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ABSTRACT The occurrence and development of colorectal cancer (CRC) and advanced
adenoma (AA) are closely related to the gut microbiome, and AA has a high cancerization
progression rate to CRC. Current studies have revealed that bacteriological analysis cannot
identify CRC from AA. The objective was to explore microbial targets that could identify
CRC and AA from a microecological perspective and to figure out the best way to iden-
tify CRC based on fecal microbes. The metagenomic sequencing data were used to
describe the gut microbiome profile and analyze the differences between microbial abun-
dance and microbial single nucleotide polymorphism (SNP) characteristics in AA and CRC
patients. It was found that there were no significant differences in the diversity between
the two groups. The abundance of bacteria (e.g., Firmicutes, Clostridia, and Blautia), fungi
(Hypocreales), archaea (Methanosarcina, Methanoculleus, and Methanolacinia), and viruses
(Alphacoronavirus, Sinsheimervirus, and Gammaretrovirus) differed between AA and CRC
patients. Multiple machine-learning algorithms were used to establish prediction models,
aiming to identify CRC and AA. The accuracy of the random forest (RF) model based on
the gut microbiome was 86.54%. Nevertheless, the accuracy of SNP was 92.31% in identi-
fying CRC from AA. In conclusion, using microbial SNP was the best method to identify
CRC, it was superior to using the gut microbiome, and it could provide new targets for
CRC screening.

IMPORTANCE There are differences in characteristic microorganisms between AA and
CRC. However, current studies have indicated that bacteriological analysis cannot identify
CC from AA, and thus, we wondered if there were some other targets that could be
used to identify CRC from AA in the gut microbiome. The differences of SNPs in the gut
microbiota of intraindividuals were significantly smaller than those of interindividuals. In
addition, compared with intestinal microbes, SNP was less affected by time with certain
stability. It was discovered that microbial SNP was better than the gut microbiome for
identifying CRC from AA. Therefore, screening characteristic microbial SNP could provide
a new research direction for identifying CRC from AA.

KEYWORDS colorectal cancer, metagenomic sequencing, gut microbiome, artificial
intelligence, SNP

In 2020, the incidence of colorectal cancer (CRC), one of the most common malignant
tumors, in the world was 10.6% in males and 9.4% in females, and its mortality was

9.3% in males and 9.5% in females (1). Although many studies have shown that CRC
appears to be related to changes in the gut microbiome, the pathogenesis of CRC is
still unclear (2–5). As the impacts of the gut microbiome on metabolism and disease
have been uncovered, the relationship between diet, the gut microbiome, and CRC
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has emerged (5). Advanced adenoma (AA) is one kind of adenoma (villous or mixed),
with a diameter over 1 cm, and it is commonly accompanied with one of the three
adenomas with moderate to severe dysplasia. As AA is a precancerous lesion of CRC,
early detection and treatment of AA can reduce the morbidity and mortality of CRC
(6, 7). In this present study, stool samples were collected, and the gut microbes of AA
patients and CRC patients were analyzed to look for different microbial markers.

As a fecal storage organ, the gut is home to the largest microbial community of human
body. The total number of bacteria in gut reached 1014, accounting for 98.8% of the total
microbes of the human body (8). The gut microbiome, composed of gut bacteria, fungi,
archaea, and viruses, is an independent and complex microecosystem, in which competi-
tion, predation, symbiosis, cooperation, and other interactions could be detected (9, 10).
Under normal circumstances, the interaction of gut microorganisms is in equilibrium. Once
an imbalance of gut microorganisms occurs, gut microecological balance would be broken,
and gut microorganisms can induce CRC. Meanwhile, gut microorganisms can induce the
occurrence of gut cancer through immune regulation, gene integration, inflammation, and
other ways (11).

Previous research reported that AA includes some characteristic microorganisms such
as Fusobacterium and Bacillus fragilis, while CRC includes some characteristic microorgan-
isms such as Parvimonas, Gemella, and Leptotrichia. There are differences in characteristic
microorganisms between AA and CRC (12). However, Xiao et al. (13) analyzed bacterial
DNA in peripheral blood, which was different from that of previous studies, and no signifi-
cant differences between AA patients and CRC patients were found. Therefore, we won-
dered if there were some other targets that can be used to identify AA and CRC in the gut
microbiome.

Currently, the characteristic viruses associated with CRC, including coxsackievirus,
adenovirus, human cytomegalovirus, human papillomavirus, African lymphocytomavi-
rus, poliovirus, and hepatitis B virus, have been screened (14). Bacteriophages, as the
most common and widely distributed group of viruses, can not only cure bacterial
infections effectively but also activate immune responses and transform the tumor
microenvironment into an environment that is conducive to anticancer treatment (4,
15–17). Considered together, this information suggests that bacteriophage may be a
potential target to identify AA and CRC.

