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• Our random forest (RF) model showed 
high performance in the prediction of 
air pollutants in the Yangtze River Delta. 

• Significant reductions were recorded in 
air pollutants during the COVID-19 
phase. 

• The Yangtze River Delta experienced 
rising trends in air pollutant concentra
tions in 2021–22. 

• Meteorological parameters indicated 
mixed behavior during the study period.  
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A B S T R A C T   

The novel coronavirus (COVID-19), first identified at the end of December 2019, has significant impacts on all 
aspects of human society. In this study, we aimed to assess the ambient air quality patterns associated to the 
COVID-19 outbreak in the Yangtze River Delta (YRD) region using a random forest (RF) model. To estimate the 
accuracy of the model, the cross-validation (CV), determination coefficient R2, root mean squared error (RMSE) 
and mean absolute error (MAE) were used. The results demonstrate that the RF model achieved the best per
formance in the prediction of PM10 (R2 = 0.78, RMSE = 8.81 μg/m3), PM2.5 (R2 = 0.76, RMSE = 6.16 μg/m3), 
SO2 (R2 = 0.76, RMSE = 0.70 μg/m3), NO2 (R2 = 0.75, RMSE = 4.25 μg/m3), CO (R2 = 0.81, RMSE = 0.4 μg/m3) 
and O3 (R2 

= 0.79, RMSE = 6.24 μg/m3) concentrations in the YRD region. Compared with the prior two years 
(2018–19), significant reductions were recorded in air pollutants, such as SO2 (− 36.37%), followed by PM10 
(− 33.95%), PM2.5 (− 32.86%), NO2 (− 32.65%) and CO (− 20.48%), while an increase in O3 was observed 
(6.70%) during the COVID-19 period (first phase). Moreover, the YRD experienced rising trends in the con
centrations of PM10, PM2.5, NO2 and CO, while SO2 and O3 levels decreased in 2021–22 (second phase). These 
findings provide credible outcomes and encourage the efforts to mitigate air pollution problems in the future.  
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1. Introduction 

The novel coronavirus disease 2019 (COVID-19) (later named as 
SARS-CoV-2), which was first reported at the end of December 2019 in 
Wuhan, China, has significant impacts on all aspects of human society 
(Lu et al., 2020). Due to its high transmission rate between humans and 
linked to the mortality, the World Health Organization (WHO) called it 
the coronavirus disease 2019 (COVID-19) (WHO, 2020a). To combat its 
large-scale spread and contagious effects, many countries around the 
world, implemented strict prevention and control policies such as 
community limitations, self-quarantine, social distancing, restrictions 
on traffic and lockdowns for public health (He et al., 2020; Hasnain 
et al., 2021). Being one of the largest populated countries in the World, 
the Chinese authorities executed a series of strict prevention and control 
measures on January 23, 2020 in the capital city of China’s Hubei 
Province, Wuhan and were subsequently followed by other cities and 
provinces (Le et al., 2020; Zhao et al., 2020a). 

The strict and stringent actions during the COVID-19 period posi
tively impacted the environment due to reduced anthropogenic activ
ities. Previously, many studies have reported a sudden decrease in air 
quality levels during the COVID-19 control period in different areas and 
regions across the globe, such as in China (He et al., 2020; Le et al., 2020; 
Zhao et al., 2020a; Hasnain et al., 2021; Hua et al., 2021; Wang et al., 
2021a), Turkey (Ghasempour et al., 2021; Orak and Ozdemir, 2021), 
India (Singh et al., 2020; Mor et al., 2021; Pal et al., 2021a, 2021b), 
United Arab Emirates (Teixidó et al., 2021), Spain (Tobías et al., 2020; 
Briz-Redón et al., 2021), Ireland (Spohn et al., 2022), USA (Bauwens 
et al., 2020; Berman and Ebisu, 2020), etc. Hua et al. (2021) studied the 
impact of the COVID-19 lockdown on NO2 and PM2.5 using a General
ized Additive Models (GAM) in Beijing, China. Singh et al. (2020) esti
mated the temporal and diurnal changes of the air pollutants and found 
a considerable decline in the concentrations of PM10, PM2.5, SO2, NO2 
and CO using real-time data in India. Briz-Redón et al. (2021) investi
gated the short-term impact of the COVID-19 lockdown on air pollution 
in Spain. The study reported that the lockdown had significant impact on 
reducing the levels of different air pollutants. Another study docu
mented by Sulaymon et al. (2021) revealed that the concentration levels 
of PM10, PM2.5, SO2, NO2 and CO decreased, while O3 levels increased 
during the lockdown period in Wuhan, China. 

