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SUMMARY Fungal fruiting bodies are complex, three-dimensional structures that arise
from a less complex vegetative mycelium. Their formation requires the coordinated action
of many genes and their gene products, and fruiting body formation is accompanied by
major changes in the transcriptome. In recent years, numerous transcription factor genes
as well as chromatin modifier genes that play a role in fruiting body morphogenesis
were identified, and through research on several model organisms, the underlying regula-
tory networks that integrate chromatin structure, gene expression, and cell differentiation
are becoming clearer. This review gives a summary of the current state of research on
the role of transcriptional control and chromatin structure in fruiting body development.
In the first part, insights from transcriptomics analyses are described, with a focus on
comparative transcriptomics. In the second part, examples of more detailed functional
characterizations of the role of chromatin modifiers and/or transcription factors in several
model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis
cinerea, and Schizophyllum commune) that have led to a better understanding of regula-
tory networks at the level of chromatin structure and transcription are discussed.

KEYWORDS ascomycetes, basidiomycetes, chromatin, fruiting body formation,
multicellular development, transcription factors, transcriptome

INTRODUCTION

The formation of complex multicellular structures has evolved independently several
times in eukaryotes (1, 2). Within fungi (Eumycota), the most complex multicellular

structures are sexual fruiting bodies of filamentous fungi, which most likely evolved
independently at least twice, in ascomycetes and basidiomycetes (3). Fruiting body for-
mation in these groups progresses from a vegetative mycelium and requires the differ-
entiation of multiple specialized cell types that form three-dimensional structures that
are unique to sexual development and play a role in the production, protection, and
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dispersal of sexual spores (4–11). Even though ascomycete and basidiomycete fruiting
bodies evolved independently, they probably arose from the same “toolbox” of eukary-
otic genes in their last common ancestor that allowed the evolution of complex multi-
cellular structures (not all of which are sexual fruiting bodies) (3, 12). Understanding
the molecular processes that underlie fruiting body formation is of interest in develop-
mental biology because the production of three-dimensional structures from a myce-
lium (as opposed to true tissues in animals, the closest fungal relatives with complex
multicellular structures) might unravel novel molecular principles. It is also of interest
for applied research, e.g., for the use of fruiting bodies as food and sources of medici-
nal drugs, the formation of sexual spores as infective agents of pathogenic fungi, and
an improved understanding of the life cycles of pathogenic or biotechnologically rele-
vant fungi (13–15). Two reviews that give an overview of sexual reproduction and fruit-
ing body formation in asco- and basidiomycetes have already been published as part
of this Microbiology and Molecular Biology Reviews special collection (7, 16). Here, I
focus on the role of transcriptional control and the regulation of chromatin in fruiting
body development.

An important role for transcriptional control in fungal sexual development was first dis-
covered through the analysis of developmental mutants that turned out to carry causative
mutations in transcription factor genes. The mating type genes of Neurospora crassa were
the first transcription factor genes with a role in fruiting body formation to be identified in
a filamentous fungus (17, 18), and many (putative) transcription factor genes have been
identified since then (Table 1). In addition to the analysis of developmental mutants,
reverse genetic analyses were instrumental in identifying developmental roles for transcrip-
tion factor genes, either through the large-scale generation of deletion mutants for tran-
scription factor genes of selected model organisms (e.g., see references 19–22) or through
transcriptome analyses that led to the identification of developmentally regulated target
genes for functional characterization, as described in the next section. In addition to tran-
scription factors, transcription is also regulated by other proteins that modify chromatin,
and a number of genes encoding chromatin modifiers that are involved in fruiting body
differentiation have been identified in both asco- and basidiomycetes (Table 2).

This review is intended to give an overview in tabular form of the already large
number of transcription factors and chromatin modifiers that were shown to be
involved in fruiting body formation (Tables 1 and 2) since a discussion of each gene
would be outside the scope of this review. Instead, the following sections focus on
examples of studies that resulted in conceptual insights by using new methods or con-
ducting in-depths analyses of selected model organisms.

The next section gives an overview of studies in which global changes in chromatin or
transcriptomes during fruiting body development were analyzed to identify evolutionary
trends in gene expression, and the four subsequent sections discuss results about the roles
of chromatin modifications and transcriptional control in five model organisms for fruiting
body development, the ascomycetes N. crassa, Aspergillus nidulans, and Sordaria macrospora
and the basidiomycetes Coprinopsis cinerea and Schizophyllum commune.

CHANGES IN CHROMATIN STRUCTURE AND TRANSCRIPTOMES DURING FRUITING
BODY DEVELOPMENT

Studies in asco- and basidiomycetes have shown that differentiation processes are
accompanied by the massive restructuring of the transcriptome in the developing
fruiting bodies compared to the vegetative mycelium. This became clear early on in
the first expressed sequence tag (EST) study of different developmental stages in N.
crassa (23), and many analyses of different fungal species using different transcriptom-
ics methods have confirmed this finding (reviewed in references 3 and 24–26). Genes
that are differentially expressed under certain conditions might be involved in the cor-
responding biological processes and therefore make suitable candidates for functional
studies. However, in most species, the large number of genes that change their expres-
sion during fruiting body formation makes targeting genes for further characterization
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TABLE 1 Transcription factor genes involved in fruiting body developmente

Gene name(s) Species and mutant or overexpression phenotype(s)a Classb Reference(s)
Transcription factors encoded by

mating type genes
MAT-1-1-1 Neurospora crassa and Podospora anserina, no fertilization;

Cochliobolus heterostrophus, sterile; Aspergillus nidulans,
cleistothecia without spores; Aspergillus fumigatus, no
cleistothecia; Fusarium graminearum, perithecia without asci;
Didymella zeae-maydis, only a few ascospores produced;
Sclerotinia sclerotiorum, sclerotia but no apothecia; Botrytis
cinerea, no primordia (male and female sterile)

a domain 17, 103, 144–153

MAT-1-1-3 Fusarium graminearum, perithecia without asci; Podospora
anserina, strongly reduced ascospore production

HMG 146, 154, 155

MAT-1-2-1 Neurospora crassa, no mature perithecia; Podospora anserina, no
fertilization; Cochliobolus heterostrophus, sterile; Sordaria
macrospora, only protoperithecia; Aspergillus nidulans,
cleistothecia without ascospores; Aspergillus fumigatus, no
cleistothecia; Fusarium graminearum, perithecia without asci;
Didymella zeae-maydis, no ascospores; Sclerotinia
sclerotiorum, sclerotia but no apothecia; Botrytis cinerea, no
primordia (male and female sterile)