Single nucleotide polymorphism (SNP) is a genetic variation in DNA sequences
caused by variations in a single nucleotide, and it is the most common form of human
heritable variation, accounting for more than 90% of all known polymorphisms (18,
19). Since the differences in gene sequences or even differences in single bases lead to
changes in gene function, metagenomics is not limited to the analysis of species and
gene abundance but associated with changes in genes, such as single base mutations,
insertions, deletions, and structural changes. A SNP associated with the gut micro-
biome may lead to intestinal diseases. For example, Zou et al. (20) found that the SNP
of a bacterial immune suppression gene, blc, disrupts gut lysophospholipid homeosta-
sis and induces inflammation through disrupting the epithelial barrier. In addition,
Chen et al. (21) compared the SNP in gut microbes of the same individual and different
individuals 4 years ago and now and found that the differences of SNPs in the gut
microbes of the same individuals were significantly smaller than those between differ-
ent individuals. Moreover, individual differences in gut microbiota structure could still
be detected after a 4-year interval, which proved that SNP has certain stability.
Therefore, screening characteristic microbial SNPs can provide a new research direction
for screening CRC from AA.

A variety of CRC screening kits such as the LifeKit Prevent of Prescient Metabiomics
based on intestinal fecal microbiome tests have been developed. These bowel cancer
early-screening products were used to differentiate the bowel disease group and the
normal group, while their accuracy in differentiating benign and malignant tumors,
such as AA and CRC, is still unclear. Stool, a sample for colon cancer screening, is non-
invasive and easy to obtain. Currently, various kits for CRC screening are used to detect
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microorganisms and genes. However, there is a lack of theoretical support for selecting
the best indicators for CRC screening. Microbiome data in feces and microbial-related
SNP data were compared to find the best method and optimal target for stool samples
for CRC screening, aiming to provide data support for stool samples.

Although metagenomic studies of SNPs have been reported, there were relatively
few studies on SNPs in gut microbes. This study compared the genes in stool samples
of AA patients and CRC patients through metagenomic sequencing and analyzed dif-
ferential genes of the gut microbiome between the two types of patients. The abun-
dance and diversity of gut microbes in patients with colorectal polyps and patients
with CRC were described and compared. Furthermore, SNPs in this genome in each
fecal microbiome were identified by mapping the metagenomic sequences to a unified
human gastrointestinal genome (UHGG) collection. Moreover, the best prediction
model was constructed to distinguish AA from CRC based on SNPs.

The study aimed to elucidate the differences in the gut microbiome between AA
and CRC patients, including the differences in composition, the correlation between
different viruses and different bacteria, and the differences in SNPs, and to screen the
best way to identify CRC, thus providing an alternative certification scheme for AA and
CRC.

RESULTS
Basic gut microbiome characteristics of AA and CRC patients. First, metagenom-

ics sequencing was utilized to test the composition of the gut microbiome of 26 AA
patients and 26 CRC patients. As is evident in the taxonomic assignment of metagenomic
sequencing, the results illustrated that the composition of the gut bacteria in the two
groups of patients was different. For example, at the genus level of archaea, Methano-
brevibacter and Methanosarcina were the two major archaea in both groups. However, the
abundance of Methanobrevibacter was decreased and Methanosarcina was increased in
CRC patients compared with those in AA patients (Fig. 1A). Furthermore, regarding bacte-
ria, there were many types of bacteria in patients with the two diseases, and more than 50
types of bacteria were detected in AA and CRC patients, among which the top 5 were
Shigella, Escherichia, Bacteroides, Klebsiella, and Achromobacter (Fig. 1D). As shown in
Fig. 1D, the abundance of Shigella in the CRC group was higher than that in the AA group.

Although less bacteria could be found, there were many kinds of fungi, of which up to
30 types were detected, among which the top 5 were Saccharomyces, Aspergillus, Candida,
Alternaria, and Trichosporon; and at the genus level of fungi, the abundance of Aspergillus
in CRC patients was greatly increased (Fig. 1G). There were approximately 30 species of vi-
rus in both patients, among which the top 5 were Podoviridae, Siphoviridae, Myoviridae,
Peduovirus, and Punavirus. At the genus level of the virus, compared with gut polyp
patients, Siphoviridae appeared more abundant in CRC patients (Fig. 1J).

The nonmetric multidimensional scaling (NMDS) analysis for archaea and bacteria
indicated some level of variation between AA and CRC patients, especially the archaeal
level (Fig. 1B, C) and bacterial level (Fig. 1E and F). However, NMDS showed no strong
clustering between AA and CRC patients at the fungal level (Fig. 1H and I) and viral
level (Fig. 1K and L), but some degrees of differentiation were observed between the
two groups.

