradecadienoylcarnitine, 3-hydroxybutyric acid,
proline/tyrosine, and lyso-platelet-activating factor-16, among others (34). Eicosanoids
(C20) comprise a diverse group of bioactive lipids which orchestrate inflammation, immu-
nity, and tissue homeostasis and whose dysregulation has been implicated in carcinogene-
sis. Eicosanoid metabolism through the COX-2/PGE2 axis is associated with malignant
transformation. The eicosanoid metabolic enzyme gene HPGD combined with ALOX5
expression has been associated with the worst overall and progression-free survival in type
II EC (35). Research has found that high saturated fatty acid intake could increase cancer
risk, especially breast cancer (36). Experimental studies addressing the effects of olive oil on
cancer progression seem to show protective effects (37). However, inconsistent data show-
ing a tumor-enhancing role of oleic acid (C18:1) in many cancer types have also been
reported (38, 39). Studies have shown that dietary palmitic acid (C16:0) promotes metasta-
sis in oral carcinomas and melanomas in mice (40). Tumors from mice that were fed a
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short-term palm oil-rich diet, or tumor cells that were briefly exposed to palmitic acid in
vitro, remained highly metastatic even after being serially transplanted. Thus, fatty acid
intake and metabolic alterations are important features of cancer development (41). In the
nonalcoholic fatty liver disease-associated hepatocellular carcinoma model, increased pal-
mitic acid enhanced the protein expression of endoplasmic reticulum-activating oncogenic
JNK/c-jun/AP-1 and NF-kB cascades (42). In addition, palmitic acid or high-fat diet specifi-
cally enhances the metastatic potential of CD361 metastasis, initiating cells in a CD36-de-
pendent manner (43). Enhanced palmitic acid intake could increase the abundance of in-
testinal Ruminococcus sp. (32), and the isolated Ruminococcus sp. from human feces
contains a high proportion of C16:1 and C18:1 (19). In our study, we found that C16:1,
C18:1, C20:1, C20:2, C22:6, C24, and C24:1 in plasma were enriched in EC subjects and
related to Ruminococcus sp, N15.MGS.57. Metabolic reprogramming has been recognized
as a new hallmark of tumorigenesis. Spatial visualization of fatty acids showed that C16:1
and C18:1 accumulate obviously in tumor tissue and that C16:1 may promote EC cell inva-
sion and metastasis through mTOR signaling. Nutrient sensing plays a major role in the
activation of mTOR1, and mTOR drives cancer metabolic reprogramming. More mecha-
nisms to explore this mutual determinism can be better used in cancer treatment.
Although we found the correlation between gut microbiota and fatty acids in EC patients,
the sample size was small. A large-scale screening should be the subject of future studies.
The gut microbiota has changed significantly, but further mechanism research is still
needed. For instance, experiments are needed to validate screening for unique microbes
that can serve as markers in vitro and in vivo. We remain interested in the relationship
between the microbiota of the gastrointestinal and female reproductive tracts in EC.
Metagenome analysis with more sophisticated analytical capabilities will provide more
detailed information to closely explore intestinal microbiota disorders.

Conclusion. For the first time, the differential profiles of gut microbiota between
EC patients and normal participants, as well as the association between gut microbiota
and EC, have been identified. EC patients showed clear dysbiosis in comparison to nor-
mal individuals. The trend of intestinal microbiota from normal individuals to pre-
cancer to EC can potentially reveal the process of cancer. Gut microbiota dysbiosis may
contribute to metabolomic dysbiosis and fatty acid elevation, leading to endometrial
cancer. Thus, fatty acid-associated endometrium tumorigenesis is correlated with gut
microbiota. Our study found that Ruminococcus sp. N15.MGS.57 and C16:1 showed
prominent positive significance in the results of each experiment. The aberrant fecal
microbiome, more specifically, Ruminococcus sp. N15.MGS.57 and spatially distributed
C16:1 in EC tissues, can be used as a biomarker of clinical features and outcomes and
provide a new therapeutic target for clinical treatment. This study shows that changes
in fecal microbiota and blood biochemical indexes may be used to predict and charac-
terize the development of metabolic abnormalities in endometrial cancer.

MATERIALS ANDMETHODS
Participant information. All participants were recruited from the Cancer Hospital of China Medical

University, Liaoning Cancer Hospital & Institute, from September 2019 to December 2020. The study and ex-
perimental procedures were approved by the Ethics Committee of Liaoning Cancer Hospital & Institute (no.
20180903). All participants signed a written informed consent upon enrollment. Patients were eligible if they
had an initial diagnosis of EC or benign disease and had undergone curettage or hysterectomy. Exclusion cri-
teria included previous pelvic radiotherapy, hormonal therapy, or chemotherapy, patients with previous or
combined other malignant tumors, and incomplete clinical data and follow-up. Information about height,
body weight, menstruation, histological type, health status, and laboratory results was recorded. Body mass
index was derived as the weight (in kilograms) divided by the square of the height (meters).