HMG 18, 103, 145–152,
156–158

HD1, HD2c Coprinopsis cinerea and Schizophyllum commune, double mutants
of HD and P/Rfmating type loci showmonokaryotic fruiting

HD 125–127, 159, 160

Other transcription factors
stuA, asm-1 Aspergillus nidulans, no cleistothecia and Hülle cells; Neurospora

crassa, no protoperithecia; Fusarium graminearum, no
perithecia; Arthroderma benhamiae, pseudocleistothecia
without asci

APSES domain 161–166

fgswi6, GlSwi6 Fusarium graminearum, fewer and smaller perithecia without
asci; Ganoderma lucidum, no fruiting bodies in RNAi
knockdown strains

APSES domain 167, 168

bri1 Schizophyllum commune, no fruiting bodies BRIGHT domain 130
devR Aspergillus nidulans, no cleistothecia and Hülle cells bHLH 169
urdA Aspergillus nidulans, increased cleistothecium formation bHLH 170
atfA Aspergillus nidulans, increased cleistothecium formation bZIP 171
flbB Aspergillus nidulans, increased cleistothecium formation bZIP 170
cpcA Aspergillus nidulans, overexpression leads to a block at the

microcleistothecium stage
bZIP 172

napA Aspergillus nidulans, overexpression leads to fewer ascospores bZIP 173
rsmA Aspergillus nidulans, overexpression leads to fewer ascospores bZIP 173
zipA Aspergillus nidulans, overexpression leads to fewer ascospores bZIP 173
fpo1 Fusarium graminearum, increased and earlier production of

perithecia
bZIP 174

zif1 Fusarium graminearum andMagnaporthe oryzae, no asci bZIP 175
asl-2, ts Neurospora crassa, ascospores do not germinate bZIP 20, 176
Smjlb1 Sordaria macrospora, no ascospores bZIP 177
c2h2 Agaricus bisporus, overexpression leads to accelerated

mushroom production; Schizophyllum commune, only fruiting
body precursors (aggregate stage)

C2H2 130, 178

flbC, flb-3 Aspergillus nidulans, increased cleistothecium formation;
Neurospora crassa, female and male sterile

C2H2 179, 180

mtfA Aspergillus nidulans, fewer cleistothecia and Hülle cells C2H2 181
nsdC Aspergillus nidulans, no cleistothecia; Aspergillus fumigatus, no

cleistothecia in crosses of two nsdCmutant strains
C2H2 182, 183

sltA Aspergillus nidulans, no cleistothecia and Hülle cells, rescued by
the addition of potassium ions

C2H2 184

vidA Aspergillus nidulans, smaller cleistothecia C2H2 185
pcs1 Fusarium graminearum, no perithecia C2H2 186
pacC, GlPacC Neurospora crassa, no protoperithecia; Ganoderma lucidum, no

primordia or fruiting bodies
C2H2 187, 188

zfc7 Schizophyllum commune, only fruiting body precursors
(aggregate stage)

C2H2 60

(Continued on next page)
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TABLE 1 (Continued)

Gene name(s) Species and mutant or overexpression phenotype(s)a Classb Reference(s)
fhpA Aspergillus nidulans, no cleistothecia FKH box 189
FoxE2 Sclerotinia sclerotiorum, no apothecia FKH box 190
SsFKH1 Sclerotinia sclerotiorum, no sclerotia (female sterile) FKH box 191
nsdD, sub-1, pro44, bcltf1, Ssnsd1,
PaNsdD, CcNsdD1/CcNsdD2

Aspergillus nidulans, no cleistothecia; Neurospora crassa and
Sordaria macrospora, only protoperithecia (these are
submerged in agar); Aspergillus fumigatus, no mating; Botrytis
cinerea, no sclerotia (female sterile); Sclerotinia sclerotiorum,
no apothecia; Trichoderma reesei, female sterile; Podospora
anserina, female sterile but more spermatia; Coprinopsis
cinerea, defects in fruiting body formation in double
knockdown of NsdD1/NdsD2 under a dark/light regime

GATA 20, 96–103

wc-1, lreA, Cmwc-1, FgWc-1, Sfwc-1,
dst1

Neurospora crassa, reduced protoperithecial production, no
phototropism of the perithecial beak; Aspergillus nidulans,
light-dependent reduction/inhibition of fruiting body
formation; Cordyceps militaris, no fruiting bodies in a
homozygous cross; Fusarium graminearum, fruiting bodies
under unfavorable conditions; Sordaria fimicola, perithecium
formation delayed, no light-dependent zonation pattern and
beak phototropism; Coprinopsis cinerea,d only stipes;
Schizophyllum commune,d no fruiting bodies

GATA 90, 128, 192–198

wc-2, lreB, FgWc-2 Neurospora crassa, reduced protoperithecial production, no
phototropism of the perithecial beak; Aspergillus nidulans,
light-dependent reduction/inhibition of fruiting body
formation; Fusarium graminearum, fruiting bodies under
unfavorable conditions; Schizophyllum commune, no fruiting
bodies

GATA 90, 128, 194, 196,
197, 199

asd4 Neurospora crassa, no asci when crossed as a male or female
parent

GATA 200

gat1 Schizophyllum commune, more but smaller fruiting bodies;
Pleurotus ostreatus, no fruiting bodies in a cross with a
compatible wild type

GATA 130, 201

steA, pp-1, ste12, cpst12, CfSte12 Aspergillus nidulans, no cleistothecia; Neurospora crassa, no
protoperithecia; Sordaria macrospora, impaired ascus and
ascospore development; Cryphonectria parasitica, female
sterile; Fusarium graminearum, fewer perithecia; Arthroderma
benhamiae, pseudocleistothecia without asci; Colletotrichum
fructicola, perithecia without asci

HD 165, 202–206

pah2 Podospora anserina, perithecial neck formation is delayed or
lacking

HD 207

pah5 Podospora anserina, perithecia without necks, reduced
ascospore pigmentation

HD 207

hom1 Schizophyllum commune, more but smaller fruiting bodies HD 130
hom2 Schizophyllum commune, no fruiting bodies HD 130
hmbC Aspergillus nidulans, reduced ascospore viability HMG 208
exp1 Coprinopsis cinerea, no pileus expansion and autolysis HMG 209
pcc1 Coprinopsis cinerea, monokaryotic fruiting HMG 210
pdd1 Flammulina velutipes, few to no fruiting bodies in RNAi

knockdown strains
HMG 133

Fvhmg1 Flammulina velutipes, increased fruiting in RNAi knockdown
strains

HMG 132

fmf-1 Neurospora crassa, no mature perithecia when crossed as a male
or female parent