Differential microorganisms between CRC and AA patients. To further detect
the differences in gut microbiomes between CRC and AA patients, linear discriminant
analysis effect size (LEfSe) was used to discover high-dimensional biomarkers, aiming
to reveal genomic characteristics. LEfSe used linear discriminant analysis (LDA) to esti-
mate the impacts of the abundance of each component (species) on different effects.
Afterward, according to the taxonomic composition, LDA analysis was performed on
the samples on the basis of different grouping conditions to determine the commun-
ities or species that had significant differences in the division of the samples.

Interestingly, no biomarker of fungi in CRC patients was detect, but Hypocreales in Sordario-
mycetes was increased in AA patients (Fig. 2A and B). Regarding viruses, Alphacoronavirus and
Sinsheimervirus were upregulated in CRC patients, and Gammaretrovirus in Artverviricota was
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increased in AA patients (Fig. 2C and D). Additionally, 16 archaea showed significant differences
in the gut microbes between AA and CRC patients, among which Methanomicrobia and
Halobacteria were increased in CRC patients, including Methanosarcina, Methanoculleus, and
Methanolacinia at the genus level of Methanomicrobia and Halolamina of Halobacteria (Fig. 2E
and F).

FIG 1 Relative abundance of gut microbiome between AA and CRC patients. The taxonomic assignment of metagenomic sequencing (A) and NMDA
analysis (B, C) at the genus level of archaea; the taxonomic assignment of metagenomic sequencing (D) and NMDA analysis (E, F) at the genus level of
bacteria; the taxonomic assignment of metagenomic sequencing (G) and NMDA analysis (H, I) at the genus level of fungi; and the taxonomic assignment of
metagenomic sequencing (J) and NMDA analysis (K, L) at the genus level of virus.
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Finally, it was found that 54 bacteria showed significant differences in the gut micro-
biome between AA patients and CRC patients, which was the most abundant group in the
four microbial populations. In the study, the AA group was associated with the increased
relative abundances of Firmicutes at the phylum level and Clostridia, Blautia, Clostridium,
and Ruminococcus at the genus level. In contrast, the increase in Acidihalobacter and
Kushneria at the genus level was associated with the CRC group (Fig. 2G and H).

Correlation analysis of microbiomes between CRC and AA patients. To further
explore which microorganisms are more associated with CRC or AA, the correlations
between microbiomes and the KEGG pathway of AA and CRC groups were analyzed as
previously described and shown in Fig. 3A. Then, at the phylum level, the interactions of
the microbiome in the AA and CRC groups with various pathways at the phylum level
were analyzed, and it was found that the function of Pisuviricota in the CRC group was
correlated mainly with the sensory system that may correlate with pain during cancer.
Proteobacteria in both groups were negatively connected with the immune system, which
indicated the inhibition of immunity and was also positively associated with numerous
pathways, such as the mitogen-activated protein kinase (MAPK) signaling pathway, lon-
gevity regulating pathway, and steroid hormone biosynthesis signaling pathway (Fig. 3A).

Afterward, the interaction between bacteria at the genus level and the interaction
with pathways were analyzed. The results confirmed that Christensenella, Angelakisella,
Pseudobutyrivibrio, Roseburia, and Lachnobacterium of bacteria were positively corre-
lated with the pathways of DNA replication, ribosome, glutathione metabolism, and
glycerophospholipid metabolism. However, Aureispira, Labrenzia, Cogntishimia, and
Methanoculleus were negatively connected with Vibrio cholerae infection (Fig. 3B).

Correlation analysis between microbes and virus. Because of the specialty of
phages in regulating the gut microbes, we wondered about the role of phages in

FIG 2 LEfSe analysis filtered out the biomarkers of the microbial community between AA and CRC patients. Cladogram plot of LEfSe analysis (A) and
histogram of LDA analysis (B) of fungi; cladogram plot of LEfSe analysis (C) and histogram of LDA analysis (D) of virus; cladogram plot of LEfSe analysis (E)
and histogram of LDA analysis (F) of archaea; and cladogram plot of LEfSe analysis (G) and histogram of LDA analysis (H) of bacteria.
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FIG 3 Correlation analysis of the microorganisms and KEGG pathways between the AA and CRC groups. At the phylum level (A), square nodes
represent KEGG L2 functions, triangle nodes represent phylum-level species, node size represents abundance, and different colors represent

(Continued on next page)
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regulating AA and CRC. Therefore, the differential viruses in the two groups were ana-
lyzed. The results revealed that CRESS virus sp., Circoviridae sp., and Lake
Sarah2associated circular molecule 12 were more correlated with AA patients and
Cellulophaga phage phi47:1 and Avian coronavirus were correlated mainly with the CRC
group (Fig. 4A). Furthermore, both groups were associated with other types of microor-
ganisms, which is consistent with previous results.