Liu et al. (2022) investigated the PM2.5 level using a machine 
learning approach in Hubei Province, China. The study reported that 
changes in anthropogenic emissions have reduced the concentrations of 
PM2.5 in February and March 2020 by 33.3% compared with the last 
year, 2019. Huang et al. (2021) studied the variation of air pollutant 
concentrations and its formation mechanism during the period of 
COVID-19 in Wuhan. The authors of this found a significant increase in 
O3 levels (43.9%), while the concentration of PM2.5 decreased (31.7%). 

In developing countries air pollution is one of key issues, which poses 
a major threat to human health (He et al., 2017). The World Air Quality 
Report indicated that many Asian countries such as India, Pakistan, 
Bangladesh and China experienced high levels of air pollution in recent 
years (AirVisual, 2019). China is one of the largest developing countries 
in the world, with a large population, transportation and industries. In 
the last 3 decades, many areas and regions of the country have experi
enced high air pollution levels (Zhao et al., 2020b). In the last few years, 
due to strict restrictions on transportation, heating activities and in
dustrial emissions, a slight decline in air pollution was observed in 
China, but significant measures are still required to protect the envi
ronment at a significant level (Wu et al., 2020). After the first confirmed 
case of the COVID-19 pandemic and to retard its rapid spread, the 
Chinese authorities imposed stringent prevention and control measures. 
No doubt, the country effectively controlled to this infectious disease 
due to these appropriate measures, but as of July 18, 2022, China re
ported 237 new confirmed cases of the COVID-19, which shows that the 
country is still struggling with the COVID-19 outbreak (NHC). 

The present study analyzed the six air pollutant parameters (PM10, 

PM2.5, SO2, NO2, CO and O3) along with meteorological variables (air 
temperature, precipitation, relative humidity and wind speed) using 
daily average data in the YRD region. As discussed in the above lines, 
previously numerous studies have been documented, associated with 
the COVID-19 outbreak. Most of these studies have reported that the 
concentrations of different air pollutants were decreased during the 
lockdown period in different areas and regions across the globe, while 
some studies have discussed only a few air pollutant parameters to 
evaluate the effects of the COVID-19 lockdown or air pollution. How
ever, compared with the prior studies, the current work presents a 
deeper analysis with a new paradigm, which reports the COVID-19 
period (2020) and compared the results with the previous 2 years 
(2018–19) and the following two years (2021–22) to discover new 
findings using a machine learning model. In this study, we aimed to (1) 
assess the ambient air quality patterns in the YRD region using a random 
forest model; (2) explore the concentrations of different air pollutants 
during the same dates in the previous two years (2018–19); (3) to 
examine the status of air quality during the same period in the following 
two years (2021–22); (4) to evaluate the relationship between ambient 
air pollutants and meteorological variables during the study period. 
These findings provide a strong reference for the scientific community, 
policymakers and local authorities to mitigate air pollution problems in 
the future. 

2. Materials and methods 

2.1. Study area 

The Yangtze River Delta, with its ancient history, is located in the 
north-central subtropical zone and the economic hub of China (Fig. 1). 
According to the “Development Plan of the Yangtze River Delta City 
Cluster” there are 26 cities, including 8 cities of Anhui, 9 cities of 
Jiangsu, 8 cities of Zhejiang, and Shanghai, which belongs to the 
Yangtze River Delta city cluster, while the core area has 16 cities. The 
region accounts for 11.7% of the national population and 2.2% of the 
national land. According to statistics, the Yangtze River Delta contrib
uting about 21% gross domestic product (GDP) of the country. The 
Yangtze River Delta is one of the most important and leading economic 
development areas in China. In recent years, the region has been expe
rienced with severe air pollution due to rapid development in industri
alization and urbanization. 