HMG 211, 212

PaHMG5, FGSG_01366 Podospora anserina, male and female sterile; Fusarium
graminearum, smaller perithecia, no asci

HMG 213, 214

PaHMG6, hmbA Podospora anserina, reduced female fertility; Aspergillus
nidulans, cleistothecia with few ascospores

HMG 208, 214

PaHMG8 Podospora anserina, female sterile HMG 214
PaHMG9 Podospora anserina, female sterile HMG 214
fsd-1 Neurospora crassa, defective in female sexual development and

ascospore maturation
Ig fold 215

vib-1 Neurospora crassa, reduced no. of protoperithecia Ig fold 215
Fvmads2, Bcmads1 Fusarium verticillioides, no mating when in theMAT1-2

background; Botrytis cinerea, no sclerotia (female sterile)
MADS box 216, 217

(Continued on next page)
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difficult. Furthermore, as was shown in early studies of genes chosen for their expres-
sion profiles, not all genes that are differentially expressed under a certain condition
are absolutely required under that condition (24). One way to improve the identifica-
tion of potential developmental genes via transcriptomics as well as to gain insights
into the evolutionary trajectory of gene expression during development is the use of
comparative transcriptomics to identify evolutionarily conserved expression patterns
by comparing transcriptomes across species at the same developmental stages. The

TABLE 1 (Continued)

Gene name(s) Species and mutant or overexpression phenotype(s)a Classb Reference(s)
mcm1, Fvmads1, Fgmcm1,mcmA,
CfMcm1

Sordaria macrospora, only protoperithecia; Fusarium
verticillioides, no mating when in theMAT1-2 background;
Fusarium graminearum, no perithecia; Aspergillus nidulans, no
cleistothecia; Colletotrichum fructicola, no ascospores

MADS box 217–221

flbD Aspergillus nidulans, viable naked ascospores produced (no
peridium)

Myb domain 222

myt1 Fusarium graminearum, female sterile Myb domain 223
myt2 Fusarium graminearum, increased perithecium size Myb domain 224
myt3 Fusarium graminearum, male and female sterile Myb domain 225
tea1 Schizophyllum commune, strongly reduced fruiting body

formation
TEA/ATTS domain 129

rcm-1 Neurospora crassa, no protoperithecia Tetratricopeptide
repeat

226, 227

rco-1, cag1 Neurospora crassa, no protoperithecia; Coprinopsis cinerea,
fruiting body primordia but no gills

Tup N-terminal
domain

227–229

veA, vel1, bcvel1, ve-1 Aspergillus nidulans, no cleistothecia; Cochliobolus
heterostrophus, female sterile; Trichoderma reesei, no mating
in darkness, female sterile in light; Botrytis cinerea, no sclerotia
(female sterile); Neurospora crassa, fewer protoperithecia

Velvet domain 78, 83, 230–233

velB, vel2, ve-2 Aspergillus nidulans, no cleistothecia; Cochliobolus
heterostrophus, female sterile; Neurospora crassa, fewer
protoperithecia

Velvet domain 83, 232, 234

velC Aspergillus nidulans, deletion leads to reduced and
overexpression leads to increased no. of cleistothecia

Velvet domain 92

vosA, vos1 Aspergillus nidulans, defects in ascospore maturation;
Cochliobolus heterostrophus, deletion or overexpression
results in reduced no. of pseudothecia

Velvet domain 80, 91, 94, 234

rosA Aspergillus nidulans, cleistothecia produced in normally
unfavorable conditions (low glucose and high osmolarity)

Zn(II)2Cys6 235

vadZ Aspergillus nidulans, increased cleistothecium formation Zn(II)2Cys6 236
zcfA Aspergillus nidulans, decreased cleistothecium formation Zn(II)2Cys6 237
lfc1 Flammulina velutipes, earlier and more basidiomata in RNAi

knockdown strains
Zn(II)2Cys6 134

hada-1, ada-6 Hypsizygus marmoreus, fewer fruiting bodies in RNAi
knockdown strains; Neurospora crassa, few protoperithecia,
no perithecia (female sterile)

Zn(II)2Cys6 238, 239

asm2 Sordaria macrospora, defects in ascospore maturation Zn(II)2Cys6 59, 117
pro1, adv-1, nosA Sordaria macrospora and Aspergillus nidulans, only fruiting body

precursors; Neurospora crassa, no fruiting body precursors;
Cryphonectria parasitica, female sterile

Zn(II)2Cys6 20, 109, 112, 113

fst1 Schizophyllum commune, only immature mushrooms are
produced

Zn(II)2Cys6 60

fst3, Pofst3 Schizophyllum commune and Pleurotus ostreatus, more but
smaller fruiting bodies

Zn(II)2Cys6 31, 240

fst4 Schizophyllum commune, no fruiting bodies Zn(II)2Cys6 31
aOnly phenotypes related to fruiting body development are given.
bbHLH, basic helix-loop-helix; C2H2, C2H2 zinc finger; FKH box, forkhead box; HD, homeodomain; HMG, high mobility group.
cTwo homeodomain genes, HD1 and HD2, usually form a divergently transcribed gene pair at the basidiomycete HDmating type locus. The resulting proteins belong to two
different classes of homeodomain transcription factors (241).
dThe Coprinopsis cinerea dst1 gene and the Schizophyllum commune wc-1 gene do not encode a GATA zinc finger domain, in contrast to their homologs in ascomycetes (128,
193). The lack of the zinc finger domain appears to be a feature of basidiomycete WC-1 homologs (242). Nevertheless, the genes were included in this list since the WC-1
protein likely forms a transcription factor complex with the GATA factor WC-2, and both genes are required for fruiting body formation in S. commune (128).

eGenes are sorted according to the encoded transcription factor class and within class according to the species name. This table does not contain transcription factor genes
that were identified in large-scale screens of N. crassa (19, 20) and F. graminearum (21, 213) deletion strains.
fP/R, pheromone precursors and pheromone receptors.
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TABLE 2 Genes encoding chromatin modifiers or transcriptional coactivators involved in fruiting body developmentd