To further identify the biomarkers associated with the gut microbiome in CRC patients
and AA patients, we wondered whether the diversity of viruses or bacteria influenced the
progression of CRC, so we tested whether there was a significant difference in virus and
bacterial diversity between groups. However, there were no significant differences in the
diversity of viruses and bacteria. (Fig. 4B and C). The results suggested that it was not the
differences in the diversity of viruses and bacteria that affected the progress of the two dis-
eases (Fig. 4D).

The network of the interaction between bacteria and viruses also confirmed this conclu-
sion (Fig. 4E). Additionally, the top 30 bacteria in terms of the abundance of different
viruses were calculated to confirm the biomarkers between the CRC group and AA group
(Fig. 4F). The data demonstrated that Burkholderia virus BcepC6B, Mus musculus mobilized
endogenous polytropic provirus, Staphylococcus phage SPbeta-like, Staphylococcus phage
YMC-2011, and Staphylococcus virus Sfj19 were positively correlated with differential bacte-
ria. In contrast, the increase in other differential viruses may be related to the increase in
differential bacteria in the CRC group.

Prediction model of occurrence and development risk associated with CRC
patients, and difference-based phage construction model to distinguish CRC and
AA. After we identified biomarkers for both groups of diseases, six prediction models
of the composition of the bacteriophages and the occurrence risk of CRC were con-
structed. Among these six prediction models, an RF model based on 15 key viruses
showed the optimal classification performance for identifying CRC and AA (Fig. 5A). In
the prediction model, the top 15 viruses in terms of importance are displayed in
Fig. 5B. The receiver operating characteristic (ROC) curve also evaluated the effects of
the key marker virus on the diagnosis of CRC, with an area under the concentration-
time curve (AUC) of 0.817, which indicated that these biomarkers may accurately pre-
dict the diagnosis of CRC (Fig. 5C). Figure 5D showed the importance of the 20 key
viruses to sample differentiation and their changing abundances in different samples,
including Mus musculus MEPP, Abelson murine leukemia virus, and Streptococcus phage
TP2J34. The accuracy of the results of this set of data was 86.54% in the classification
of samples (Fig. 5E). Additionally, the sensitivity and specificity were 82.76% and
91.30%, respectively.

Furthermore, prediction models of the occurrence risk of CRC based on differential
archaea and differential bacteria were constructed, respectively. The results proved
that the AUC of the model based on archaea was 0.726; the specificity and sensitivity
were 0.615 and 0.885, respectively; and the accuracy was 75% (see Fig. S1A to C in the
supplemental material). The AUC of the model based on bacteria was 0.646; the speci-
ficity and sensitivity were 0.462 and 0.885, respectively; and the accuracy was 78.85%
(Fig. S1D to F). The top 19 archaea and the top 20 bacteria of importance in the predic-
tion model are shown in Fig. S1C and Fig. S1F, respectively. Compared with the models
based on bacteriophages, the accuracy of the models based on differential archaea
and bacteria was lower.

SNP analysis between AA and CRC groups. The number of genes associated with
SNP was calculated at the genus and species levels to identify the main gut microbe spe-
cies with SNPs, and the top 30 gut bacterial genera or species with the highest number of
SNPs were selected, as shown in Fig. 6A. The higher the bar chart is, the more nonsynony-

FIG 3 Legend (Continued)
functions and species. The green line indicates a positive correlation, and the red line indicates a negative correlation. The thicker the line is, the
higher the correlation is. In addition, at the genus level (B), square nodes represent KEGG L3 functions, triangle nodes represent genus level
species, and different colors represent functions and species. The green line shows a positive correlation, and the red line shows a negative
correlation. The thicker the line is, the higher the correlation is.
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mous SNP genes in the microbe. Then, the impact factor index of each identified nonsy-
nonymous SNP was calculated to show the possibility of a target for CRC prediction
(Fig. 6B). The abscissa of Fig. 6B represents the impact value of each species, and the ordi-
nate represents the significance corresponding to the impact value. The higher the y value
is, the greater the correlation is with the group. The closer the origin of the SNP is to the
upper-right corner of the image, the more likely it is to be used as a disease prediction tar-
get. Additionally, by recognizing key SNP sites, the importance of each SNP site was
obtained through the RF model, and the accuracy in the classification of samples was
92.31% (Fig. 6C). Besides, the sensitivity and specificity were 86.67% and 100%, respec-
tively, which indicated that these selected biomarkers may accurately predict the diagnosis
of CRC. The key SNP site is displayed in Fig. 6D as a candidate disease prediction target.

