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SUMMARY The microbiome of the female reproductive tract defies the conven-
tion that high biodiversity is a hallmark of an optimal ecosystem. Although not
universally true, a homogeneous vaginal microbiome composed of species of
Lactobacillus is generally associated with health, whereas vaginal microbiomes
consisting of other taxa are generally associated with dysbiosis and a higher risk
of disease. The past decade has seen a rapid advancement in our understanding
of these unique biosystems. Of particular interest, substantial effort has been
devoted to deciphering how members of the microbiome of the female repro-
ductive tract impact pregnancy, with a focus on adverse outcomes, including but
not limited to preterm birth. Herein, we review recent research efforts that are
revealing the mechanisms by which these microorganisms of the female
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reproductive tract influence gynecologic and reproductive health of the female
reproductive tract.

KEYWORDS vaginal microbiome, cervical microbiome, uterine microbiome, female
reproductive tract, upper genital tract, Lactobacillus, bacterial vaginosis, vaginitis,
pregnancy, preterm birth

INTRODUCTION

The female reproductive tract is composed of the vagina, the cervix, the uterus, the
fallopian tubes, and the ovaries, and the cervix connects the upper reproductive

tract to the vagina (Fig. 1) (1). The existence and invasion of microbes in the female
reproductive tract have long been known to impact genital and reproductive health.
Species of Lactobacillus, generally the most abundant taxa in the vaginal microbiome
(VMB), produce lactic acid (2) and probably bacteriocins (3) that inhibit dysbiosis-asso-
ciated microbes and work to maintain homeostasis and reduce risks of disease. A
Lactobacillus-dominated VMB has been the hallmark of female reproductive health.
The VMB is less complex than the microbiomes of other body sites, e.g., the oral cavity and
the gastrointestinal tract, and the compositions of the microbiomes of the posterior fornix
and introitus generally reflect that of the vaginal wall (4). Compared to that in early preg-
nancy, the VMB in late pregnancy trends toward an even more stable and Lactobacillus-
dominated state (5–8), possibly an evolutionarily selected mechanism to ensure a successful
pregnancy. VMBs dominated by other taxa, e.g., those associated with bacterial vaginosis
(BV), are generally considered suboptimal and have been associated with a higher risk of
adverse health (9, 10), including an increased risk of bacterial, viral, and parasitic sexually
transmitted infections (STIs) (11), and adverse pregnancy outcomes, including but not re-
stricted to preterm birth (PTB) (5, 12–15). Inflammation caused by microorganisms invading
the upper genital tract can lead to adverse pregnancy outcomes, but the source of such
microbes remains unclear, and the existence of a natural microbiome in the upper genital
tracts of healthy females remains controversial (16, 17).

Recent studies have provided a deeper understanding of the mechanisms by which
the microbiota of the female reproductive tract affects gynecologic and reproductive
health (5, 15, 18–23). Herein, we review the microbes in multiple niches of the female
reproductive tract and their apparent impacts on human health. Mechanisms by which
microbes contribute to maintain overall vaginal health or increase risk for adverse
reproductive health are discussed. A particularly impactful target of recent research
has been the contributions of microorganisms in the female reproductive tract to
adverse pregnancy outcomes. Our review invokes research from the past decade, dur-
ing which advanced multi-omics technologies, including high-throughput genomic
and transcriptomic analyses, have led to rapid advancement of the field. Strategies for
the prediction, prevention, and possible intervention to prevent adverse reproductive
health outcomes are discussed.

THE VAGINAL MICROBIOME
Composition of the Human Vaginal Microbiome

The initial objective of the National Institutes of Health Human Microbiome Project
(HMP; www.hmpdacc.org/hmp), launched in 2008, was to define the human micro-
biome in health. These early studies confirmed that, compared to the microbiomes of
other body habitats, such as the oral cavity and the gastrointestinal tract, the VMB of
asymptomatic white reproductive-age females exhibits the lowest community richness
and diversity, that it is usually dominated by members of the genus Lactobacillus (4,
24) (Fig. 1), and that the microbiotas of the vaginal introitus, midvaginal wall, and pos-
terior fornix show little distinction (4). Studies of more racioethnically diverse cohorts
showed that Lactobacillus spp., i.e., Lactobacillus crispatus, L. gasseri, L. jensenii, and L.
iners, and several other taxa, e.g., BV-associated bacterium 1 (BVAB1; “Candidatus
Lachnocurva vaginae”), Gardnerella vaginalis, Sneathia amnii, and others (Fig. 1), are
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the most abundant species in the VMB (5, 8, 25). A landmark study employing high-
throughput 16S rRNA taxonomic profiling classified VMBs of nonpregnant reproductive-age
women with diverse racioethnicity into four community state types (CSTs) dominated by
Lactobacillus spp., i.e., CST I (L. crispatus), CST II (L. gasseri), CST III (L. iners), and CST V (L. jense-
nii), and a fifth, CST IV, that is more complex and dominated by several anaerobic species
(25) (Fig. 1). A more recent study subdivided CST IV into 7 subtypes dominated by different
non-Lactobacillus species (26). An alternate but similar approach to classification of VMBs pla-
ces them into “vagitypes” based on the dominant taxon in the sample (5, 8, 27). Recently,
the VIRGO database, which permits classification of the vaginal bacteria at subspecies levels
using metagenomic and metatranscriptomic data, was established (28). These classification
approaches are based on bioinformatic analyses of taxonomic or gene profiles of the VMB as
revealed by high-throughput nucleic acid sequencing. In diagnostic settings, clinical and
semiquantitative microscopic observations are generally used to classify the vaginal micro-
biome (29, 30); i.e., Amsel’s criteria or the semiquantitative Nugent score is used to diagnose
BV, and Donder’s score is used for diagnosis of aerobic vaginitis (see below).

Host Factors Affecting the Composition of the Vaginal Microbiome

Estrogen is a key host factor in maintaining the vaginal microbiome. It promotes thicken-
ing of the vaginal epithelium and generation of intracellular glycogen (9). Host glycogen can
be hydrolyzed to glucose and maltose by host alpha amylase, and lactobacilli ferment glu-
cose and maltose into lactic acid, lowering the local pH (2) (Fig. 2). In addition, both in vitro
and in silico studies illustrate that multiple vaginal bacteria encode amylase-like enzymes
that can metabolize glycogen into glucose and maltose (31–33). Glycogen is probably
released from lysed epithelial cells that are induced by high concentrations of lactic acid and
cytolysins excreted by Lactobacillus species, and the release of glycogen could be associated
with hyaluronidase-1 and matrix metalloproteinase-8 (2). As estrogen levels increase at pu-
berty, the pH of the female genital tract becomes acidic, and meta-analyses on multiple

FIG 1 Microbiome of the female reproductive tract. In the pie chart showing the composition of the
VMB, the taxa are color coded and assigned to the species level. Species belonging to the genus
Lactobacillus are highlighted by the gray stripe at the periphery of the pie chart. Data in the pie chart
are from a previous study of 2,582 asymptomatic reproductive-age women, 27.2% of whom were
pregnant and who had a racial distribution of 52% Black, 20% white, and 28% non-Black Hispanic (8).
The VMB can be classified to five community state types (CSTs), and the predominant species in
these CSTs are listed. The composition of the cervical microbiome is similar to that of the VMB. The
existence of a microbiome in the upper female reproductive tract is still controversial.
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cohorts indicate that the VMB becomes more stable and more likely to be dominated by
acidophilic Lactobacillus spp. (6, 34, 35). Likewise, the stability of the VMB and the concentra-
tion of estrogen fluctuate during a menstrual cycle and pregnancy, but a positive correlation
between these two subjects is consistently observed; i.e., a higher level of estrogen is associ-
ated with an increased stability of the VMB, apparently promoting vaginal health (Fig. 3). The
opposite occurs after pregnancy and during menopause as estrogen levels decrease, and
estrogen therapy of postmenopausal women maintains a more Lactobacillus-dominated
state (36, 37). Not surprisingly, use of estrogen-containing contraceptives tends to increase
Lactobacillus prevalence (38) while reducing the incidence of BV (39) in reproductive-age
women. These data further support the causal relationship between estrogen and the modu-
lation of the VMB. Unlike estrogen, the impact of progesterone on the VMB is not consistent
in different studies, as shown in a recent review (40), while an increased level of testosterone
seems to be associated with a more complex VMB of women with polycystic ovary syn-
drome (41).