Gene name(s) Species and mutant or overexpression phenotype(s)a Function or classb Reference(s)
snt-2, sntB Neurospora crassa, no perithecia; Aspergillus flavus, no

sclerotia
BAH/PHD domain protein 243, 244

crc1 Sordaria macrospora, single mutant fertile, only
protoperithecia in a Dcrc1 Dcac2 Drtt106 Dscm1
quadruple mutant

CRC domain protein 32, 59

dmtA Aspergillus nidulans, immature cleistothecia without
ascospores

(Putative) DNA methyltransferase 245

asf1 Sordaria macrospora, only protoperithecia H3/H4 histone chaperone 28, 59
rtt106 Sordaria macrospora, single mutant fertile, only

protoperithecia in a Dcrc1 Dcac2 Drtt106 Dscm1
quadruple mutant

H3/H4 histone chaperone 28, 32, 59

cac2 Sordaria macrospora, single mutant fertile, only
protoperithecia in a Dcrc1 Dcac2 Drtt106 Dscm1
quadruple mutant

H3/H4 histone chaperone (CAF-1
complex subunit)

28, 32, 59

AflGcnE, FgGCN5 Aspergillus flavus, no sclerotia; Fusarium graminearum,
no perithecia

HAT 246, 247

FgRTT109 Fusarium graminearum, smaller perithecia with a few
ascospores

HAT 246

FgSAS3 Fusarium graminearum, fewer perithecia HAT 246
SNT2 Colletotrichum fructicola, smaller perithecia without

spores
HDAC Rpd3 complex subunit 248

HOS2 Colletotrichum fructicola, smaller perithecia without
spores

HDAC Set3 complex subunit 248

FTL1 Fusarium graminearum, female sterile HDAC Set3 complex subunit 249
HDF1 Fusarium graminearum, female sterile HDAC Set3 complex subunit 250
dim-3 Neurospora crassa, homozygous sterile Importin subunit a 251
FfJmhy Flammulina filiformis, reduced stipe elongation in RNAi

knockdown strains
JmjC domain protein 131

rtfA Aspergillus nidulans, no cleistothecia and Hülle cells (Putative) Paf1 complex subunit 252
fscA Aspergillus nidulans, no cleistothecia RcLS2F complex subunit 253
scrC Aspergillus nidulans, no cleistothecia RcLS2F complex subunit 253
spt3 Sordaria macrospora, only protoperithecia SAGA complex subunit 32, 117
ich1 Coprinopsis cinerea, no pileus differentiation SAM-dependent methyltransferase

domainc
254

laeA, bclaea, lae-1 Aspergillus nidulans, fewer Hülle cells and more but
smaller cleistothecia with fewer ascospores,
cleistothecia produced in light; Botrytis cinerea, no
sclerotia (female sterile); Neurospora crassa, fewer
protoperithecia

SAM-dependent methyltransferase
domainc

82, 93, 232, 233

vapB Aspergillus nidulans, cleistothecia produced in light SAM-dependent methyltransferase
domainc

85

vipC Aspergillus nidulans, cleistothecia produced in light SAM-dependent methyltransferase
domainc

85

scm1 Sordaria macrospora, single mutant fertile, only
protoperithecia in a Dcrc1 Dcac2 Drtt106 Dscm1
quadruple mutant

(Putative) SAS complex subunit 32

kmt6 Fusarium graminearum, sterile (no fruiting body
precursors)

SET domain protein (H3K27
methyltransferase)

73

dim-5 Neurospora crassa, few spores in homozygous crosses SET domain protein (H3K9
methyltransferase)

58, 69

Cc.arp9 Coprinopsis cinerea, no fruiting body formation (Putatively) associated with SWI/
SNF and RSC complexes

255

Cc.snf5 Coprinopsis cinerea, no fruiting body formation (Putative) SWI/SNF complex
subunit

256

aOnly phenotypes related to fruiting body development are given.
bBAH, bromo-adjacent domain; CAF-1, chromatin assembly factor 1; CRC, chromatin remodeling complex; HAT, histone acetyltransferase; JmjC, Jumonji C (putative histone
H3 demethylase domain); HDAC, histone deacetylase; PHD, plant homeodomain zinc finger; RcLS2F complex, RpdA core/LafA/SdsC/ScrC/FscA complex (a histone lysine
deacetylase complex); RSC, remodels the structure of chromatin (a member of the SWI/SNF chromatin remodeling complex family); SAGA, Spt-Ada-Gcn5 acetyltransferase
(a transcriptional coactivator); SAM, S-adenosylmethionine; SAS, something about silencing; SET domain, Su(var)3-9, enhancer-of-zeste, trithorax domain (a lysine
methyltransferase family); SWI/SNF, switch/sucrose nonfermentable (a class of ATP-dependent chromatin remodeling complexes).

cThe methyltransferase proteins LaeA, VapB, and VipC from A. nidulans have not yet been shown to directly modify chromatin components but are included here because
they are nuclear proteins with (at least) an indirect role in mediating the chromatin structure. The putative methyltransferase protein Ich1 from C. cinerea has not yet been
shown to be involved in regulating the chromatin structure but was included because of its predicted methyltransferase domain and nuclear localization.
dGenes are sorted according to (predicted) function and within group according to the species name.
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idea behind this is that the evolutionary conservation of gene expression, i.e., of a
gene being active as opposed to just being present in a genome, is a strong indicator
of functional significance (27). The first comparative transcriptomics studies of fruiting
body development were conducted based on EST sequencing or microarray hybridiza-
tion (28–31), but since the advent of next-generation sequencing techniques, compar-
ative transcriptomics analyses were done mostly using RNA sequencing (RNA-seq) data
in studies focusing on ascomycetes (32–36), basidiomycetes (37–40), or both (12).

Comparative transcriptomics can be used to identify not only conserved expression
patterns across species but also expression patterns that diverged between species af-
ter a split of lineages from a common ancestor. Such patterns can be used to identify
group- or species-specific expression patterns that might help to explain morphologi-
cal or physiological differences between species and identify genes that might mediate
these differences (41, 42). In fungi, this was demonstrated in two studies using species
from the Sordariomycetes (35, 36). RNA-seq data from several stages of fruiting body
formation for all analyzed species were used to infer expression profiles from the last
common ancestors at the nodes of the corresponding phylogenetic species tree. This
allowed those authors to identify genes that had significantly changed expression in
certain species/lineages for all analyzed developmental stages. The analysis of deletion
mutants for some of the identified genes revealed a high proportion of cases where
the mutant phenotypes in a species deviated from the wild type at the developmental
stage corresponding to the highest expression levels in this species. Taken together,
these data highlight the regulatory complexity of fruiting body development and the
rapid evolution of regulatory networks that control this process, even within closely
related species (35, 36).