2.2. Air quality data and periods of study 

Data on the daily average concentration for the six air pollutant 
parameters, including PM10 (particulate matter with the diameters of 
≤10 μm), PM2.5 (particulate matter with the diameters of ≤2.5 μm), SO2 
(sulphur dioxide), NO2 (nitrogen dioxide), CO (carbon monoxide) and 
O3 (ozone), were retrieved from the China Environmental Monitoring 
Station through 196 monitoring stations (CNEMC, 2019). These moni
toring stations are distributed over 13 cities of Jiangsu Province, 16 
cities of Anhui Province, 11 cities of Zhejiang Province and Shanghai. 
The data on the selected air pollutants were collected from 2018 to 
2022. The COVID-19 period (23 January 2020–8 April 2020) was 
researched over the course of five years with the purpose of observing 
the change and evaluating the patterns of ambient air quality in the 
Yangtze River Delta region. To acquire more accurate results from the 
study, the missing values were replaced with the average values and the 
daily average of each pollutant was used. 

2.3. Meteorological data 

Meteorological data were downloaded from the NASA meteorolog
ical data service (https://power.larc.nasa.gov), including air tempera
ture (T), precipitation (PP), relative humidity (RH) and wind speed (WS) 
through 12 meteorological monitoring stations (Fig. 1). 
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2.4. Random forest model and validation 

The random forest is a new machine learning model, which contains 
multiple classification and regression tree (CART) integrations (Bro
kamp et al., 2018). CART has three distinct features. First, the model 
creates numerous trees, a bootstrap sample generates these trees in the 
original dataset. All raw data are used to develop only one tree in CART. 
Second, the model performed the segmentation of tree nodes each time 
based on an optimum variant, while to segment the tree nodes CART 
picks the optimum variant among all forecasters. Finally, the trees in the 
model are fully grown. This helps the model not easy to overfit (Liu 
et al., 2018). There are three training parameters which can be defined 
in the random forest model: n_estimators, the trees number in the 
forest-based on a bootstrap observations sample; max_features, the 
features number to be considered for the superlative split (“auto” is the 
default setting: then max_features = n_features) and min_samples_lea, 
the number of minimum samples which required to be at a leaf node 
(one is the default value). The two key parameters (n_estimators and 
max_features) in predicting the concentrations of air pollutants were 
optimized and estimated based on the out-of-bag (OOB) calibration 
error rate. The entire model-fitting dataset was randomly split into a 
training set and test set, where 90% of the data comprised the initial 
training set and the test set comprised 10% of the data. Cross-validation 
was used to check to overfit of the model. 

2.5. Statistical analysis 

Determination coefficient R2, root mean squared error (RMSE) and 
mean absolute error (MAE) were used to evaluate the model’s perfor
mance. The larger the R2, the smaller the RMSE and MAE demonstrating 
that the prediction accuracy of the model is higher. These matrices used 

the following formulas: 

R2 =
∑n

i=1
(Pi − M)

2 /
∑n

i=1
(Mi − M)

2 (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
|Mi − Pi|

2

√

(2)  

MAE =
1
n
∑n

i=1
|Mi − Pi| (3)  

where M and P are the measured and predicted values and n denotes the 
number of samples in the validation set. 

3. Results and discussion 

3.1. Model performance 

Our random forest (RF) model showed the best performance in the 
prediction of air pollutant concentrations in the Yangtze River Delta 
region. The results indicate that RF predicted PM10 and PM2.5 with R2 

values of 0.78 and 0.76, RMSE values of 8.81 and 6.16 μg/m3 and MAE 
values of 6.85 and 4.97 μg/m3, respectively, during the period of 
COVID-19 (Fig. 2). Among other pollutants, the predicted R2 values by 
RF for SO2, NO2, CO and O3 were 0.72, 0.73, 0.81 and 0.78, RMSE values 
were 0.77, 4.61, 0.04 and 5.07 μg/m3 and MAE values were 0.61, 3.38, 
0.04 and 4.12 μg/m3, respectively, during the corresponding period 
(Fig. 2). The performance of the model was also estimated at the pro
vincial and municipal levels for all the air pollutants (Figs. 4 and 5). 
From Figs. 4 and 5, it is evident that the actual and predicted values 
significantly fitted during the period of COVID-19 (first phase-2020), 