Racioethnicity is another important factor that discriminates the composition of the
VMB of reproductive-age women (8, 42, 43). The most dominant taxon in white women
is generally L. crispatus, whereas L. iners is prevalent in Asian, Hispanic, and Black
women (8, 25). The average vaginal pH of white and Asian women is lower than that of
Hispanic and Black women, consistent with a higher abundance of Lactobacillus (25).
The VMBs of Black women are less stable, consistent with their more complex microbial
communities (8, 43), and exhibit a much higher prevalence of BVAB1, G. vaginalis, S.
amnii, and several other anaerobes associated with BV. Black women also suffer a
higher risk for STIs and adverse pregnancy outcomes (5, 8, 43, 44). Both genetic differ-
ences (45, 46), e.g., known sequence variants among individuals of different races, and
environmental differences (47–49), e.g., socioeconomic status and stress, among races
likely contribute to these racioethnic differences in VMB composition, and several stud-
ies have identified a genetic link between a woman’s genetic background and specific

FIG 2 Role of the vaginal microbiome in gynecologic and obstetric health. Maternal estrogen promotes the production of
glycogen in vaginal epithelial cells. Glycogen released into the female reproductive tract by detachment from or lysing epithelial
cells is metabolized to glucose and maltose by human and bacterial a-amylases. Glucose and maltose can be further fermented
to lactic acid by Lactobacillus, consequently supporting proliferation of members of this genus. Lactic acid decreases the vaginal
pH and, as a result, inhibits the colonization and proliferation of dysbiosis-associated species. Bacteriocins may play roles in
controlling colonization and proliferation of microbes generally linked to BV and other adverse conditions. However, lactic acid
seems to inhibit host inflammation potentially induced by infections with opportunistic microbes by increasing the anti-
inflammatory cytokine IL-1RA and inhibiting proinflammatory cytokines and chemokines, including IL-6, IL-8, TNF-a, RANTES,
and MIP-3a. Furthermore, Lactobacillus taxa also seem to promote the integrity of the mucosal and epithelial barriers, thus
helping to prevent establishment of these deleterious microbes. In contrast, less favorable taxa induce adverse outcomes by
inducing inflammation (circle 1), undergoing biofilm formation (circle 2), and producing other virulence factors, including but
not limited to toxins (e.g., vaginolysin and inerolysin), proteases, mucinases, or sialidases (circle 3). See Table 2 for additional BV-
associated virulence factors.
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bacterial taxa (45, 46, 50). Moreover, these studies have suggested a genetic associa-
tion between racial background and certain bacterial taxa in the VMB (45, 50). Hence,
the impact of racioethnicity on the VMB is likely mediated by multiple factors, includ-
ing both the individual’s genetic background and environmental conditions. Since
structural racism is key in influencing environmental conditions (51), the difference of
the VMB associated with racioethnicity could be potentially caused by structural racism
(52). However, current studies have yet to quantify the contribution of these factors to
the composition of the VMB, and the mechanisms by which these factors impact the
VMB remain unclear.

Lactobacilli and Vaginal Health

Lactobacillus spp. are usually the dominant taxa in the VMB, and these taxa play important
roles in antagonizing dysbiosis-associated microorganisms. As described above, lactobacilli
lower the vaginal pH (2). Low pH inhibits proliferation of anaerobes commonly associated
with BV (53, 54) (see below) and is considered partially responsible for reduced susceptibility
to human immunodeficiency virus (HIV) infection (22, 55, 56), other viral infections (57) and
other STIs (11) (Fig. 2). Lactic acid also permeabilizes the outer membranes of Gram-negative
taxa, possibly potentiating the impact of other factors on these bacteria in vitro (58). The ability
of many species of Lactobacillus to produce H2O2 could provide a selective advantage over
other potential vaginal colonizers under aerobic conditions, but the largely anaerobic environ-
ment in the female reproductive tract would likely preclude in vivo production of H2O2 (59).
Lactobacillus spp. also produce bacteriocins, which target other bacterial taxa, permitting the
former to proliferate. Multiple putative bacteriocin genes have been identified in the genomes
of L. crispatus isolates recovered from cultures of vaginal specimens (60). Gassericin E, identi-
fied in a L. gasseri strain, was shown to inhibit other species, including G. vaginalis, in vitro (3).
Although the antimicrobial spectrum of these bacteriocins may influence the composition of
the VMB, there remains a lack of in vivo evidence that Lactobacillus bacteriocins function to
attenuate growth or colonization of other taxa. Finally, in vitro studies showed that various
adhesins produced by Lactobacillus spp. promote their colonization of epithelial surfaces (61–
64) and inhibit colonization of dysbiosis-associated microorganisms, e.g., G. vaginalis (61) and
Escherichia coli (62). L. crispatus also reduces Candida adhesion by producing a biosurfactant in
vitro (65) and inhibits Candida albicans infection by promoting epithelial cell defenses through
modulation of the production of Toll-like receptors (2 and 4), interleukin 8 (IL-8), and b-defen-
sins 2 and 3 in a HeLa cell model (66).

Lactobacillus spp. interact with the host to impact overall vaginal health. Multiple

FIG 3 Shift of the vaginal microbiome in pregnancy. Estrogen is one of the key factors that modulate the stability of
the VMB. The concentration of estrogen and the stability of the VMB increase during pregnancy. The abundance of
lactobacilli increases at the expense of species often related to vaginal dysbiosis, e.g., G. vaginalis, A. vaginae, and P.
bivia. This shift in the VMB occurs early in pregnancy and is more pronounced in Black women. After delivery,
estrogen levels, along with the stability of the VMB, decrease greatly, and the VMB converts from an optimal state to
a state of dysbiosis, which often takes over 40 weeks to recover.
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vaginal epithelial cell models show that D- and L-lactic acid and a mixture of VMB-associ-
ated metabolites induce the anti-inflammatory cytokine IL-1RA while inhibiting proinflam-
matory cytokines, including IL-6, IL-8, TNF-a, RANTES, and macrophage inflammatory pro-
teins 3a (MIP-3a) (67, 68) (Fig. 2). IL-1RA induction and IL-8 inhibition by L-lactic acid was
confirmed in an organotypic tissue model of female reproductive tract epithelium (67).
Although other in vitro studies suggested that several Lactobacillus strains stimulated
proinflammatory responses (69, 70), none of these strains are abundant in the VMB. Both
in vivo and cervical epithelial cell model studies show that lactic acid produced by lactoba-
cilli and the resulting acidic vaginal pH also promote integrity of the vaginal epithelial bar-
rier inhibiting colonization by other anaerobes and pathogens (Fig. 2) (22, 71). Thus, it is
clear that the predominance of protective lactobacilli is associated with lower risks of sub-
optimal health states. However, overgrowth of lactobacilli can be associated with cytolytic
vaginosis, defined by epithelial cell damage, lysis, and scaling due to overproduction of lac-
tic acid (20, 72–79). Cytolytic vaginosis is less common than BV but emphasizes the impor-
tance of quantitative assessment of the VMB in clinical settings.