Apart from comparative transcriptomics, transcriptomics analyses of developmental
mutants, especially mutants of transcription factor or chromatin modifier genes, can also
be extremely informative for analyzing gene functions and identifying target genes for
further characterization (reviewed in references 4, 24, and 25). For genes encoding tran-
scription factors, it is informative not only to analyze mutant transcriptomes, which can
reveal direct as well as indirect target genes of the corresponding transcription factors,
but also to perform ChIP-seq (chromatin immunoprecipitation sequencing) experiments
that identify genomic DNA binding sites of the transcription factor proteins, thereby dis-
tinguishing between direct and indirect target genes. ChIP-seq analyses were used to
identify DNA binding sites and, thereby, direct target genes for the transcription factor
PRO1 in S. macrospora and its ortholog ADV-1 in N. crassa (43, 44).

RNA-seq data not only can be used to infer transcript levels but also allow the anal-
ysis of other biological features, e.g., RNA editing, the presence of antisense transcripts,
or allele-specific expression in dikaryons. In recent years, it was shown that A-to-I
(adenosine-to-inosine) RNA editing is widespread and plays a role in fruiting body mor-
phogenesis in filamentous ascomycetes (45–51). This was first discovered in Fusarium
graminearum, where it was shown that A-to-I editing occurs in a high number of
mRNAs in perithecia but not in the vegetative mycelium and that RNA editing of two
sites in the coding region is essential for the function of the developmental gene PUK1
(49). In coding regions, the change from A to I is equivalent to a change to guanosine
(G) since the ribosome interprets I as G during translation (45). A-to-I RNA editing in
coding regions of transcripts was subsequently shown to be widespread in filamentous
ascomycetes (47–51), whereas in basidiomycetes, it does not appear to be prevalent
during mushroom formation (39). Antisense transcripts as well as allele-specific expres-
sion in dikaryons were found during mushroom formation in basidiomycetes (31, 39,
52), but it is not yet clear if these phenomena are mostly transcriptional noise or sour-
ces of functional transcripts that might play a role in the regulation of fruiting body
morphogenesis.

Since there are global transcriptome changes during fruiting body formation, one
might hypothesize that they are mediated by or result in concomitant large-scale
changes in the chromatin structure, e.g., through modifications of DNA or histones,
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changes in nucleosome occupancy, or changes in the three-dimensional structure and,
thus, the accessibility of chromatin domains. However, even though DNA methylation
as well as histone modifications have been studied in great detail in the ascomycete
model organism N. crassa as well as the phytopathogenic fungi Fusarium graminearum
and Zymoseptoria tritici, these studies have focused mostly on the analyses of molecu-
lar mechanisms in vegetative tissues, not on the effects of chromatin modifications on
fruiting body development (53–57). Nevertheless, some studies also looked at fruiting
body formation: an analysis of the developmental consequences of the mislocalization
of histone H3 trimethylation at lysine 27 (H3K27me3) in N. crassa (58) and an analysis
of the nucleosome distribution and DNA methylation in a developmental mutant of S.
macrospora (59) are described in the next sections. In basidiomycetes, a recent analysis
of the dimethylation of histone H3 at lysine 4 (H3K4me2) during mushroom formation
in Schizophyllum commune was the first ChIP-seq analysis of mushroom formation (60).
Those authors identified about 800 sites of differential enrichment of H3K4me2 during
monokaryotic (vegetative) or dikaryotic (fruiting body) development, associated with
about 960 genes. Two transcription factor genes with genomic H3K4me2 enrichment
during fruiting body development, fst1 and zfc7, were functionally characterized by
generating deletion mutants, and both genes were shown to be required for fruiting
body formation (60) (Table 1).

Analyses of potential changes in the three-dimensional chromatin structure during
fruiting body development have not yet been performed for fungi. One technique that
can be used to infer contacts between genomic regions and, thus, map the three-
dimensional structure of chromatin is Hi-C (chromosome conformation capture
coupled with high-throughput sequencing) (61). Hi-C was used in N. crassa to study
the chromosome organization in the wild type and mutants of genes involved in the
establishment of heterochromatin, but the strains were grown only vegetatively (62,
63). Hi-C was also used to improve the assemblies of several fungal genomes (e.g., see
references 64 and 65), but studies using Hi-C to analyze structural changes in chroma-
tin during development have yet to be performed.

Overall, there has already been much progress in the analysis of mechanisms of
fruiting body development at the chromatin and transcriptome levels, and large num-
bers of transcription factor genes as well as chromatin modifier genes involved in this
process have been identified in ascomycetes and basidiomycetes (Tables 1 and 2).
However, we still lack critical information regarding the role of chromatin modifica-
tions, interactions between specific transcription factors and chromatin modifiers, and
the spatiotemporal control of these processes at different stages of development.
Techniques that have been developed for other systems or that were applied to fungi
in the vegetative state, e.g., Hi-C, single-cell transcriptomics (scRNA-seq), or spatial
transcriptomics (63, 66, 67), could be applied in future studies of fruiting body develop-
ment to address these open questions.