DISCUSSION

Most CRC is caused by AA, so analyzing the differences in gut microbes between AA
and CRC patients under pathological conditions may provide more useful key biomarkers

FIG 4 Differential virus analysis between CRC and AA patients. Significant difference analysis in virus diversity (A) and bacterial community richness (B)
between CRC and AA patients. The corresponding relationship between CRC and AA groups and species at the virus species level and the proportion of
different species in each group and the proportion of each group in different species (C). In the correlation heatmap between differential viruses and
differential bacteria (D), x and y axes are the 11 PathSeq differential viruses and the top 30 differential bacteria in abundance, respectively. The values are
shown in different colors, and the legend on the right is the color range of different R values. In the correlation network between differential viruses and
differential bacteria (E), circular nodes represent differential bacteria, rhombus nodes represent differential viruses, different colors are used to distinguish
between differential viruses and differential bacteria, and the size of nodes represents the abundance. The green line indicates a positive correlation, and
the red line indicates a negative correlation. The thicker the line is, the higher the correlation is.
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for the prediction of disease. However, there is still no acknowledged biomarkers to distin-
guish AA and CRC. To find an effective microbial target from bacteriophages and microbial
SNPs, the gut microbiome of the profiles of AA patients and patients with CRC was com-
pared by metagenomic analysis. Although recent studies have investigated gut microbial
dysbiosis in CRC patients and reported diagnostic potential using metagenomic sequenc-
ing (22, 23), these promising results did not identify which gut microbiome or their charac-
teristics changed during the progression from AA to CRC.

In the study, the structure and diversity of gut microbiota between CRC and AA were
analyzed, and it was found that the abundance of Shigella in the CRC group was higher,
which was the same as the results reported by Wang Tingting et al (24). They analyzed
fecal bacterial diversity in CRC patients (n = 46) and healthy volunteers (n = 56) by 454
pyrosequencing of the V3 region of the 16S rRNA gene. The results showed that the
abundances of 11 intestinal flora, including Enterococcus, Escherichia/Shigella, and
Enterococcus, were significantly enriched in CRC patients. Shigella is a group of short
Gram-negative bacilli. After the invasion of intestinal mucosal epithelial cells and lamina
propria, it caused an inflammatory response and small vascular circulation disorders, thus
leading to intestinal mucosal inflammation, necrosis, and ulceration, which can cause diar-
rhea (25). The lesions involved mainly the rectum and sigmoid colon, and in severe cases,

FIG 5 RF model predicted for CRC occurrence. ROC curves of RF (A). Based on ranking, the top 15 viruses were selected for predictive model construction
(B). The ROC curve assesses the effectiveness of key marker viruses in disease diagnosis (C). RF identifies key viruses for disease differentiation (D).
Evaluation diagram of the RF model (E).
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the whole colon and terminal ileum could be involved. The recurrence of intestinal muco-
sal inflammation may be the cause of CRC. Shigella can participate in intestinal inflamma-
tion by producing toxins. For example, Shiga toxin (Stx) and Shiga-like toxin (SLT) are
related protein toxins produced by Shigella dysenteriae and certain strains of Escherichia
coli (26). Shiga toxin binds specifically to the receptor Gb3 on the host cell membrane
and is transported retrograde into the trans-Golgi network and endoplasmic reticulum
(ER). Shiga toxin subunit A targets the ribosome and inactivates protein synthesis through
its 28S RNA-specific N-glycosidase activity after entry from the ER into cytoplasm as part
of the ribosomal elongation complex (27). Due to the action of the toxin, the intestinal
mucosa appears to undergo epithelial cell death, submucosal inflammation, and capillary
thrombosis and even necrosis, exfoliation, the formation of ulcers, and eventually tumori-
genesis (28). Under normal circumstances, the intestinal flora is in a state of balance. Once
the intestinal flora is disordered, the intestinal microecological balance would be broken,
which induces CRC. Shigella may cause CRC by affecting other intestinal bacteria, such as
Escherichia coli, Bacteroides fragilis, and Enterococcus faecalis (29). Besides, the changes in
the number of other gut microbiota can also cause changes in Shigella, which may also
be the cause of CRC.

In this study, it was found that the abundance of Shigella was differentially expressed
between CRC and AA groups, but the regulatory mechanism behind this differential
expression is still unclear. Therefore, further studies should be carried out to explore the
underlying mechanisms.