Fig. 1. Study area and distribution of meteorological and air quality monitoring stations.  
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and the same period in 2022 (second phase-2022) in Jiangsu, Anhui, 
Zhejiang and Shanghai. Compared with many studies, our model 
showed high performance covering a large area. For instance, Lu et al. 
(2021) compared three models in the prediction of PM2.5 concentration 
and found by RF, the predicted value of R2 was 0.69, followed by support 
vector regression (R2 = 0.57) and artificial neural network (R2 = 0.53). 
Huang et al. (2017) predicted the concentration of O3 using LUR models 
in Nanjing, China and the value of R2 was 0.65. The concentrations of 
PM were predicted based on generalized additive models and a simpli
fied FLEXPART model combined with the Bayesian-RAT method in 
different areas of China (Guo et al., 2020; Zeng et al., 2020). However, 
our model provides superior performance than those of other compa
rable studies. 

Moreover, RF predicts PM10 and PM2.5 concentrations with R2 = 0.76 
and 0.74, RMSE = 13.65 and 7.73 μg/m3 and MAE = 11.33 and 6.18 μg/ 
m3, respectively during the second phase (Figs. 3 and 5). These findings 
demonstrate that RF provides better performance during the first phase 
compared with the second phase. For example, during the first phase, 
the cross-validation R2 values of RF for the PM10 and PM2.5 prediction 
are 0.78 and 0.76, which are greater than that of values during the 
second phase. Similarly, by RF the values of RMSE and MAE for PM10 
and PM2.5 are better during the first phase compared to the second phase 
in the YRD region. Among the selected pollutants, RF predicts SO2 
concentration with R2 = 0.76, RMSE = 0.70 μg/m3 and MAE = 0.55 μg/ 
m3, NO2 concentration with R2 = 0.75, RMSE = 4.25 μg/m3 and MAE =
3.58 μg/m3, CO concentration with R2 = 0.80, RMSE = 0.05 μg/m3 and 
MAE = 0.04 μg/m3 and O3 concentration with R2 = 0.79, RMSE = 6.24 
μg/m3 and MAE = 5.17 μg/m3 during the second phase (Figs. 3 and 5). 
The model showed high performance in the prediction of SO2 

concentration during the second phase, while the R2 and RMSE values of 
RF were better for NO2 prediction during the second phase but the MAE 
value was poorer during the first phase than that of the second phase. RF 
exhibited similar results in the prediction of CO during the both phases 
with a small difference, while for O3, the value of R2 was higher during 
the second phase, but the RMSE and MAE values were relatively poorer 
during this phase compared to the first phase. In summary, RF provides 
superior performance in the prediction of air pollutant concentrations 
during the two phases in the YRD region. 

3.2. Spatial concentration pattern of air pollutants in Jiangsu Province 

The COVID-19 outbreak in China and worldwide, has provided a 
great opportunity to study its impacts on air pollution by comparing the 
concentrations of air pollutants. In this study, the concentration levels of 
different air pollutants during the COVID-19 outbreak (2020) were 
compared with the previous two years (2018–19) and the following two 
years (2021–22) in the Yangtze River Delta (YRD) region. For a deeper 
analysis, we further discussed the concentration pattern of air pollutants 
at the provincial and municipal levels. The comparisons of the years 
2020 vs. 2018–19 indicate that the air pollutant concentrations 
decreased significantly in Jiangsu Province, such as PM10, PM2.5, SO2, 
NO2 and CO decreased by an average of − 35.81%, − 32.29%, − 40.95%, 
− 34.00% and − 20.00% respectively, while O3 was the only pollutant, 
which exhibited an increasing trend (7.67%) (Table S1, Fig. 6 and 7, S1- 
4). The reduction in different air pollutants during the first phase was 
due to the reduction in all industrial and construction activities, 
decreased human mobility and the stoppage of traffic (Zhao et al., 
2020a; Wang et al., 2021b). The highest drop was observed in the 

Fig. 2. Validation between actual and predicted air pollutants by random forest model in COVID-19 (first phase-2020) period in the Yangtze River Delta region (a: 
PM10, b: PM2.5, c: SO2, d: NO2, e: CO and f: O3). 
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concentration of SO2, while particulate matter (PM10 and PM2.5) and 
NO2 showed almost similar tendencies with slight differences. The fall in 
the concentration of CO was lower compared to other pollutant pa
rameters during this window of time in Jiangsu Province. In contrast to 
other pollutants, we found an increase in O3 levels. Past studies also 
reported similar findings for Jiangsu Province. For instance, Wu et al. 
(2022) found a substantial reduction in PM2.5, PM10, CO, SO2 and NO2, 
while O3 levels increased during the first phase compared to the prior 
years in Jiangsu. Another study reported by Hasnain et al. (2021) 
indicated that during the COVID-19 period, an abrupt fall in air 
pollutant concentrations was observed in Nanjing, the capital of Jiangsu 
Province (see Fig. 7). 