NEUROSPORA CRASSA: A ROLE FOR HISTONE METHYLATION IN DEVELOPMENT

Much of our knowledge of the molecular mechanisms of heterochromatin forma-
tion and maintenance in fungi has been gained through analyses of N. crassa (53–55,
68). The corresponding studies concentrated mostly on the molecular mechanisms at
the levels of DNA, histones, and chromatin modifiers, and connections to morphoge-
netic events were not usually the focus of these analyses. However, intriguing insights
into a connection among histone methylation, heterochromatin, and fruiting body de-
velopment were revealed in a study by Basenko and coworkers (58). Those authors
found that the developmental phenotype of a Ddim-5 mutant, which produces only a
few, mostly inviable ascospores (69), can be rescued in a Ddim-5 Dset-7 double mutant
(58) (Fig. 1). dim-5 encodes the catalytic subunit of the histone methyltransferase com-
plex DCDC (DIM-5/DIM-7/DIM-9/CUL4/DDB1 complex), which is required for histone
H3 lysine 9 methylation (H3K9me3) (70), whereas set-7 encodes the catalytic subunit of
the histone H3 lysine 27 (H3K27) methyltransferase complex PRC2 (polycomb
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FIG 1 Role of histone modifications in the development of Neurospora crassa. Shown are models of DNA (gray line)
wrapped around histone octamers (purple cylinders) with different DNA and histone modifications in the wild-type and
several mutant strains (strains are indicated in each panel; histone H3 at lysine 9 [H3K9me3] and H3K27me3 status and
the development of mature fruiting bodies are indicated in separate panels on the right). Arrows indicate steps that
occur during the methylation of histones and DNA: in constitutive heterochromatin regions, the methyltransferase DIM-5
methylates H3K9me3, and H3K9-methylated histone H3 is recognized by heterochromatin protein 1 (HP1), which recruits
the DNA methyltransferase DIM-2, which is responsible for all cytosine methylation in N. crassa (69, 139–141). The PRC2
complex, of which SET-7 is an essential subunit, methylates histone H3 at lysine 27 in facultative heterochromatin (55, 71,
142). Mutation of dim-5 results in the relocalization of H3K27me3 marks to constitutive heterochromatin regions that are
no longer marked by H3K9me3. The dim-5 mutant does not form mature spores, in contrast to a set-7 mutant and the
dim-5 set-7 double mutant, both of which lack H3K27me3 (58). Thus, neither H3K9me3 nor H3K27me3 is essential for
fruiting body formation, but the mislocalization of H3K27me3 causes developmental defects. HP1 is required for the
formation of H3K27me3 marks in facultative heterochromatin, and the lack of HP1 leads to the relocalization of
H3K27me3 to constitutive heterochromatin, similar to the loss of DIM-5 (not depicted), but sexual development was not
tested in an HP1 mutant strain (58).

Chromatin in Fungal Fruiting Body Development Microbiology and Molecular Biology Reviews

December 2022 Volume 86 Issue 4 10.1128/mmbr.00104-22 9

https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00104-22


repressive complex 2) (71). In the wild type, H3K9 methylation by DIM-5 is present in
constitutive heterochromatin, whereas H3K27 methylation by PRC2 is found in faculta-
tive heterochromatin (58) (Fig. 1). In a Ddim-5 mutant, H3K9me3 is no longer present,
and H3K27me3 marks are shifted from facultative to constitutive heterochromatin
regions (58) (Fig. 1). Based on these findings, three possible explanations for the devel-
opmental phenotype of the Ddim-5 mutant might be hypothesized: (i) it is caused by
the lack of H3K9me3, (ii) it is caused by the lack of H3K27me3 in facultative heterochro-
matin, or (iii) it is caused by the presence of H3K27me3 in constitutive heterochroma-
tin. The finding that the developmental phenotype is rescued in a Ddim-5 Dset-7 dou-
ble mutant, whereas a Dset-7 single mutant is fertile, indicates that neither the lack of
H3K9me3 (which is missing in the fertile double mutant) nor the lack of H3K27me3 in
facultative heterochromatin (which is missing in the double mutant and the Dset-7 mu-
tant) leads to a sterile phenotype (Fig. 1). Therefore, the mislocalization of H3K27me3 to
constitutive heterochromatin regions is responsible for the developmental phenotype of
the Ddim-5 mutant (58). Interestingly, the Dset-7 mutant, while fertile in homozygous
crosses (58), forms high numbers of false perithecia when incubated without a mating part-
ner, a phenotype that it shares with a mutant in the epr-1 gene that mediates H3K27 meth-
ylation-mediated silencing (72). These data suggest that H3K27 methylation and its down-
stream effects have a repressive function in sexual development. The Depr-1 mutant does
not show a mislocalization of H3K27 methylation (72); however, whether the deletion of
epr-1 is able to rescue the sterile phenotype of the Ddim-5 mutant similarly to the deletion
of set-7 has not yet been tested.

Similar to the rapid evolution of transcription patterns and the corresponding regu-
latory networks mentioned above (35, 36), the regulation of fruiting body development
by chromatin modifications might undergo rapid evolutionary changes, as evidenced
by the finding that in F. graminearum, the set-7 homolog kmt6 is required for fruiting
body formation (73) (Table 2). Thus, the elucidation of the conserved versus lineage-
specific effects of the chromatin structure on fungal multicellular development will be
an important topic of future investigations.

ASPERGILLUS NIDULANS: VELVET PROTEINS AND A FAMILY
OF METHYLTRANSFERASES BALANCE SECONDARY METABOLISM
AND DEVELOPMENT

The filamentous ascomycete A. nidulans is able to form sexual fruiting bodies (cleis-
tothecia) that contain ascospores and also asexual conidiophores that produce mitotic
spores (conidia), and a network of dynamic protein complexes orchestrates the bal-
ance between sexual and asexual development as well as secondary metabolism
through the regulation of gene expression (74) (Fig. 2). Major components of these
protein complexes are four velvet domain proteins (VeA, VelB, VelC, and VosA), four
proteins with methyltransferase domains (LaeA, VapB, VipC, and LlmF), the red-light
photoreceptor FphA, and the blue-light photoreceptor LreA and its interaction partner
LreB (75, 76). The first of the corresponding genes to be discovered was veA, based on
the veA1 mutant, in which development is biased toward conidiation even under
unfavorable conditions like the absence of light (74, 77). This mutant has been used as
a laboratory strain since the 1960s, but it was not until nearly 4 decades later that the
veA gene was cloned in 2002 (78). However, the molecular role of the corresponding
VeA protein could not be identified at that time since VeA did not have any homologs
with known functions. A characteristic domain present in VeA was named the velvet
domain, and it turned out that gene families encoding velvet domain proteins exist
not only in A. nidulans but also in other filamentous fungi (74, 79). In 2013, it was
shown through an analysis of crystal structures and electrophoretic mobility shift
assays that the velvet domain of the VosA protein from A. nidulans is a DNA binding
domain with structural homology to the mammalian transcription factor NF-kB, indi-
cating that the velvet proteins constitute a family of transcription factors (80).