In this study, a sample of people from the same region with the same diet and lifestyle
were included. The relative abundance of each type of gut microbiome in AA and CRC
patients was investigated first, and the biomarkers of the gut microbiome between AA and
CRC patients were filtered by LEfSe analysis. Then, the correlation between gut microbiome
and KEGG pathway in the AA group and CRC group was analyzed, and the microbiome
interactions of different pathways both groups were analyzed at the phylum and genus

FIG 6 Analysis of SNPs between AA and CRC patients. Bar chart of the number of species SNP genes (A). Scatter diagram of the impact factor index for
SNP site. The impact factor is used as the horizontal coordinate, and the P value of the SNPs is used as the vertical coordinate (B). Evaluation diagram of
the RF model (C). RF identifies key SNPs for disease differentiation (D).
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levels, which revealed the different effects and that different types of microbiomes may
play important roles in AA and CRC.

However, there is still an important problem to be solved; the composition of the gut
microbiome is too complex to analyze. It deserves to be mentioned that a machine-learn-
ing algorithm, the most advanced artificial intelligence solutions for predicting the occur-
rence of CRC, is a tool to make analysis possible. Before we constructed the disease predic-
tion model, the differences and correlations between bacteria and bacteriophages in the
CRC group and AA group were analyzed. According to the results, the diversity of different
bacteria and phages was consistent between the two groups, and there was a correlation
between different bacteria and different phages. Bacteriophages are a type of virus, and
bacteria are a type of prokaryote. To be biologically active, bacteriophages must parasitize
bacteria. Considering the large size of the bacterial community, it was not easy to analyze
and construct a model. Based on bacteriophage biological characteristics and the results of
the previous steps, bacteriophages were used to construct the prediction model, which
was significantly associated with bacteria.

Moreover, the progress of sequencing technology and the generation of big data also
provide the possibility for us to search for biomarkers and predict the occurrence of dis-
eases, and the mega data algorithm has a higher accuracy (23, 30). At present, algorithms
based on mega data have been used in the prevention and monitoring of hypertension,
diabetes, tumors, and other diseases. The progress of the algorithm could promote the ac-
curacy of tumor prevention, diagnosis, and prognosis monitoring. As shown in this study, a
large number of bacteria and viruses were involved, and the interaction between them is
extremely complicated, which is difficult to achieve in basic research (26, 31).

Within the context of microbial interactions, how gut bacterial species might interact
with bacteriophages was shown. Our analysis indicated that the bacteriophage community
may play a different regulatory role in the survival of microbiome Streptococcus species in
the diseased gut compared with the AA group. The study displayed that Burkholderia virus
BcepC6B, Mus musculus mobilized endogenous polytropic provirus, Staphylococcus phage
SPbeta-like, Staphylococcus phage YMC-2011, and Staphylococcus virus Sfj19 were positively
correlated with differential bacteria. Mus musculus mobilized endogenous polytropic provirus
is a virus of eukaryotic animal origin. Current studies confirmed that Mus musculus papillo-
mavirus 1 (MmuPV1) in such viruses was associated with the induction of immunosuppres-
sive skin cancer (32). A taxonomically correlated pair of bacterial and viral features may
signal events of genomic integration, while this observation could also be interpreted as a
form of microbiome interactions. Our analysis was focused on the members of the enteric
DNA virome to inspect how they interact with their bacterial counterparts; however, the
variations might not be explained by clinical factors alone but may also be associated with
many other lifestyle factors in clinical microbiome studies. Whether the change of enterovi-
rus abundance is the cause or result of AA progression to CRC is a direction worthy of fur-
ther study. These different bacteriophages may provide novel insights into how to prevent
benign AA from progressing into malignant CRC.

Chen et al. (33) demonstrated that the differences in SNPs in the gut microbes
within individuals were significantly smaller than those between individuals. By analyz-
ing the SNP in gut microbes of AA and CRC, we were surprised to find the significant
differences in SNPs between the two diseases at the base level. Although the results of
our study are different from those of Xiao et al. (21), it was confirmed that SNPs with
the ability to maintain stability have a huge advantage in distinguishing AA and CRC.
In the future, the SNP is expected to be a predictive target for distinguishing CRC from
AA, which provides an alternative for differentiating the two diseases. In this study, the
RF model based on 15 key viruses showed 86.54% of accuracy in the classification of
CRC and AA. Additionally, by recognizing key SNP sites, the importance of each SNP
site was obtained through the RF model, and the accuracy in the classification of sam-
ples was 92.31%. Microbial SNPs showed a higher performance in identifying CRC, and
it was little affected by environmental factors and had little change over the years (13),
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which may provide a new research direction for preventing the progression of AA and
CRC.