Sample collection. Blood samples were collected after fasting in the morning using a K2EDTA anticoa-
gulant tube (BD Vacutainer). The samples were centrifuged at 3,000 rpm for 15 min at 4°C. After centrifuga-
tion, the samples were immediately frozen to 280°C until the time of analysis. Fecal samples were collected
by each participant with fecal collection containers and then frozen at 220°C. The samples were transferred
to the laboratory and stored at 280°C until DNA extraction. Tissue samples of EC and normal endometrium
were collected from patients with EC and patients with benign gynecological diseases who had undergone
surgical resection.

Clinical index measurements. Inpatient laboratory results data of enrolled individuals were collected.
Triglyceride (TG), serum glucose (Glu), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine
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(Cre), urea, cholesterol, retinol-binding protein (RBP), prealbumin (PAB), cholinesterase (ChE), albumin (ALB), cysta-
tin c (Cys c), cholylglycine (CG), and high-density lipoprotein (HDL) were detected by using an autoanalyzer.

DNA extraction and 16S rRNA sequencing. The total genome DNA of stool samples (100 mg per sam-
ple) was extracted using the hexadecyltrimethylammonium bromide (CTAB) method. DNA purity was moni-
tored on 1% agarose gels. In addition, the concentration of DNA was detected using a Qubit 2.0 fluorometer
(Thermo Scientific, USA). DNA was diluted to l mg/mL using sterile water. The V4 hypervariable regions of the
bacterial 16S rRNA gene were amplified using specific primers, 515F (GTGCCAGCMGCCGCGGTAA) and 806R
(GGACTACHVGGGTWTCTAAT). All PCRs were carried out with 15 mL of Phusion high-fidelity PCR master mix
(New England Biolabs), 0.2 mM concentrations of forward and reverse primers, and about 10 ng template
DNA. Thermal cycling consisted of initial denaturation at 98°C for 1 min, followed by 30 cycles of denatura-
tion at 98°C for 10 s, annealing at 50°C for 30 s, and elongation at 72°C for 30 s. A final step of 72°C for 5 min
followed. PCR products were purified with a Qiagen gel extraction kit (Qiagen, Germany). Sequencing libra-
ries were generated using a TruSeq DNA PCR-free sample preparation kit (Illumina, USA) in accordance with
the manufacturer's recommendations, and index codes were added. The library was sequenced on an
Illumina HiSeq platform (Novogene, China), and 250-bp paired-end reads were generated by using FLASH
(version 1.2.7).

Intestinal microbiota diversity analysis. Paired-end reads were assigned to each sample according
to the unique barcodes and were truncated by cutting off the barcode and primer sequence. After being
filtered by QIIME quality filters, sequences with $97% similarity were clustered into the same opera-
tional taxonomic units (OTUs) by Uparse software (version 7.1). A representative sequence for each OTU
was annotated with taxonomic information by the Ribosomal Database Project (RDP) classifier algorithm
according to the Silva database. QIIME (version 1.9.0) was used to analyze alpha (within-sample)- and
beta (among-sample)-diversity.

Analysis of flora structure and predictive function. Principal-component analysis (PCA) was used
to reveal the differences in intestinal microbiome profiles, which was performed by using the R package
factoextra. Analysis of similarities (PERMANOVA) among groups was analyzed by using the R package
vegan. The Kruskal-Wallis test was used for the two principal components obtained from PCA. In addi-
tion, a representative sequence of OTUs in individuals was used to predict the function of the intestinal
microbiome by PICRUST2 and visualized by the R package ggplot2. Finally, we used the R package
cyclize to reveal the identifiable distribution of the microbiome in individuals, which was shown in a
circle plot.

Targeted metabolomics quantification of plasma metabolites. Plasma concentrations of 20
amino acid species and 18 fatty acids of subjects were quantified using previously described methods
(44). Briefly, amino acids and fatty acids were quantified by high-performance liquid chromatography
(HPLC) coupled to tandem mass spectrometry (MS/MS) based on deuterated purified standards. Plasma
amino acid and fatty acid concentrations were expressed in micromoles per liter and nanomoles per li-
ter, respectively.

Visualization of fatty acid distribution by iMScope. Fatty acid distribution in EC tissue was quanti-
fied and visualized by using an iMScope. The method was developed based on our previously described
method (45). In brief, the frozen EC tissues were cut at 10 mm, and specimens were mounted on electri-
cally conductive glass slides. Subsequently, a “two-step matrix application,” which combined sublima-
tion and airbrushing, was used to coat the a-cyano-4-hydroxycinnamic acid (CHCA, no. C2020) matrix for
tissue sections. The parameters of iMScope were set as follows: frequency, 1,000 Hz; laser intensity, 55.0;
laser diameter, 3 mm; ion polarity, positive; mass range, 200 to 400; sample voltage, 3.5 kV; and detector
voltage,1.85 kV. The Imaging Mass Solution version 1.30 software (Shimadzu, Tokyo, Japan) was used to
control the instrument, and data acquisition, visualization, and quantification were also performed by
the same software. The m/z values were externally calibrated using a 2, 5-dihydroxybenzoic acid (DHB,
no. 149357) matrix. Three serial sections (each measuring 10 mm) of sampled tumor tissues were used to
evaluate the reproducibility of the iMScope technique.