Moreover, all the air pollutants presented rising trends during the 
second phase in Jiangsu. The concentrations of PM10 and PM2.5 were 
increased by 22.36% and 5.94% respectively (Table S1,Figs. 6 and 7, S1- 
4). Among other pollutants, a slight increase in SO2 was found, to be 
0.07%, while NO2, CO and O3 levels increased by an average of 9.02%, 
2.21% and 0.13% respectively (Table S1). The results suggest that the 
increase in different air pollutants during the second phase was due to 
the enhancement in anthropogenic sources such as biofuel burning, 
power plants, traffic and industrial emissions in Jiangsu (Yao et al., 
2021; Hasnain et al., 2021; Wu et al., 2022). The rise in the concen
tration of PM10 was significantly greater than other pollutant concen
trations. NO2, a primary pollutant released from vehicle emissions, 
presented the second highest increasing value, while a slight rise in SO2 
and O3 was observed during the second phase. In summary, the com
parison of the years indicate that the air quality significantly improved 
during the first phase due to the stringent restrictions and shutdown 
policies, while an increase in air quality can be seen during the second 

phase in Jiangsu Province, which is worthy of attention. 

3.3. Spatial concentration pattern of air pollutants in Anhui Province 

Similar findings were observed for Anhui Province with small dif
ferences (Table S1, Figs. 6 and 7, S1-4). The levels of different air pol
lutants remarkably decrease during the first phase except for O3. The 
results demonstrate that the reductions in PM10 and PM2.5 were 
− 31.25% and − 31.37% respectively, during the first phase (Table S1). It 
should be noted that the decreasing spell of PM10 and PM2.5 was almost 
similar during the corresponding period. The drops in SO2, NO2 and CO 
were − 32.96%, − 31.27% and − 18.56% respectively, while a slight rise 
in O3 levels was observed (1.74%) during the first phase in Anhui 
(Table S1, Figs. 6 and 7, S1-4). These findings agreed well with the prior 
studies documented by Hasnain et al. (2021) and Bhatti et al. (2022). 
Compared with the air quality status of Jiangsu Province, the reductions 
in the concentrations of different air pollutants in Anhui were relatively 
lower during the first phase (Table S1). The highest fall was recorded for 
SO2, followed by PM2.5, NO2, PM10 and CO while O3 exhibited a slight 
increase during the first phase in Anhui. 

Moreover, the second phase shows comparatively a different pattern 
of air quality in Anhui Province compared with Jiangsu. An obvious 
escalation in PM10 concentration was observed, to be 21.77%, while the 
rise in PM2.5 was 0.78% during the second phase in Anhui (Table S1, 
Figs. 6 and 7, S1-4). A large difference in the rise of PM10 and PM2.5 was 
found. The increment in the movement of vehicles, construction and 
industrial activities can be responsible for this increase in PM10 con
centration (Singh et al., 2020; Bilal et al., 2021). Among the selected 
pollutants, SO2, CO and O3 showed differing trends, which were 

Fig. 3. Validation between actual and predicted air pollutants by random forest model in 2022 (second phase-2022) in the Yangtze River Delta region (a: PM10, b: 
PM2.5, c: SO2, d: NO2, e: CO and f: O3). 
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decreased by − 6.57%, − 2.94 and − 1.05% respectively, during the 
second phase in Anhui (Table S1). Compared with other pollutants, SO2 
exhibited a significant drop in Anhui, having the highest decreasing 
value in reduction scenario. The major sources of SO2 are fuel burning, 
power plants, transport and industry (Huang et al., 2017). Hence, it can 
be inferred that the drop in SO2 could be attributed to reduced and 

controlled thermal, transportation and industrial sectors. The levels of 
NO2 increased by 7.78% in Anhui (Table S1). A slight difference can be 
seen in the increase of NO2 in Anhui and Jiangsu. Overall, a sudden 
reduction in air quality was found during the first phase, while the air 
pollutants showed mixed behavior during the second phase in Anhui 
Province. 