L. iners and L. crispatus are generally the most abundant Lactobacillus spp. in the VMB,
followed by L. gasseri and L. jensenii (Fig. 1). L. crispatus, L. jensenii, and L. gasseri produce
H2O2, and L. crispatus is associated with lower vaginal pH (25, 80) and is heritable in white
women (45). Furthermore, the L. crispatus-dominated VMB yields higher levels of D- but not
L-lactic acid than the L. iners-dominated VMB, and decreased D-lactic acid has been associ-
ated with PTB (81). As described above, a lower pH both inhibits dysbiosis and generally
promotes anti-inflammatory and antibacterial effects (67). The L. crispatus-dominated VMB is
more stable during pregnancy (8, 14, 24) and is often reduced in prevalence in pregnant
women who go on to experience PTB (5, 12, 14, 82). Supernatants of L. crispatus attenuate
disruption of the cervical epithelial barrier mediated by LPS or G. vaginalis and reverse the
G. vaginalis-induced inflammation-associated microRNA (miRNA) expression in cervical epi-
thelial cell models (71). L. iners often predominates in Black women (8). It does not produce
H2O2 (80), is less efficient than other lactobacilli in production of D-lactic acid (81, 83), pro-
duces a cholesterol-dependent cytolysin (inerolysin) (84), and does not inhibit disruption of
the cervical epithelium by lipopolysaccharide (LPS) or G. vaginalis (71). Moreover, in contrast
to L. crispatus, which is largely exclusionary to other bacterial taxa, L. iners often coexists
with G. vaginalis in vivo (12) and has been associated with PTB, miscarriage, and instances of
an insufficient cervix during pregnancy (14, 82). Although lactobacilli, especially L. crispatus,
seem beneficial for overall vaginal health, the role of L. iners in maintaining vaginal health is
less clear (85). Recent strain-level studies illustrate that L. iners genomes are quite conserved
and similar with regard to single nucleotide polymorphisms (SNPs) and the presence of
characterized genes (24, 86) but differ in the presence of phages, plasmids, and some
uncharacterized genes (24), and the impact of these genes on the VMB and women’s health
requires further exploration. It remains unclear if these apparent strain differences are associ-
ated with the differential impact of L. iners on women’s reproductive health. Interestingly,
expression of several L. iners genes, including those encoding inerolysin, mucin, glycerol
transport and related metabolic enzymes, and proteins belonging to a CRISPR system, are
upregulated in the VMB of women with BV (87), suggesting that the modulation of viru-
lence gene expression in L. iners is associated with dysbiosis of the VMB, but the mechanism
remains unclear.

A recent large-scale metabolomics study illustrates that vaginal cytokine profiles
and the prevalence of Lactobacillus in the VMB can be predicted by metabolite profiles
of the VMB using machine learning models (88). These models can further distinguish
between L. crispatus-dominated and L. iners-dominated VMBs using metabolite pro-
files. Thus, this study demonstrates the interaction among the composition of the VMB,
microbial metabolites, and host immune responses.

The Vagina Microbiome in Adverse Health Conditions

Bacterial vaginosis. Vaginitis is a term to describe various conditions of infection or
inflammation of the vagina. The most common kinds of vaginitis are BV, vulvovaginal candi-
diasis or “yeast” vaginitis, and trichomoniasis vaginitis. BV, with a global prevalence ranging
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from 23% to 29% (89), is characterized by displacement of lactobacilli in the VMB by anaerobic
Gram-negative bacteria (44). Although many women with BV-like vaginal microbiomes lack
clinical complaints, a recent meta-analysis estimated that ;34.9% are actually symptomatic
(89). These women suffer from increased vaginal discharge, odor, and itching, generally with-
out significant local inflammation (90). Diagnosis by Amsel’s criteria requires the presence of
three of the following: vaginal discharge, a pH of $4.5, presence of sloughed “clue” cells
coated with bacteria, and an amine odor with application of potassium hydroxide to the dis-
charge (91). Nugent scoring (30) involves enumerating large Gram-positive rods (lactobacilli),
small Gram-variable rods (G. vaginalis), small Gram-negative rods (Bacteroides spp.), and curved
Gram-variable rods (other taxa). Several taxa, including Gardnerella, Atopobium, Prevotella,
Porphyromonas, Sneathia, Mobiluncus, Mycoplasma, BVAB1, BVAB2, Mageeibacillus indolicus
(BVAB3), and Peptostreptococcus, are often enriched in VMBs of BV patients (44) (Table 1).
Although Mobiluncus spp. have been considered a primary contributor to the curved rods
observed in BV, recent molecular studies suggest that these curved rods are mostly BVAB1
(44). Treatment of BV with metronidazole is often initially successful, but recurrence is com-
mon at a rate approaching 50% within as little as 12 weeks (92) to 12 months (93, 94).

G. vaginalis is present in at least 95% of clinically diagnosed BV (95), but its role
remains unproven. G. vaginalis isolates have recently been reclassified into four clades
and 13 putative genomic species, including “true” G. vaginalis, G. leopoldii, G. piotii, and
G. swidsinskii (96, 97). A recent study reported that clades 1 and 2, which include G.
vaginalis and genomic species 2 and 3, are associated with BV (97). Another study
reported that clades 1 (G. vaginalis and genomic species 2) and 3 (genomic species 8,
9, and 10) are associated with BV, while clade 2 (genomic species 3) is associated with
intermediate microbiotas (98). Many, but not all, isolates of G. vaginalis produce vagi-
nolysin, a cholesterol-dependent pore-forming cytolysin that kills mammalian cells by
punching holes in their membranes. Species-specific variations found in the vaginoly-
sin amino acid sequence could contribute to differential pathogenicity associated with
these Gardnerella strains (99). Members of all four clades are found, albeit in low abun-
dance, in women with no symptoms, and most women with Gardnerella in their VMBs
harbor multiple Gardnerella species (98). Some strains of Gardnerella are more profi-
cient than others at biofilm formation (100) or in competition with Lactobacillus species
(101, 102) in vitro. Much remains to be learned about the various strains of Gardnerella,
its diverse subgroups, and their association with gynecologic and obstetric health.

BV-associated bacteria produce biofilms, disrupt the vaginal mucosal and epithelial
barriers by sialidase, cytolysins, and other enzymes, increase the vaginal pH, and pro-
duce enzymes that enhance their ability to colonize (Table 2). Gene expression in the
VMB has been shown to be impacted by the composition of the VMB (103). Since most
BV-associated bacteria have higher relative abundances in CST IV (44), genes responsi-
ble for sialidase production have the highest expression in the VMB with CST IV, and
higher expression of genes encoding cholesterol-dependent cytolysins in L. iners and
G. vaginalis is associated with the depletion of Lactobacillus (103). A cervicovaginal

TABLE 1 Composition of the vaginal microbiome in vaginitisa

Condition Vaginal microbiome features
Cytolytic vaginosis Overgrowth of Lactobacillus spp. (20)
Bacterial vaginosis Enrichment of Atopobium vaginae,b BVAB1, BVAB2, BVAB3, Gardnerella vaginalis,

Mobiluncus spp.,Mycoplasma spp., Porphyromonas spp., Prevotella spp., Sneathia
spp., and Ureaplasma spp. (44); depletion of Lactobacillus spp. (44)

Vulvovaginal candidiasis Normal to BV-like vaginal microbiome (19, 120, 122); colonization by Candida
albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, or Candida
krusei (19, 120, 122)

Trichomoniasis BV-like vaginal microbiome (133, 134); invasion by Trichomonas vaginalis (133, 134)
Aerobic vaginitis or desquamative inflammatory vaginitis Depletion of Lactobacillus spp. (29, 139); frequent detection of aerobic, enteric

bacteria, e.g., E. coli, Enterococcus spp., Staphylococcus spp., and Streptococcus
spp. (29, 139)

aBVAB1, “Candidatus Lachnocurva vaginae”; BVAB2, Lachnospiraceae BV-associated bacterium 2; BVAB3,Mageeibacillus indolicus.
bA. vaginaewas reclassified to a new genus and renamed Fannyhessea vaginae in 2018 (266).
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epithelial cell model shows that a mixture of BV-associated vaginal metabolites can
promote vaginal inflammation by increasing proinflammatory cytokines, i.e., tumor
necrosis factor alpha (TNF-a) and IL-8, but inhibit the production of chemokines, i.e.,
RANTES and IP-10, which could be a mechanism of immune evasion (68). Other epithe-
lial cell models show that pore-forming toxins, such as vaginolysin produced by G. vag-
inalis (104) and perhaps inerolysin from L. iners (84), bind to tethered lipid rafts
embedded in the plasma membranes of vaginal epithelial cells and mediate cytolysis,
a plausible pathogenic mechanism in BV. Interestingly, women taking statins to reduce
systemic cholesterol generally exhibit reduced prevalence of Gardnerella, and statins
protect cultured vaginal epithelial cells from lysis by vaginolysin (105). Other BV-associ-
ated taxa, e.g., Sneathia amnii (106), also express toxins that have yet to be clearly
implicated in pathogenesis.