Cooccurrence network analysis. The species cooccurrence network was constructed by using R
package Hmisc, and correlation was visualized by using Cytoscape 3.8.2. In addition, the unique and
shared edges were counted by the R package Vennerable. Meanwhile, Spearman’s correlations among
the gut microbiota, clinical indexes, gut microbiota, and KEGG pathways were determined using the R
package psych.

Identification of biomarker species for different healthy statuses. Partial least-squares discrimi-
nant analysis (PLS-DA) was used to reveal the taxonomic changes in groups by using R package ropls
and the significant microbiome with a VIP score of $1, and the corresponding phylum was visualized by
using R package ggplot2.

Marker panel for EC. Random forest analysis was used to quantify the diagnostic performance of
this microbial marker panel with the AUC in the validation set. Based on the three types of marker pan-
els, logistic regression models were built to identify the EC samples with the AUC in both the discovery
and validation sets as previously described.

Cell culture and treatment. EC cell lines Ishikawa and HEC-1A were obtained from the Cancer
Hospital of China Medical University. Ishikawa cells were cultured in Dulbecco modified Eagle medium
(DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. HEC-1A cells were cul-
tured in McCoy’s 5A medium containing 10% FBS and 1% penicillin-streptomycin. Both cultures were
maintained in a humidified 5% CO2 atmosphere at 37°C. For cell treatment, Ishikawa and HEC-1A cells
were incubated in the presence of fatty acids. The same volume of dimethyl sulfoxide was used as the
vehicle control.
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Cell proliferation assay. Ishikawa and HEC-1A cells were seeded in 96-well plates at a density of
5,000 cells/well and incubated in normal growth medium. After 1 day, the cells were subjected to C16:1,
C18:1, and C20:2 loading (from 0 to 5 mM) for 24 h. All experiments were carried out in serum-free me-
dium. The optical density (OD) values were measured at 450 nm after incubation with CCK-8 reagent for
1 h at 37°C.

Immunoblotting. Ishikawa and HEC-1A cells were lysed in radioimmunoprecipitation (RIPA) buffer
containing complete protease inhibitor cocktail. The lysates were incubated for 20 min on ice and centri-
fuged at 12,000 � g for 15 min at 4°C. Protein concentration was measured using the bicinchoninic acid
(BCA) protein assay. The lysates were boiled in sodium dodecyl sulfate (SDS) Laemmli sample buffer for
10 min, resolved using SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore), and probed with primary antibodies against PCNA, E-cadherin, p-4EBP1,
p-p70S6K, p70S6K, and b-actin (Cell Signaling Technology) secondary antibodies for 1 h. Bands were
detected by using an enhanced chemiluminescence kit (Advansta) and visualized by detection using the
Tanon-5200 multiautomatic chemiluminescence fluorescence image analysis system.

EdU labeling assay. EdU labeling assays were performed using BeyoClick EdU-488 assay kits (Beyotime).
Cells were seeded in 24-well plates at 2 � 104 cells per well. After 24 h of the indicated treatment, each well
was incubated with EdU medium for 2 h. The cells were fixed in phosphate-buffered saline (PBS) containing
4% paraformaldehyde for 15 min and then washed with PBS containing 0.3% Triton X-100 for 10 min. After
washing again with PBS, 1� Hoechst 33342 was added, and the mixture was incubated for 10 min at room
temperature. After washing with PBS, the cells were observed by fluorescence microscopy.

Statistical analysis. A two-tailed Wilcoxon test was performed to analyze differences between the two
groups. For statistics in multiple groups, we utilized the Kruskal-Wallis analysis of variance (ANOVA) test to
evaluate the differences among groups. P values of ,0.05 were considered statistically significant. Error bars
indicate mean 6 standard deviation (SD). The region of interest (ROI) analysis was performed using Imaging
Mass Solution software (version 1.30). The P value of comparisons for ROI analyses was assessed via the aver-
age peak intensities or signals acquired from MS spectra of areas indicated by ROI. Low P values (,0.05)
denote significant differences between average peak intensities or signals of targets within the stipulated
ROIs.

Data availability. The data that support the findings of this study are available from the correspond-
ing author, H.-X.L., upon reasonable request. The 16s rRNA raw data have been submitted to the SRA
database under BioProject accession number PRJNA833670.
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