Fig. 4. Actual and predicted concentrations of different air pollutants during the COVID-19 period (first phase-2020) in Jiangsu, Anhui, Zhejiang and Shanghai.  
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3.4. Spatial concentration pattern of air pollutants in Zhejiang Province 

A substantial decline in the levels of different air pollutants was 
experienced but O3 showed similar performance during the first phase in 
Zhejiang Province (Table S1). Air pollutants exhibited a drastic drop 
such as PM2.5 (− 37.59%), followed by PM10 (− 34.24%), NO2 

(− 32.51%), SO2 (− 31.56%) and CO (− 22.01%), while an increase in O3 
levels was experienced, to be 13.05% during the first phase in Zhejiang 
(Table S1, Figs. 6 and 7, S1-4). O3, a secondary pollutant, is formed in 
the presence of sunlight and its precursors such as volatile organic 
compounds (VOCs) and nitrogen oxides (NOx), and its concentration 
varies according to physical/chemical removal, photochemistry and 

Fig. 5. Actual and predicted concentrations of different air pollutants in 2022 (second phase-2022) in Jiangsu, Anhui, Zhejiang and Shanghai.  
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transport over regional, and global scales (Reddy et al., 2012; Lal et al., 
2000). The comparison analysis indicates that the concentration of O3 
increased significantly during the first phase in Zhejiang Province than 
Jiangsu and Anhui. The reduction ratio for PM2.5 concentration was 
greater than other pollutants, while PM10, SO2 and NO2 indicated rela
tively similar tendencies with some fluctuations in Zhejiang. Past studies 
also reported that except for O3, the concentrations of different air 
pollutants were decreased during the COVID-19 control period 
compared with the prior years in different areas and regions across 
China (Chen et al., 2020; Zhao et al., 2020a; Hasnain et al., 2021; Bhatti 
et al., 2022). 

The results demonstrate that compared with the first phase, a new 
pattern of air quality was observed in Zhejiang (Table S1). The con
centration of PM10 increased remarkably by up to 19.74%, while PM2.5 
levels increased by 9.44% during the second phase (Table S1). Among 
other pollutants, the increasing values for SO2 and NO2 were 6.29% and 
22.83%, respectively, while the levels of CO and O3 reduced by an 
average of − 2.42% and − 5.71%, respectively, during the second phase 
in Zhejiang. It should be noted that the rising spell of NO2 was greater 
than other pollutants in Zhejiang. Compared with Jiangsu and Anhui, an 
increase in PM10 concentrations was comparatively lower during the 
second phase. An almost similar trend was observed for CO with a slight 
difference in Anhui and Zhejiang. CO is a colorless gas emitted from 
biofuel burning, waste burning, forest fires and vehicular emissions 
(Singh et al., 2020; Hasnain et al., 2022). O3 presented an opposite 
pattern, it decreased during the second phase, while an increase in O3 
was found during the first phase in Zhejiang. In general, except for O3, 
the province observed a significant drop in air pollutant concentrations 
during the first phase, while except for CO and O3, a remarkable rise in 
air pollutants was experienced during the second phase particularly 

PM10 and NO2. 

3.5. Spatial concentration pattern of air pollutants in Shanghai 

Shanghai, the economic hub of the country, has been faced with 
severe and extreme air pollution in recent years, due to rapid economic 
development (Wang et al., 2021b). An almost similar pattern of air 
quality was noted for Shanghai during the first phase. Large reductions 
were found in different air pollutants, such as SO2 (− 38.53%), followed 
by PM10 (− 37.61%), NO2 (− 31.96%), PM2.5 (− 31.54%) and CO 
(− 17.57%), while O3 increased (6.04%) during the first phase in 
Shanghai (Table S1, Figs. 6 and 7, S1-4). Li et al. (2020) reported that the 
limited vehicular, industrial and construction activities, among others, 
leading to a drastic drop and notable improvement in air quality during 
the COVID-19 period in the YRD region. Chu et al. (2021) found that the 
decrease in traffic, power plants, steel and iron production resulted in a 
marked decline in the concentrations of PM2.5, SO2, NO2 and CO during 
the COVID-19 periods in China. Our results indicate that compared with 
other pollutants, SO2 and PM10 reduced sharply, while PM2.5 and NO2 
presented relatively similar behavior in reduction scenario. O3 showed a 
constantly increasing trend, while it also exhibited similar tendencies in 
Jiangsu, Anhui and Zhejiang. 