Vaginal biofilms protect BV-associated taxa from clearance by lower pH and lactic acid,
antibacterials produced by lactobacilli, the host immune system, and antibiotics (44, 107)
(Fig. 2). Although still poorly understood, these biofilms are thought to impair the integrity
of the epithelial barrier (44, 107) and have been cited as important contributors to estab-
lishment of BV and its predilection for recurrence (107–109). Transcription of genes related
to growth and vaginolysin production in G. vaginalis are downregulated in biofilms relative
to planktonic cultures in vitro, which could be beneficial for long-term survival of G. vagina-
lis in the vagina (110). However, coculture of G. vaginalis with Enterococcus faecalis and
Actinomyces neuii seems to promote biofilm formation and virulence of G. vaginalis at the
transcriptional level (111). Known biofilm matrices contain polysaccharide, extracellular
proteins, and extracellular DNA. DNase treatment reduces biofilm formation of G. vaginalis
in vitro, suggesting that extracellular DNA is an important component in the biofilm matrix
of G. vaginalis (112). However, studies on genes related to the production of polysaccharide
and extracellular proteins in G. vaginalis are limited by the lack of genetic tools for this
taxon. Interspecies interaction of G. vaginalis with BV-associated bacteria apparently

TABLE 2 Bacterial vaginosis-associated virulence factorsa

Mechanism Bacterial product(s) Species
Disruption of mucosal barrier Sialidase Gardnerella vaginalis, Prevotella bivia,Mycoplasma

hominis, Bacteroides fragilis (267, 268) and
Prevotella timonensis (269)

Glycosulfatase Prevotella spp. (270)

Disruption of epithelial barrier Vaginolysin G. vaginalis (268, 271)
Inerolysin Lactobacillus iners (84)
Phospholipase C G. vaginalis (268), Ureaplasma urealyticum (272)
Hemolysin G. vaginalis (273), Sneathia amnii (106)
Urease U. urealyticum (274)

Increase of the vaginal pH Amine production P. bivia (275), BVAB1, Dialister micraerophilus (276)

Antibiotic resistance Resistance gene: 5-nitroimidazole, macrolides,
tetracycline, b-lactam and aminoglycoside
antibiotics

Widely distributed in the vaginal microbiome (277)

Immune evasion IgA protease U. urealyticum (278)
Organic acids (succinic acid, acetic acid, etc.) Prevotella spp.,Mobiluncus spp. (68, 279)

Growth of diseases-associated bacteria Amino acids P. bivia (280)
Ammonia P. bivia (275)

Proinflammatory responses Organic acids (53, 68) G. vaginalis (71), Atopobium vaginae (264), P.
timonensis (269, 281),Megasphaera elsdenii (281)

Biofilm formation G. vaginalis, Atopobium vaginae,Mobiluncus spp.,
Fusobacterium nucleatum (107)

aBVAB1, “Candidatus Lachnocurva vaginae.”
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promotes biofilm formation. In vitro studies illustrate that initial attachment of G. vaginalis
may be mediated by L. iners or Peptoniphilus spp. and biofilm formation is enhanced by
additional taxa, e.g., Atopobium vaginae, Prevotella bivia, Fusobacterium nucleatum, and
Mobiluncus spp. (107, 111). A better understanding of vaginal biofilms is required to better
support female reproductive health.

Several biogenic amines and short- and long-chain fatty acids, e.g., tyramine, N-acetyl-
putrescine, cadaverine, deoxycarnitine, etc., associated with increased vaginal pH, abnor-
mal vaginal odor or discharge, or the presence of clue cells have higher concentrations in
BV patients or in VMBs with CST IV (113–116) and are associated with activation of proin-
flammatory responses (88, 114, 117). Consistent with these results, genes responsible for
biogenic amine production have been discovered in the genomes of many BV-associated
bacteria (114). In contrast, the concentrations of metabolites associated with health, e.g.,
lactate, phenylalanine, tyrosine, glutathione, and others, are higher in asymptomatic partic-
ipants and in VMBs predominated by protective Lactobacillus (113–116).

Vulvovaginal candidiasis. Vulvovaginal candidiasis often occurs when the vaginal envi-
ronment is altered by antibiotic treatment, hormonal changes, metabolic disease, immunolog-
ical incompetence, sexual activity, or other conditions that permit yeast, mainly Candida spp.,
to colonize the female reproductive tract in hyphal form (118, 119). Candida albicans and other
species of Candida, which bind to mannose-binding lectin on the epithelial cell membranes,
are the primary etiological agents (120). In response to altered host environmental conditions,
Candida undergoes global transcriptional changes while transitioning into hyphal forms.
Hyphae from some C. albicans strains form vaginal biofilms and secrete candidalysin, a cytoly-
tic peptide toxin that damages epithelial cell membranes, permitting penetration of epithelial
cell layers. Epidermal growth factor receptor is activated, inducing mitogen-activated protein
kinase (MAPK) signaling, MKP1 activation and promotion of proinflammatory mediators, neu-
trophil recruitment, and type 17 immunity (121). The VMB of reproductive-age women with
vulvovaginal candidiasis is generally more complex than that of asymptomatic women but is
statistically less complex than that of women with BV (122, 123) (Table 1). In vivo studies sug-
gest that colonization by Lactobacillus may not reduce the risk of vulvovaginal candidiasis
(124), and colonization by L. crispatus is even associated with increased C. albicans colonization
(125, 126). However, an L. crispatus-dominated VMB is associated with lower risks of C. albicans
colonization and vulvovaginal candidiasis than an L. iners-dominated VMB in vivo (19, 123),
and L. crispatus inhibits hypha formation of C. albicans (127) as well as the innate immune
responses induced by yeast in vitro (66). Thus, it is clear that vulvovaginal candidiasis is associ-
ated with the VMB, but it is unclear if it is associated with a specific Lactobacillus species, e.g.,
L. crispatus, or the predominance rather than the presence of lactobacilli.

Sexually transmitted infections. Vaginal dysbioses are associated with increased
risk for acquisition of STIs, including HIV (55), herpes simplex virus (HSV) (128), human
papillomavirus (HPV) (129), gonorrhea, chlamydia, and trichomoniasis, as well as an
increased persistence of HPV infection (11). HSV infection has also been shown to pro-
mote vaginal dysbiosis (11). Dysbiosis-associated taxa in the VMB were reported to be
associated with an increase in CD4-positive T cells in cervicovaginal lavage fluid from
young South African women and in a murine model (55). This increased level of CD4-
positive T cells, the target of HIV, likely favors HIV transmission in vaginal dysbioses.
Evidence that BV-associated bacterial taxa enhance HIV RNA expression has also been
documented both in vitro and in vivo (130, 131). BV-associated virulence factors, e.g.,
vaginolysin, inerolysin, mucinase, sialidase, and others, likely impact the integrity of
the vaginal epithelium and mucosal barrier, also possibly facilitating these infections
(44, 107). In contrast, protective Lactobacillus spp. inhibit the growth of BV-associated
species, as outlined above (10), as well as the proinflammatory responses of epithelial
cells and protects the integrity of epithelial barrier (22, 67), which may explain the
attenuation of HIV infections by these taxa (22, 55).