However, this study still has some limitations. First, only 26 CRC cases and 26 AA
controls were recruited. Due to the insufficiency of the sample size, there was a lack of
validation set data in the construction of the disease prediction model, which might
cause the problem of model overfitting. The accuracy of the model in this study needs
to be improved with the subsequent increase in the number of samples. Second, an
insufficient number of healthy individuals was the weakness of this study. A large num-
ber of studies have reported the differences of gut microbiota between healthy people
and CRC patients and between healthy people and AA patients. However, there are rel-
atively few studies on the screening of microbial targets for the identification of AA
and CRC. Therefore, healthy people were not included for metagenomic sequencing in
the design of this study. Undoubtedly, adding a healthy control group would make the
findings more convincing. Third, the lack of in-depth molecular mechanism research is
another important drawback of this study. However, metagenomic sequencing data
were used to analyze the differences in microbial abundance and SNP characteristics
between CRC and AA patients and to describe the microbial profiles of CRC and AA
patients. It can provide data support for the molecular mechanism study on the mech-
anism of AA conversion to CRC and the pathogenesis of CRC. In subsequent large-scale
multicenter clinical studies, the samples from healthy people can be recruited to fur-
ther validate the results of this study. Subsequently, continuous follow-up of AA
patients and regular confirmation of gut microbiota changes during the progression of
AA to CRC patients would be meaningful and worthy additions to a future study.

CRC is one of the most common malignant tumors with a high incidence, and AA
has a high cancerization progression rate to CRC. Researchers seeking biological tar-
gets that distinguish AA from CRC are expected to provide novel targets for the pre-
vention of CRC and new research directions for the study on the pathogenesis of CRC.
At present, we aimed to explore microbial targets that could identify AA and CRC from
a microecological perspective. Metagenomic sequencing data of stool samples from
AA and CRC patients were analyzed to map the microbial community composition of
these patients. Potential microbial targets, including bacteria, fungi, and bacterio-
phages that can be used to identify AA and CRC, were screened by differential analysis.
The interaction network between microorganisms and host was constructed. It was
also found that the accuracy of a prediction model based on microbial SNPs was higher
than that of the gut microbiome. Although further multicenter large-sample clinical
studies and molecular mechanism studies are needed to verify the results and the ac-
curacy of the model, this study could provide a new perspective and method for iden-
tifying AA and CRC from the microbial perspective.

MATERIALS ANDMETHODS
Subjects. Patients with CRC and AA at Huzhou Central Hospital from March 2020 to February 2021

were studied. On the other hand, CRC and AA were confirmed by pathological diagnosis, and the clinical
stages were determined according to the American Joint Committee on Cancer (AJCC) staging guide-
lines. The clinical protocols involving the patients and the informed consent form were approved by the
Ethics Committee of Huzhou Central Hospital (no. 20191101-02) and Chinese Clinical Trial Registry
(http://www.chictr.org.cn; ChiCTR2000034061).

A total of 26 patients with CRC had moderately differentiated adenocarcinomas. Moreover, these
CRC patients were all MicroSatellite stability (MSS) type, without RAS mutation, and had pathological
stage II or III. The adenomas of all AA patients were larger than 1 cm and belonged to tubular adenomas.
The inclusion criteria are as follows: CRC patients and progressive adenoma were diagnosed by patho-
logical examination and volunteered to participate in the study.

The exclusion criteria are as follows: (i) patients with other primary cancers; (ii) patients with other
gut diseases, such as ulcerative colitis and Crohn’s disease; (iii) patients with a medicine history of oral
microbial agents and lipid-regulatory agents within the last 2 months; and (iv) patients with known pri-
mary organ failure. All subjects signed informed consent under the guidelines approved by the Ethics
Committee of Huzhou Central Hospital.

Collection of clinical data and stool samples. Basic patient information, clinical indicators, and
pathological data were obtained from the medical record management system of Huzhou Central
Hospital with informed consent from patients. Stool samples were collected in the morning prior to
breakfast. Approximate 5- to 10-g stool samples were obtained after defecation without the use of a
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purgative or lubricant. Within half an hour, the stool samples were stored in an ultralow temperature
freezer. The sample preservation time was not beyond 1 month. Finally, 52 stool samples from AA
patients and CRC patients collected from March 2020 to February 2021 were analyzed after the patients
signed informed consent forms, and unqualified specimens were eliminated as well. The basic character-
istics of these patients are shown in Table 1. There were no differences in diet and lifestyle among all
samples.