Compared with the previous three regions, a prominent increase in 
PM10 was found, to be 28.35% in Shanghai. (Table S1). PM10 contains 
polycyclic aromatic hydrocarbons and transition metals (zinc, copper, 
manganese) and can penetrate the lower air ways in the shape of 
thoracic particles with an aerodynamic diameter of less than 10 μm (Pal 
et al., 2021b; Hasnain et al., 2022). PM10 causes numerous lung diseases 
such as cardiovascular and asthma (Mandal et al., 2022). Our results 
reveal that the increment ratio for PM10 was significantly greater than 

Fig. 6. Spatial distribution of PM10 concentrations in the Yangtze River Delta.  

Fig. 7. Spatial distribution of PM2.5 concentrations in the Yangtze River Delta.  
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other pollutants during the second phase in all the regions. PM2.5, a 
primary pollutant, showed a slight increase, by approximately 0.63%, 
while NO2 and CO increased by 12.51% and 6.56% respectively, during 
the second phase (Table S1). Among other pollutants, the reductions in 
the concentrations of SO2 and O3 were − 7.69% and − 4.53%, respec
tively (Table S1). The comparison analysis indicate that Anhui and 
Shanghai were found to experience a decline in SO2 levels during the 
second phase. Overall, except for SO2 and O3, the concentration levels of 
air pollutants increased during the second phase in Shanghai. 

3.6. Changes in pollutant concentrations in the Yangtze River Delta region 

Here, we attempt to further examine and combine the entire YRD 
region and find out the changes in pollutant concentrations during the 
two phases. From an air pollution perspective, the YRD region has 
attracted wide interest from researchers and scholars due to its signifi
cant importance in the country and rapid economic development. The 
statistical analyses for the six air pollutants during the two phases are 
summarized in Table S2. The results indicate that the concentrations of 
different air pollutants reduced sharply, while O3 revealed similar per
formance during the first phase in the YRD region (Table S2). The re
ductions in the concentrations of PM10, PM2.5, NO2, CO and SO2 were 
− 33.95%, − 32.86%, − 32.65%, − 20.48% and − 36.37% respectively, 
while the concentration of O3 increased by approximately 6.70% 
(Table S2, Figs. 6 and 7, S1-4). A study addressed by Wang et al. (2021b) 
revealed a significant drop in air quality during the COVID-19 period in 
the YRD region due to strict control measures and reduced vehicular, 
construction and industrial activities. In our findings, the highest drop 
was found for SO2, while PM10, PM2.5 and NO2 presented similar trends 
with slight differences. CO decline was relatively smaller than others 
pollutants, while O3 exhibited a rising trend. These findings are very 
close to Yao et al. (2021) study, which indicated a significant reduction 
and improvement in air quality during the COVID-19 pandemic in the 
YRD region. 

Moreover, a sharp increase in PM10 concentration was found, to be 
21.91%, while the second highest increasing value was observed for NO2 
(11.60%) during the second phase (Table S2). Among other pollutants, 
the levels of PM2.5 increased by an average of 4.03%, while surprisingly, 
there was no change in CO concentration. In contrast to other pollutants, 
SO2 and O3 reduced by − 1.79% and − 1.96% respectively, during the 
second phase. The decreasing spell of O3 was higher than SO2. A sig
nificant difference can be seen in the rise of PM10 and PM2.5 during the 
second phase, while a considerable reduction in particulate matter was 
experienced during the first phase due to reduced transportation, con
struction and industrial activities. SO2 was the only pollutant, which 
showed a constantly decreasing trend during the both phases. In sum
mary, the present study concludes that the YRD region experienced a 
prominent decline and improvement in air pollutant levels, except for O3 
during the first phase, while the behavior of the air pollutants was 
different during the second phase. 