Trichomoniasis, the most common nonviral STI (132), causes severe damage to vaginal
tissue and disruption of the vaginal ecology by eliciting host inflammatory responses (132).
Trichomonas vaginalis is closely associated with some bacterial taxa, including Mycoplasma
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hominis, “Candidatus Mycoplasma girerdii,” Veillonella montpellierensis, Prevotella amnii,
Sneathia sanguinegens, Anaerococcus, and Parvimonas spp. in the VMB (133–135) (Table 1).
M. hominis is considered obligately intracellular, and “Ca. Mycoplasma girerdii” may be a
facultative endosymbiont. Moreover, there is some evidence to suggest that these taxa
coexist with T. vaginalis (136, 137) and that at least M. hominis potentiates the pathogenic-
ity of T. vaginalis (138).

Desquamative inflammatory vaginitis and aerobic vaginitis. Desquamative inflam-
matory vaginitis (139, 140), first described over 6 decades ago, is an inflammatory disorder of
questionable etiology associated with purulent discharge, vaginal itching, dyspareunia, and an
inflamed vaginal wall (29). A similar condition associated with vaginal colonization by aerobic,
enteric bacteria, including, among others, Escherichia, Streptococcus, Staphylococcus, and
Enterococcus species, has been termed aerobic vaginitis (29, 141) (Table 1). Both conditions are
associated with a paucity of vaginal lactobacilli and have an epidemiologic prevalence similar
to that of BV (29). Their bacterial etiology is supported by positive responses to antibiotic treat-
ment, but steroids that reduce inflammation similarly reduce the symptoms (29, 139). Thus,
the role of the microbiome in aerobic and desquamative inflammatory vaginitis remains
controversial.

The bacteria most frequently encountered in aerobic vaginitis, e.g., group B Streptococcus
(GBS, or Streptococcus agalactiae), E. coli, and Staphylococcus aureus, usually have low abun-
dances in the VMB (5, 7, 25, 26). However, in utero infections of these bacteria can cause seri-
ous reproductive outcomes, including but not limited to stillbirth and neonatal sepsis (142–
144). GBS colonization seems not to affect the composition of the VMB of reproductive-age
nonpregnant women (145), but G. vaginalis in the VMB has been reported to enhance GBS
colonization and infection in a mouse model (146).

The Vaginal Microbiome and Pregnancy

As discussed above, increased estrogen levels during pregnancy promote genera-
tion of glycogen and lead to production of lactic acid by Lactobacillus (Fig. 2).
Consistent with these observations, the VMB in late pregnancy seems to exhibit greater
stability and Lactobacillus dominance than that in early pregnancy (5–8), and the tran-
sitions of the VMB during pregnancy occur earlier in gestation (8) (Fig. 3). The higher
abundance of lactobacilli in late pregnancy is coupled with a commensurate reduced
abundance of taxa associated with vaginal dysbiosis, including but not limited to G.
vaginalis, A. vaginae, and P. bivia (5).

Vaginal communities dominated by Lactobacillus species are quite stable or tend to
convert to vaginal communities dominated by other Lactobacillus species during preg-
nancy (5, 8, 147). Vaginal communities associated with dysbiosis tend to shift toward
communities dominated by lactobacilli by the second trimester. The G. vaginalis-domi-
nated VMB is less stable, often converting to an L. iners-dominated VMB (5, 8). These
shifts are consistent with an evolution toward a more favorable vaginal environment in
pregnancy.

Likely because Lactobacillus spp. are already more dominant in white than Black
women before pregnancy (8), the transition to Lactobacillus-dominated profiles and
the increase of the stability in the VMB is more evident in Black than white women dur-
ing pregnancy (5, 8) (Fig. 3). Similarly, metagenomics data illustrate a simplification of
metabolic activity only in Black women, not in non-Black women (8, 24). Consequently,
pregnancy seems to have a greater apparent impact on the VMB of Black women.

Estrogen levels drop rapidly after delivery. Likely as a consequence, the stability of the
VMB also drops (147–149), and recovery of a more stable VMB may take several months in
asymptomatic women (147, 148) (Fig. 3). This postpartum disturbance of the VMB occurs
irrespective of both the community structure during pregnancy and racioethnic back-
ground and manifests in reduced prevalence of Lactobacillus and increased prevalence of
anaerobes, including Peptoniphilus, Prevotella, and Anaerococcus, that are generally associ-
ated with less optimal health outcomes (147, 148) (Fig. 3). Consistent with this observation,
an interpregnancy interval shorter than 1 year is associated with increased risks for preg-
nancy complications, including PTB (150–152).
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THE CERVICAL MICROBIOME

The cervix connects the uterus to the vagina (Fig. 1). Cervical brushes or swabs are used
to collect cervical samples (18, 153), and vaginal contamination is minimized during this
collection. The composition of the cervical microbiome is generally similar to that of the
vaginal microbiome in reproductive-age women (18, 153). Most recent studies of the cervi-
cal microbiome focus on its association with cervical cancer. Cervical cancer is one of the
most prevalent infectious cancers and is tightly associated with infection by high-risk HPV
(154). Persistent high-risk HPV infection increases the risk of cervical intraepithelial neopla-
sia (CIN). In CIN, HPV DNA integrates into chromosomes of cervical epithelial cells, inducing
changes that lead to cervical malignancy (155). The cervical microbiome is more complex
in patients with CIN (23) and cervical cancer (18, 156, 157). The loop electrosurgical excision
procedure for removing intraepithelial lesions was shown to decrease the complexity of
the cervical microbiome in a cohort of Asian women (158). The composition of the cervical
microbiome in HPV-negative participants is significantly different from that in participants
with intraepithelial lesions or cervical cancer (157, 158). Several taxa, e.g., Gardnerella (18,
159), L. iners (160), A. vaginae (160), Mycoplasma (23), Sneathia (157), and Fusobacterium
(157), most of which are associated with dysbiosis of the VMB (Table 1) and produce viru-
lence factors in BV (Table 2), have been reported as risk factors for CIN and cervical cancer.
Damage to the integrity of the epithelial (71) and mucosal (161) barriers due to overgrowth
of dysbiosis-associated microorganisms has been hypothesized to permit HPV attack on
cervical epithelial cells, but the mechanism is unproven. Since chronic inflammation seems
to favor malignancy (162), local inflammation associated with dysbiosis of the cervical
microbiome may also be involved in the progression of cervical and other gynecologic can-
cers. In contrast, the genus Lactobacillus is associated with a higher clearance of incident
high-risk HPV infection (18), and L. crispatus is associated with lower risk of CIN in the cervi-
cal microbiome (160), possibly due to Lactobacillus spp. inhibiting growth of dysbiosis-asso-
ciated microorganisms and host inflammatory responses.

Similar to the cervical microbiome, the VMB is more complex (163, 164) and con-
tains a higher abundance of dysbiosis-associated taxa, e.g., Sneathia (165) and G. vagi-
nalis (164), in individuals with HPV infection and CIN. Since the vagina and the cervix
are in close proximity, it is not surprising that their respective microbiomes are similar
in composition and exhibit similar changes in the progression of cervical cancer.

THE MICROBIOTA OF THE UPPER GENITAL TRACT
Is There a Microbiome in the Upper Genital Tract?