Another group of genes involved in regulating the balance between sexual and
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asexual development and secondary metabolism is a family of methyltransferase
genes. The first member to be discovered was laeA, for which the corresponding mu-
tant was identified in a screen for mutants defective in sterigmatocystin gene cluster
activity (81). One of the mutants was complemented through transformation with a
cosmid library, and the complementing gene was named laeA (for loss of aflR expres-
sion since aflR, the main regulator gene within the sterigmatocystin gene cluster, is no
longer expressed in the laeA mutant) (82). Subsequent analyses identified laeA as not
only a regulator of the sterigmatocystin gene cluster but also a global regulator of sec-
ondary metabolism (82). The LaeA protein contains a conserved S-adenosylmethionine
(SAM) binding site found in methyltransferases, and based on the fact that LaeA local-
izes to the nucleus and influences the transcriptional activity of secondary metabolite
gene clusters (82, 83), it was hypothesized that it might methylate chromatin compo-
nents. Studies on histone modifications in genomic regions of some secondary metab-
olism genes showed that H3K9me3 levels that mark inactive genes are increased in a
DlaeA mutant, and the overexpression of the methyltransferase protein VapB resulted
in a reduction in overall H3K9me3 levels (84, 85). However, despite significant efforts,
no direct targets of methylation by LaeA or the other related methyltransferases VapB,
VipC, and LlmF have been identified so far (75, 86). Furthermore, ChIP-seq analyses of
A. nidulans under conditions of primary or secondary metabolism did not show an
enrichment of histone modifications, including H3K9me3, in secondary metabolism
gene clusters, suggesting that the relationship between these methyltransferases and
histone modifications in secondary metabolism gene clusters may be indirect (87).

FIG 2 Balancing development and secondary metabolism in Aspergillus nidulans. Four velvet domain proteins and four methyltransferase
domain proteins balance sexual development, asexual development, and secondary metabolism in Aspergillus nidulans. Depending on the
growth conditions, the velvet domain proteins form different protein complexes with each other, the methyltransferase proteins, and red-
light and blue-light photoreceptors (see the text). Different complexes support either sexual or asexual development (Based on references
74, 75, and 143).
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Thus, any direct targets of the methyltransferases LaeA, VapB, VipC, and LlmF remain
to be elucidated.

Nevertheless, much progress has been made in unraveling the composition and
subcellular localization of protein complexes containing velvet proteins, methyltrans-
ferases, and photoreceptors in various combinations that mediate different develop-
mental and metabolic stages (Fig. 2). The velvet domain proteins VeA and VelB are
required for fruiting body formation, which is mediated by a VeA-VelB dimer in the nu-
cleus (78, 83, 88). Both proteins are also part of different protein complexes within the
nucleus depending on the growth conditions or extracellular signals that favor either
sexual or asexual development (74, 75). The nuclear entry of VeA is modulated by the
methyltransferase domain proteins VipC, VapB, and LlmF (85, 89). Within the nucleus,
VeA can interact with the methyltransferase protein LaeA and the phytochrome FphA,
which in turn interacts with the photoreceptor complex formed by LreA and LreB (83,
90). The exact function of this complex with respect to fruiting body development has
yet to be determined. Protein complexes of the velvet protein VosA with VelB or VelC
are involved in ascospore maturation (80, 91–95).

In addition to velvet proteins and methyltransferase domain proteins, the balance
between sexual and asexual development in A. nidulans is also mediated by the tran-
scription factor NsdD. The nsdD gene encodes a GATA transcription factor, and homo-
logs of nsdD were shown to be involved in fruiting body formation in a number of
ascomycetes as well as the basidiomycete C. cinerea (Table 1) (20, 96–103); thus, NsdD
is a conserved developmental regulator in fungi. In A. nidulans, not only is the nsdD
gene required for the formation of fruiting bodies, but also the deletion of nsdD leads
to the formation of asexual spores under conditions that are not conducive to this de-
velopmental pathway in the wild type (97, 104). In the wild type, NsdD and VosA act
cooperatively to repress the expression of the brlA gene that is required for asexual
spore formation (105).

Thus, the picture of a highly dynamic network of nuclear protein complexes
emerges that balances developmental and metabolic outcomes depending on internal
and external signals. Among the open questions for further research are the molecular
functions of LaeA and related methyltransferases and the downstream targets of differ-
ent protein complexes that mediate different developmental pathways.

TRANSCRIPTION FACTORS AND CHROMATIN MODIFIERS AT DIFFERENT
DEVELOPMENTAL STAGES IN SORDARIA MACROSPORA

The homothallic ascomycete S. macrospora has been a model organism for the anal-
ysis of fruiting body (perithecium) formation as well as meiosis for decades (106–108),
and the first developmental gene required for fruiting body formation that was identi-
fied in S. macrospora was the transcription factor gene pro1 (109) (Fig. 3). pro1 was
identified by the complementation of a sterile mutant from a screen for strains that
were blocked at different stages of development. Mutants designated “pro” were
blocked at the stage of protoperithecium (immature fruiting body) formation (109,
110). PRO1 was shown to have transcriptional activation and DNA binding activities,
and it contains a Zn(II)2Cys6 DNA binding domain that is required for fruiting body for-
mation (44, 111). Several pro1 orthologs in other ascomycetes were also shown to be
required for fruiting body development, indicating that PRO1 is a conserved develop-
mental transcription factor (20, 112, 113) (Table 1).

Transcriptome analyses of the pro1 mutant compared to the wild type revealed a num-
ber of genes that are differentially regulated in the pro1 mutant (114–116). Among the
genes that are upregulated in young fruiting bodies of the wild type but not the pro1 mu-
tant is pro44, which also encodes a transcription factor (116). pro44 was originally discovered
through genome sequencing of the sterile pro44 mutant, and it encodes a GATA domain
protein that is most strongly expressed in the outer layer of young fruiting bodies (59, 100).
pro44 is the ortholog of the A. nidulans nsdD gene described above. Mutants of pro44 ortho-
logs have been analyzed in several ascomycetes and the basidiomycete C. cinerea and have

Chromatin in Fungal Fruiting Body Development Microbiology and Molecular Biology Reviews

December 2022 Volume 86 Issue 4 10.1128/mmbr.00104-22 12

https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00104-22


blocks mostly at the early stages of fruiting body development (20, 96–103) (Table 1). Thus,
similar to pro1, pro44 encodes a conserved developmental transcription factor, and the
expression of pro44 in young fruiting bodies is dependent on pro1 (Fig. 3). Transcriptome
analysis of a Dpro44 mutant identified the transcription factor gene asm2 among genes
that are dependent on pro44 for upregulation in young fruiting bodies (59). Similar to pro1,
asm2 encodes a Zn(II)2Cys6 zinc cluster transcription factor, but in contrast to pro1, it is not
required for early fruiting body development but is involved in ascospore maturation (59,
117). Thus, a transcription factor cascade including PRO1, PRO44, and ASM2 is involved in
fruiting body development, although it is not yet clear if the activation of the more down-
stream-acting transcription factors is achieved directly or indirectly (Fig. 3).