Metagenomics sequencing. Fecal samples were resuspended in phosphate-buffered saline and sequen-
tially filtered using a 0.8-mm (polyethersulfone [PES]) filter (Sartorius). Any remaining DNA that was not encap-
sidated was degraded by treatment with a mixture of benzonase and micrococcal nuclease (New England
BioLabs), followed by EDTA inactivation of DNases. The remaining supernatant was subjected to lysis, and viral
DNA was extracted using the QIAamp viral RNA minikit without carrier RNA (Qiagen). Metagenomic shotgun
sequencing libraries were constructed and sequenced at Shanghai Biozeron Biological Technology Co. Ltd. In
brief, for each sample, a Nextera XT DNA library preparation kit from Illumina was used to construct sequenc-
ing libraries, and the concentration of all libraries was measured by a high-sensitivity double-stranded DNA kit
on a Qubit Fluorometer (Thermo Fisher Scientific). All samples were sequenced in an Illumina Novoseq instru-
ment with paired-end 150-bp (PE150) mode. The amount of data in each sample was close to 10 G. Raw
sequence reads underwent quality trimming using Trimmomatic (http://www.usadellab.org/cms/?page=
trimmomatic) to remove adaptor contaminants and low-quality reads (34). Reads run through quality control
were then mapped against a mouse genome (NCBI) by the BWA-MEM algorithm (parameters: -M -k 32 -t 16;
http://bio-bwa.sourceforge.net/bwa.shtml). After removal of host-genome contaminations and low-quality
data, reads were called as clean reads and used for further analysis.

The taxonomy of clean reads for each sample was determined by the PathSeq pipeline distributed in
GATK v4.1.3 (35) using the default database downloaded from Broad Institute (parameters: –min-score-
identity = 0.90 and –identity-margin = 0.02). By default, PathSeq will discard alignments if both read
pairs do not match the same organism. The taxonomy database included all bacterial, archaeal, fungus,
and virus genome sequences in the NCBI RefSeq database. All reads were classified to seven phyloge-
netic levels (domain, phylum, class, order, family, genus, and species) or were unclassified. The relative
abundance of a certain level is a total of abundance of species belonging to that level. According to the
annotations generated by PathSeq, the relationship between host genome and phage was constructed.

SNP analysis. The UHGG database was used as the reference genome, BWA (MEM-T 20-M) was used to
compare the sequenced fragments back to the reference genome, the Tassel GLM model was used for corre-
lation analysis with phenotype, and 4,644 metagenome-assembled genomes (MAGs) were used as reference
genomes for analysis in this study. The number of genes associated with a nonsynonymous single nucleotide
variant (SNV) was calculated at the genus and species levels to identify the main gut microbe species with
SNPs.

First, the impact factor index of each identified nonsynonymous SNP locus was calculated. The index was
calculated as the ratio of the number of bases of this gene locus to the number of predicted bases in the group
in all research samples, and it can reflect the consistency of a SNP in different individuals to a certain extent.
The stronger the consistency, the higher the probability of the site as a target site for disease prediction.

Multiple machine-learning models for evaluating the predictive ability of SNPs. The methods of
model construction were as described previously (36). First, before model construction, the recursive feature
elimination (RFE) algorithm based on the sklearn.feature_selection method was applied to feature selection.
Then, random forest (RF) and gradient boosting decision tree (GBDT) machine-learning models were based on
sklearn.ensemble. Additionally, a support vector machine (SVM) was based on sklearn.svm, and a neural net-
work (NN) was based on sklearn.neural_network. Besides, a CatBoost machine-learning model was constructed
using the Catboost package (version 0.16.5). Logistic regression (LR) used relevant functions in the R language
rminer package (version 1.4.5) for modeling analysis and importance calculation of variables by using multi-
nom from nnet package.

Statistical analysis. Taxonomies were sorted by the levels of phyla, and each phylum was clustered
separately by class. The inclusion criterion for plotting features had a minimum absolute magnitude of
interkingdom or intrakingdom correlation of 0.6 and a false discovery rate (FDR) of less than 0.05 in ei-
ther one or both of control and CRC groups. For visualization, the correlations with absolute coefficients

TABLE 1 Characteristics of study participants at admission

Characteristic

Valuea for patients with:

P valueColorectal cancer Advanced adenoma
Cases 26 26
Male 14 17 0.40
Age 65.586 8.39b 60.276 11.32b 0.06
Current smoker 6 8 0.53
Current drinking 8 5 0.26
Known diabetes 4 3 0.69
Known hypertension 3 2 0.64
Inflammatory bowel disease 0 1 0.31
Family history 1 0 0.31
aValues are n unless otherwise noted.
bValues are mean6 SD yrs.
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below 0.3 were masked to show all signals that were exclusively significant. P values less than 0.05 after
multiple comparison correction using the FDR method were considered significant. A two-tailed Mann-
Whitney U test was used to determine statistically significant differences between cases and controls.

Data availability. The data sets generated during the current study are publicly available and can
be obtained from the NCBI database (SRP339836).
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