The concept that the uninfected upper genital tract has an intrinsic microbiome
remains controversial. Multiple studies have supported the existence of the micro-
biome in the upper genital tract (166–168). However, because of low microbial bio-
mass in these sites, potential contamination in the process of sample collection and
processing or the presence of even low levels of bacterial DNA in the so-called
“kitome” confounds results based on DNA sequencing. Recent reviews have argued
that the uterus lacks a native microbiome (169, 170), whereas others find evidence of a
microbiome in the upper genital tract (171). Several carefully controlled studies did not
detect a normal microbiome in placental samples (16, 17, 172), and another did not
detect a microbiota in fetal meconium before birth (173). Nevertheless, it is clear that
pathogens can cause infections in the placenta (16, 174), uterus, fallopian tubes, and
ovaries (175–178), and additional study is required to confirm the existence of and
characterize a native microbiome in the upper female reproductive tract.

Origin of the Microbiota in the Upper Genital Tract

The correlation between dysbiosis of the VMB and PTB (5, 13, 15, 179, 180) and the
similarity of taxa found in the amniotic fluid (174, 181) and membranes (182) to the VMB
suggests that pathogens ascend from the lower reproductive tract into the uterine cavity
causing uterine infections and problems in pregnancy, including PTB. Consistent with this
hypothesis, a study in pregnant mice observed the ascension of bioluminescent E. coli
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from the vagina into the uterine cavity, resulting in premature delivery (183). However, the
mouse and human female reproductive tracts are quite divergent in both anatomy and
physiology, rendering these observations difficult to generalize. It has also been proposed
that bacteria spread hematogenously from the oral cavity, as taxa similar to those found in
the mouth have been found in the uterus (174) and periodontitis has been identified as a
risk factor of PTB (184). Taxa common to those in both vaginal and oral microbiomes have
also been reported in chorioamnionitis (185), and oral bacteria have been reported in the
amniotic fluid in women and mice that experience premature rupture of membranes due
to intrauterine infections (186–188). However, human oral taxa are also common in the
VMB (25, 148), and their presence in the uterus does not preclude contiguous spread from
the lower reproductive tract. Other hypotheses on the origin of microbes in the upper gen-
ital tract include migration from the infected fallopian tubes (189) and accidental transmis-
sion in invasive procedures (190). Metagenomic studies that provide strain-level resolution
will be useful to confirm or refute the association between the VMB, the oral microbiome,
intrauterine infections, and adverse pregnancy outcomes.

Ascension of Microbes to the Uterine Cavity

Ascension of microbes to the uterine cavity is generally prevented by the cervical
mucus plug (191). However, this plug could be compromised by bacterial products
(192–194). GBS produces hyaluronidases that digest hyaluronan, a protective polysac-
charide (195), and can promote ascending infection (193, 196). Surprisingly, sloughing
(also known as exfoliation or shedding) of infected epithelial cells does not reduce GBS
vaginal colonization but increases GBS dissemination and ascension (197). Sialidases
and mucinases produced by BV-associated bacteria, e.g., G. vaginalis, P. bivia, M. homi-
nis, and Bacteroides fragilis, compromise mucosal membranes and the cervical plug,
are conducive to invasion of the upper reproductive tract in a murine model (198), and
increase the risk of very early PTB in vivo (199). However, it remains uncertain whether
these sialidases promote ascending infections of other microbes, e.g., GBS or E. coli, in
humans, although a short cervical length is thought to be beneficial for microbe ascen-
sion and has been shown as a risk factor of PTB (190, 200, 201). Additionally, cervical-
fundal uterine peristaltic contractions have been shown to promote the transport of
albumin macrospheres of the size of spermatozoa through the cervix (202), which
could also promote ascension of pathogens.

THE MICROBIOTA OF THE FEMALE REPRODUCTIVE TRACT AND PRETERM BIRTH
The Microbiota and Preterm Birth

PTB is defined as childbirth after less than 37 weeks of gestation due to multiples
causes, e.g., cesarian section or labor induction for medical reasons, preterm premature
rupture of the membranes (PPROM), spontaneous labor with intact membranes, etc. (190).
PTB is the leading cause (17.7%) of deaths among children under 5 years of age worldwide
(203). Intrauterine infections caused by microorganisms have been hypothesized to acti-
vate the innate immune system and consequently enhance the risk for spontaneous PTB
(190). It has been estimated that up to 25 to 40% of spontaneous PTBs have microbial
etiology.

Bacterial species, e.g., Chlamydia trachomatis (204–206), Klebsiella pneumoniae (207,
208), E. coli (208, 209), Fusobacterium nucleatum (210), GBS (16, 208, 211),Mycoplasma hom-
inis (204), Neisseria gonorrhoeae (206), Staphylococcus aureus (194, 209), and Streptococcus
mitis (209), have been detected in intrauterine infections and induce PTB (Table 3).
Although it is uncertain whether ascension and intrauterine infections are required for vag-
inal microbes to induce spontaneous PTB, several microorganisms frequently detected in
the vagina have increased relative abundances in the VMB of women who later experience
PTB, e.g., Ureaplasma, GBS, and several BV-associated taxa. Other microbes, e.g., HIV (212,
213) and HPV (214), have been reported to be associated with increased risk of PTB, but
the PTB induced by HIV seems to be independent from the VMB (212).

Microbiota of the Female Reproductive Tract Microbiology and Molecular Biology Reviews

December 2022 Volume 86 Issue 4 10.1128/mmbr.00181-21 12

https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00181-21


The Microbiota and Immune Responses

GBS generates a b-hemolysin/cytolysin that induces inflammation and the disruption
of maternal-fetal barriers, leading to higher risk for PTB in a mouse model (192). Although
commonly present in the VMB with relatively high abundance, several BV-related bacteria
stimulate proinflammatory responses by producing short-chain fatty acid in ectocervical,
endocervical, and dendritic cell models (53) (Table 2) and the increased proinflammatory
responses caused by non-Lactobacillus taxa in the VMB are associated with PTB (88) (Table
3). Lipopolysaccharide is widely used to promote inflammation to induce PTB in mouse
models (183, 215), but the function of lipopolysaccharide in the female reproductive tract
is not clear. Several proinflammatory cytokines and chemokines, i.e., IL-1b (5), IL-6 (5, 184,
216–218), IL-8 (184), IL-10 (218), IL-18 (219), granulocyte-macrophage colony-stimulating
factor (GM-CSF) (218, 220), MIP-1b (5), and eotaxin (5), have been reported to have ele-
vated concentrations in the amniotic fluid, cervicovaginal fluid, and plasma of pregnant
individuals who later experience spontaneous PTB, and cervical levels of IL-1b , IL-6, IL-8, IL-
10, eotaxin, MIP-1b , and GM-CSF have been associated with bacteria in the VMB (221–225)
(Table 3). b-Defensin-2, a peptide with broad antimicrobial activity, has been reported to
be associated with the lower risk of spontaneous PTB previously linked to cervicovaginal
microorganisms, but this phenomenon has been observed only in Black women (226).

The Vaginal Microbiome in Preterm Birth

16S rRNA taxonomic profiles of the VMBs in pregnancies that deliver prematurely
are generally more complex than the VMBs in pregnancies that go to term (5, 13, 15).
Because of the protective effects of Lactobacillus spp. on overall vaginal health (Fig. 2),
it is not surprising that a decrease in prevalence of lactobacilli, primarily L. crispatus, in
pregnancies that end in PTB has been observed (5, 12, 15, 147, 226–229) (Table 3).

TABLE 3 Risk factors for preterm birth associated with the microbiome or microbial infections of the female reproductive tracta

Classification Risk factor(s)
Factors in the VMB
Vaginal taxa increased in relative abundance in PTB Aerococcus spp. (5, 15), Atopobium spp. (15, 226, 282), BVAB1 (5), BVAB2 (5), Chlamydia spp.