Through comparative transcriptomics analyses, two chromatin modifiers that are
essential for sexual development in S. macrospora were identified (28, 32, 117) (Table
2). The histone chaperone ASF1 and the SAGA complex subunit SPT3 are involved in
the early steps of fruiting body development (Fig. 3), similar to PRO1 and PRO44.
However, a transcriptomics analysis of Dasf1 and Dpro44 mutants showed distinct
expression patterns in the mutant strains, pointing to the involvement of ASF1 and
PRO44 in different aspects of development (59).

ASF1 is a conserved eukaryotic histone chaperone that binds to histones H3 and H4
and is involved in the assembly and disassembly of nucleosomes (118, 119). In addition, it
can interact with nonhistone proteins and mediate their chromatin-related functions, e.g.,
histone acetylation through interaction with the histone acetyltransferase Rtt109 from
Saccharomyces cerevisiae (120). However, the connection between the molecular function
of ASF1 and its role in fruiting body development is not yet clear. It was hypothesized that
the lack of asf1 might lead to changes in nucleosome positioning, thereby preventing the
chromatin changes required for correct gene expression during development. However,
micrococcal nuclease sequencing to determine nucleosome positions in the wild type and
the Dasf1 mutant showed no significant differences in nucleosome spacing and position-
ing around transcriptional start sites, making this hypothesis unlikely (59). Through bisul-
fite sequencing, reduced cytosine methylation levels were identified in the Dasf1 mutant,
but whether these have any functional consequences remains to be elucidated (59).

In addition to the early-acting chromatin modifiers ASF1 and SPT3, four chromatin
modifiers that have redundant functions later in sexual development were identified in

FIG 3 Transcriptional and chromatin control during fruiting body development in Sordaria macrospora. The top row
shows the life cycle of S. macrospora, which is completed in 7 days under laboratory conditions. The transcription factors
PRO1, PRO44, and ASM2 have been shown to be involved in fruiting body formation, with pro44 transcript levels
depending on pro1 and asm2 transcript levels depending on pro44 (see the text). (Subunits of) chromatin modifiers and
general transcription factors in the bottom row are involved in fruiting body formation at different developmental stages
(see the text). Blue circles indicate as-yet-unknown factors connecting the activities of specific transcription factors and
chromatin modifiers. (Pictures of life cycle stages republished from Applied Microbiology and Biotechnology [107]).
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S. macrospora (Fig. 3 and Table 2). Single mutants of the histone chaperone genes cac2
and rtt106 as well as the chromatin modifier genes crc1 and scm1 are fertile, as are all
combinations of double mutants (28, 59). However, triple mutants show reduced fruit-
ing body formation, and the corresponding quadruple mutant is completely sterile
(32). Thus, it seems likely that there are certain requirements for chromatin structure
and modifications that allow fruiting body formation to proceed. This might include
the possibility that the establishment and maintenance of distinct cell types and stages
within the fruiting body require cell type-specific chromatin occupancy and accessibil-
ity landscapes, as found for multicellular plants and animals (121–124). One might also
hypothesize that the activities of specific transcription factors and chromatin modifiers
have to be coordinated, but the molecular basis of these putative interactions is not
yet clear (Fig. 3). Future experiments to prove or disprove these hypotheses could
include analyses of DNA and histone modifications as well as three-dimensional chro-
matin structures in the wild type and mutants under conditions of fruiting body devel-
opment. It would also be important to generate data at high spatial and temporal reso-
lutions, ideally at the single-cell level for different cell types during different stages of
development.

TRANSCRIPTION FACTOR NETWORKS THAT REGULATE MUSHROOM FORMATION
IN AGARICOMYCETES

Similar to ascomycetes, the first transcription factors with a role in fruiting body for-
mation that were identified in basidiomycetes were mating type genes, in this case,
the homeodomain protein-encoding genes of the HDmating type locus that were ana-
lyzed in the agaricomycetes Coprinopsis cinerea and Schizophyllum commune (125–
127). However, even though transcription factor networks in basidiomycete develop-
ment are less well known than those for ascomycetes, in the last 2 decades, a number
of other transcription factors as well as chromatin modifiers involved in mushroom for-
mation were identified in the two model species C. cinerea and S. commune (Fig. 4)
(11). In S. commune, a network of transcription factors acting at different stages of de-
velopment could be established based on transcriptome data of wild-type and mutant
strains (128–130) (Fig. 4). While several transcription factor genes, for example, wc-2,
ada1, nsdD, pacC, rco-1, and swi6 (Table 1), are involved in fruiting body formation in
both ascomycetes and basidiomycetes, the majority of the developmental transcrip-
tion factors identified in S. commune do not have direct orthologs in ascomycetes
(130). This is consistent with the hypothesis that fruiting body formation evolved inde-
pendently in asco- and basidiomycetes based on the gene repertoire of a common
ancestor with a predisposition for the evolution of multicellular development (3, 12).

In addition to the established model organisms S. commune and C. cinerea, a num-
ber of other mushroom-forming basidiomycetes have been used to analyze the role of
transcription factors and chromatin modifiers in fruiting body development, for exam-
ple, in several studies using RNA interference (RNAi) to knock down genes in
Flammulina species (131–134) (Tables 1 and 2). For the edible mushroom Cyclocybe
aegerita, transcriptomics data suggest that a transcription factor network similar to
that in S. commune might be active during fruiting body morphogenesis (135), and a
recently developed transformation system for this fungus will make functional studies
feasible (136).

CONCLUSIONS

Through a combination of forward and reverse genetics coupled with genome-
wide analyses of gene expression or chromatin modifications, the developmental roles
and molecular functions of many transcription factors and chromatin modifiers that
play a role in fungal fruiting body development have been revealed. However, for
none of the fungi studied so far do we have a complete picture where spatiotemporal
events at the molecular level can explain developmental effects at the morphological
level, e.g., transcription factor and/or chromatin modifier cascades in different cell
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types and at different developmental time points. But there is cause for optimism since
method developments in a number of areas will now allow us to better address these
questions. Techniques that might be especially helpful when applied to fruiting body
differentiation are, for example, spatial transcriptomics (137) and novel microscopy
techniques like light sheet microscopy, which can be used to study fluorescent mole-
cules within intact three-dimensional structures and was recently applied to fruiting
bodies of S. macrospora (138).
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