(208), Clostridium sensu stricto (15), Coriobacteriaceae species (5), Dialister spp. (5, 15),
Escherichia coli (208), Fusobacterium nucleatum (282), Gardnerella spp. (12, 147), GBS (208,
211), Klebsiella pneumoniae (208), BVAB3 (282),Megasphaera spp. (15, 226),Mobiluncus
curtisii/Mobiluncus mulieris (226),Mycoplasma hominis (282), Olsenella sp. (15), Parvimonas
sp. (5), Porphyromonas asaccharolytica (226), Prevotella spp. (5, 15, 148), Sneathia amnii (5),
Sneathia sanguinegens (5, 226), TM7-H1 (5), Trichomonas vaginalis (208, 283), Ureaplasma
spp. (81, 147, 209, 283)

Vaginal taxa reduced in relative abundance in PTB Lactobacillus crispatus (5, 12, 14, 228, 229), Lactobacillus spp. (5, 12, 15, 147, 226, 227, 229)
Bacterial virulence factors BV-associated bacteria: sialidase (199, 284); GBS: b-hemolysin/cytolysin (192) and

hyaluronidase (193); unidentified taxa: lipopolysaccharide (285); unidentified taxa: volatile
organic compound (286)

Bacterial load A higher vaginal bacterial load is a risk for PTB recurrence (245)

Host factors associated with the VMB
Host cytokines/chemokines Amniotic fluid: IL-1b (287), IL-6 (184, 217, 287), IL-8 (184), IL-10 (218), and IL-18 (219);

cervicovaginal fluid: IL-1b (5, 88), IL-6 (5, 216, 217), eotaxin (5, 225), and MIP-1b (5);
plasma: GM-CSF (220)

Host antimicrobial peptide Reduced b-defensin-2 (226)
Other factors Short cervix (14, 234), cervical cerclage with braided suture (compared to monofilament

suture) (236)

Microbial invasion
Bacterial intrauterine infectionsb Chlamydia trachomatis (204, 205), Escherichia coli (208, 209), Fusobacterium nucleatum (210),

GBS (16, 208, 211), Klebsiella pneumoniae (207, 208),Mycoplasma hominis (204),
Staphylococcus aureus (194, 209), Streptococcus mitis (209)

Viral infections HIV (213, 288, 289), HPV (214)
Other sexually transmitted infections Neisseria gonorrhoeae (289–291), Treponema pallidum (290), Chlamydia trachomatis (289, 291)

aUnless stated otherwise, risk factors show elevated concentrations/abundances in women who later experience PTB. BVAB1, “Candidatus Lachnocurva vaginae”; BVAB2,
Lachnospiraceae BV-associated bacterium 2; BVAB3,Mageeibacillus indolicus; TM7-H1, “Candidatus Saccharibacteria” genomospecies TM7-H1; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2.

bMost of the vaginal taxa whose abundance increased in PTB were also reported as risk factors for intrauterine infections (174).
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Moreover, several taxa have been identified as putative risk factors for PTB (Table 3).
These taxa are generally more readily observed earlier in pregnancy (5, 13, 15), likely
due to the general homogenization effect of pregnancy toward a more Lactobacillus-
dominated VMB (8). Similarly, the vaginal pH and Gram staining in early pregnancy can
better predict PTB in asymptomatic women (230). Many of the taxa associated with
PTB, e.g., Gardnerella, Atopobium, Dialister, Megasphaera, Prevotella, and Sneathia, and
others, are components of CST IV (25) (Table 3). Thus, not surprisingly, CST IV has a pos-
itive association with PTB (82, 147, 229, 231). As described above, virulence factors that
compromise mucosal membranes and the cervical plug and promote proinflammatory
responses, e.g., sialidase, b-hemolysin/cytolysin, and hyaluronidase, increase ascension
of microbes to the uterine cavity. It is reasonable that bacteria that produce these viru-
lence factors (192, 193, 199) and increase proinflammatory responses (92, 221, 222,
232), e.g., Gardnerella spp., Mycoplasma hominis, Prevotella spp., and GBS, increase the
risk for PTB (Table 3). However, PTB-associated virulence factors have yet to be identi-
fied in other PTB-associated taxa, e.g., BVAB1, TM7-H1, Dialister spp., etc. Continued
study is required to define which taxa are keys in the enhanced risk of PTB and explore
more PTB-associated virulence factors and the mechanisms by which they induce PTB.
Other studies have failed to identify components of the microbiome associated with
risk of PTB (7, 13, 180). These studies may have missed signals due to the racioethnic
composition of their cohorts, gestational age of sampling, low sample size, or treat-
ments (e.g., antibiotics and estrogen) received by the participants. There were also sig-
nificant technical differences in these studies, including the definition of spontaneous
PTB, the varied sequencing technologies employed, and the differential analysis pipe-
lines and databases applied.

Metagenomic and metatranscriptomic data of the VMB, not surprisingly, have iden-
tified essentially the same panel of bacteria as risk factors for PTB in 16S rRNA-based
studies (5). Recent metabolomics studies on the VMB and PTB have been inconsistent
in study design, sample sources, metabolomic techniques, and statistical methods,
leading to inconsistent conclusions (233). A recent comprehensive review of metabolo-
mic publications listed 163 metabolites that were potentially associated with PTB, only
four of which, i.e., myoinositol, creatinine, histidine, and 5-oxoproline, were associated
with PTB across multiple studies (233). Thus, more in-depth metabolomic studies are
warranted.

Clinical Issues Associated with the Vaginal Microbiome and Preterm Birth

As introduced above, a short cervix is a risk factor of spontaneous PTB, likely by promot-
ing microbe ascension (190, 200, 201) (Table 3). Furthermore, a short cervical length in
reproductive-age women is associated with suboptimal VMBs dominated by L. iners or
anaerobes rather than L. crispatus (14, 234), which could further increase the risk of PTB.
Cervical cerclage is widely used to prevent PTB in pregnancies at risk for PTB (235).
Cerclage with a braided suture is associated with greater dysbiosis in the VMB and higher
risk for PTB than cerclage with a monofilament suture, likely due to its irregular structure of
the former providing more readily colonized niches (236).

Cervical remodeling is a term to describe the changes of the cervix in extracellular matrix
structure and mechanical properties after pregnancy (237). Premature cervical remodeling
leads to 12.5% of PTB (238) and can be induced by lipopolysaccharide in a mouse infection
model (239). A study with a cohort dominated by white women shows that extreme cervical
shortening is associated with a nonoptimal VMB (240). According to these observations,
proinflammatory responses caused by microbes are thought to be a risk factor stimulating
premature cervical remodeling and subsequent PTB (238, 241).

Similar to the association between the VMB and PTB, a more complex VMB with
reduced Lactobacillus spp. is associated with PPROM (227, 242–244). The association
between PTB and PPROM was recently reviewed (242).

It is worth noting that not only the composition of the VMB but also a higher vagi-
nal bacterial load detected in the second trimester is associated with recurrent PTB
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(245), which again emphasizes the importance of quantitative assessment of the VMB
in clinical settings.

Bacterial Vaginosis and Preterm Birth

Interestingly, G. vaginalis, which has long been the hallmark of a VMB of women with
BV and which produces known toxins, e.g., vaginolysin and sialidase, has not been univer-
sally associated with PTB (5, 227). However, as discussed above, G. vaginalis has recently
been redefined into four clades and up to 13 putative genomic species (8, 96, 97), and
although at least one subgroup was tentatively associated with PTB (12), additional work is
required to verify the possible contributions of each of these taxa to reproductive health
and risk of PTB. Although BV and some BV-associated taxa are identified as risk factors for
PTB (179, 246) (Tables 1 and 3) and an effective BV treatment seems to attenuate the PTB-
associated proinflammatory responses (221, 222), current treatment strategies, usually with
metronidazole or clindamycin, do not seem to reduce the risk for PTB (208, 247). Although
this observation might suggest that the BV-associated VMB is not contributory to PTB risk,
other interpretations are plausible. Thus, it is also possible that resistance to metronidazole
by the relevant bacteria may be responsible for the persistence or rapid regrowth of these
bacteria or that treatment fails to reverse the negative impacts; e.g., inflammatory
responses, of these taxa (92, 221, 248, 249). Alternatively, sequestration of metronidazole
by L. iners could reduce efficacy of the antibiotic, permitting BV recurrence (250) and a con-
sequent failure to reduce PTB risk. It seems possible that a more effective elimination of
the BV-associated VMB, e.g., with multiple antibiotics, followed by reestablishment of a
Lactobacillus-dominant microbiome, perhaps with prebiotics or probiotics, would both
improve treatment of BV and reduce risk of PTB.

Prediction of Preterm Birth

A variety of parameters; e.g., cervical length (200, 201), the composition of the VMB
(5, 12, 15, 147, 226, 227), and the local expression of inflammatory cytokines (5, 184,
217, 220), have been reported to be predictive of PTB. Several reports suggest that
some of these biomarkers are more relevant in earlier stages of pregnancy, likely due
to the tendency of the VMB to become more homogeneous and Lactobacillus domi-
nated as pregnancy progresses (5, 13, 15) (Fig. 3). A model for PTB prediction using the
abundance of four taxa, i.e., S. amnii, BVAB1, Prevotella cluster 2, and TM7-H1, in the
VMB early in pregnancy showed high sensitivity and specificity (5). Other recent mod-
els for prediction of risk for PTB invoked integrated proteomics and transcriptomics
data from plasma and metabolomics from urine samples (251) or a combination of cer-
vical length, gestational age, amniotic fluid glucose, and IL-6 (200). Honing of such
models to include vaginal taxa abundance, human gene expression, metabolomics
(e.g., D-lactic acid) (81) and cytokine profiling (e.g., IL-6) (217) as well as demographic
and clinical parameters (e.g., cervical length, preterm-birth history, racioethnicity, and
socioeconomic status) has promise for accurate early prediction of risk for preterm
birth and other adverse pregnancy outcomes.

THE VAGINAL VIROME AND VAGINAL HEALTH

Still largely missing in studies of the microbiomes of the female reproductive tract
is the virome component. Bacteriophages have been shown to help maintain stability
in the gut microbiome (252) and are also abundant in the VMB (253). Recent studies
suggest that the vaginal virome is associated with the composition of the VMB and BV
status, and vaginal viruses targeting BV-associated taxa have been identified (254,
255). Also, CRISPR genes, which function as an antibacteriophage defense system, have
been reported to be upregulated in the VMBs of women with BV (87, 255), implying
that bacteriophages may play a role in modulating bacterial components of the VMB.
Additionally, one early study implied that higher viral diversity and richness of the eu-
karyotic virome in the first trimester of pregnancy were associated with higher risk for
PTB (256), thus suggesting that the virome could play a significant role in obstetric
health. Thus, the virome of the reproductive tract should be further investigated.
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ADDRESSING DYSBIOSES OF THE VAGINAL MICROBIOME

Approximately 50% of women with BV experience a recurrence within as few as 12 weeks
(92) to 12 months (93, 94) after treatment with metronidazole. Treatment with other antibiot-
ics more effective against Gram-positive bacteria, e.g., erythromycin, seems to alter the bal-
ance of the microbiome, leading to vaginal dysbiosis (227). As outlined above, estrogen
enriches the vaginal epithelium in glycogen and favors proliferation of lactobacilli. Estrogen is
used to treat atrophic vaginitis associated with estrogen deficiency, e.g., menopause and post-
partum dysbiosis (257). However, certain clinical criteria, such as gynecological, breast, or other
malignancy, or risk thereof, could be a contraindication to the use of estrogen. Thus, low-dose
transvaginal topical estrogen has been shown to be effective at engendering a more optimal
Lactobacillus-rich VMB while not increasing the risk of estrogen-sensitive cancers (257, 258).
Additionally, more attention should be focused on nonestrogen therapy, e.g., probiotics, prebi-
otics, VMB transplantation, or possibly statins. Women taking statins are more likely to have a
VMB dominated by lactobacilli, possibly due to inhibition of toxicity of the vaginolysin toxin
from G. vaginalis (105). A recent report showed that introduction of L. crispatus into the repro-
ductive tract after metronidazole treatment decreases BV recurrence by 15% at week 12 (259).
Similarly, Lactobacillus-rich VMB transplants from healthy donors to five reproductive-age
women with recurrent BV resulted in long-term remission in at least four of the recipients (21).
Although such transplants introduce risks and other challenges, these results are promising
for future development of noninvasive probiotic treatment of dysbioses of the VMB.

PERSPECTIVES

Our understanding of the microbiome of the female reproductive tract has advanced rap-
idly in the past decade. Although not universally true, an optimal VMB is usually dominated
by species of Lactobacillus (25), particularly L. crispatus, L. jensenii or L. gasseri, and VMBs domi-
nated by other taxa, e.g., G. vaginalis, A. vaginae, BVAB1, Mycoplasma spp., Sneathia spp.,
Ureaplasma spp., E. coli, and GBS, are associated with adverse conditions, including BV, aerobic
vaginitis, vulvovaginal candidiasis, STIs, viral infections, cervical cancer, and adverse pregnancy
outcomes (e.g., PTB). However, this dogmamay be overstated, as VMB profiles that might nor-
mally be considered adverse are common in the absence of any clinical symptoms, com-
plaints, or complications. Although much progress has been made, it is clear that there is still
much lacking in our understanding of the contribution of the microbiomes of the female
reproductive tracts to human health and disease.

Dysbioses of the female reproductive tract are generally treated with antibiotics or
antifungals with considerable initial response. Although BV usually responds initially to
antibiotic therapy, its high recurrence rate remains an enigma (92–94). Several viru-
lence factors, e.g., biofilm formation and antibiotic resistance, are relevant to BV recur-
rence (260), and in-depth strain-level taxonomic and gene-centric studies are required
to dissect the mechanisms by which the relevant taxa persist. Application of probiotics
in combination with antibiotics and estrogen may be an option that aids in improving
the homeostasis of the VMB and thereby vaginal health. Vaginal protective lactobacilli,
in contrast to other Lactobacillus strains, have attracted significant attention as possible
probiotics (259). Other combinations of pharmaceuticals, e.g., statins (105) and vitamin
D (261, 262), may be helpful as well. Future study will undoubtedly clarify these possi-
bilities. However, it is abundantly clear that much work remains to be done to find a
combination of therapies that leads to a stable health-promoting VMB.

Although mice and epithelial cell models have been developed, study of the VMB is
hampered by the lack of better models, as even nonhuman primates have vaginal physiol-
ogy that differs greatly from that of the human female reproductive tract. In the absence
of good animal models, establishment of three-dimensional (3D) organoid models would
advance the field significantly (263). Most of the abundant taxa in the VMB are culturable,
e.g., G. vaginalis (110), S. amnii (106), A. vaginae (264), and P. bivia (264), but other taxa, e.g.,
BVAB1 and “Ca. Mycoplasma girerdii,” remain difficult to manipulate in vitro. Molecular
methods such as single gene deletion, genome-wide mutagenesis, and spatial genomics
and transcriptomics are also important in clarifying the mechanism by which these bacteria
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cause disease. Although metagenomic and metatranscriptomic results have largely con-
firmed that the compositions of the VMB (4, 5, 24, 265) and bacterial risk factors for PTB are
those identified in 16S rRNA-based studies (5), more in-depth longitudinal metagenomic
and metatranscriptomic studies would be helpful to identify clades and genes relevant to
BV, particularly in G. vaginalis (98) and L. iners (87).

In sum, recent studies have modified and greatly improved our understanding of
the impact of the microbiome of the female reproductive tract. Continued study is
required to elucidate the specific taxa that are relevant and the mechanisms by which
they exert their effects. The contribution of host genetics and the virome are yet to be
explored. Overall, a better understanding of the microbiome of the reproductive tract
holds great promise to improve human health and well-being.
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