3.7. Changes in meteorological parameters 

Fig. S5 shows the daily average temperature, relative humidity, wind 
speed and total rainfall during the study period in the YRD region. 
Overall, air temperature indicated a constantly increasing trend with 
some fluctuations during all the years. The increasing ratio for tem
perature was higher in 2018 and 2019 than the other years. Large 
fluctuations were observed for RH, however, it exhibited a declining 
trend in 2020 (COVID-19 period) with some differences. A similar 
pattern for WS was also experienced, however, the fluctuations of WS 
were lower than RH. The WS in the YRD region for the years 2019, 2020 
and 2022 was relatively higher than that found in the other years. From 
Fig. S5 it is evident that the rain was high in 2020 and 2022, while it 
showed decreasing tendencies in 2019 and 2021. Moreover, a slight 
increase in rainfall can be seen in 2018. Overall, the meteorological 

parameters revealed mixed behavior in the YRD region. 

3.8. The relationship between ambient air pollutants and meteorological 
variables 

Meteorological variables significantly affect the air pollutants and 
play an important role in their formation, dispersion and transportation 
(Chen et al., 2019a,b; Barzeghar et al., 2022). To evaluate the rela
tionship between ambient air pollutants and meteorological variables, 
Pearson’s correlation analysis was performed (Fig. S6). A strong corre
lation was observed between PM10 and PM2.5 (r = 0.75), NO2 and SO2 (r 
= 0.75), while SO2 and RH had a significant negative relationship (r =
− 0.71) in 2022. PM10, PM2.5, SO2 and NO2 were positively correlated, 
while there was a significant negative correlation between SO2 and RH 
(r = − 0.65), O3 and RH (r = − 0.59) in 2021. The concentrations of CO 
and PM2.5 were highly correlated (r = 0.80), NO2 and T (r = 0.77), while 
RH and SO2 had a strong negative correlation (r = − 0.68) in 2020. High 
RH favors the creation of temperature inversion, which makes the at
mospheric stratification constant and hampers the vertical dispersal of 
pollutants (Yang et al., 2019). PM10 and PM2.5 had a strong significant 
positive relationship (r = 0.91), while the concentration of SO2 was also 
highly correlated with NO2 concentration (r = 0.81) in 2019. PM10, 
PM2.5, SO2 and NO2 had a strong significant positive relationship, while 
a strong negative correlation between WS and NO2 (r = − 0.64), WS and 
SO2 (r = − 0.64) was observed in 2018. 

Hu et al. (2021) reported that wind speed was the major meteoro
logical factor affecting pollutant distribution. NO2 and CO indicated a 
positive relationship with T during the COVID-19 period, while there 
was a significant negative correlation between NO2 and RH (Fig. S6). CO 
showed a weak and negative correlation with RH. The concentrations of 
NO2 and CO were negatively correlated with WS and PP. These findings 
are very similar to Zhou et al. (2020) study, who found a negative cor
relation between air pollutants and wind speed in Beijing and Nanjing. 
O3 had a significant positive correlation with T due to the important role 
of temperature in the formation of O3 (Chen et al., 2019a). Moreover, 
the concentration of O3 was negatively correlated with RH, WS and PP in 
2020. The results indicate that most of the pollutants negatively corre
lated with the meteorological parameters in the YRD region. 

4. Conclusions 

The COVID-19 pandemic in different areas and regions of the world 
has provided an inordinate opportunity to work in this direction. In the 
current study, we used a random forest model to assess the ambient air 
quality patterns associated with the COVID-19 outbreak in the YRD re
gion. The innovative aspect of the current study is that we predicted the 
ambient air quality in the two phases using a random forest approach 
and compared the results with the previous two years and the following 
two years, which makes it different compared to the earlier studies 
related to the COVID-19. According to the obtained results, the model 
showed the best performance in the prediction of air pollutants. The 
actual and predicted values at the provincial and municipal levels also 
indicated the effectiveness of the RF model. Moreover, the YRD region 
experienced a significant drop in the concentrations of air pollutants, 
except for O3, during the COVID-19 period in 2020, compared with the 
concentrations of air pollutants during the same period in the previous 
two years 2018–19. The concentrations of PM10, PM2.5, NO2 and CO 
were increased, while SO2 and O3 levels slightly reduced in 2021–22 
compared with the same dates of COVID-19. The present study con
cludes that the air pollutants showed different behavior during the two 
phases in the YRD region. The results of this research will be helpful for 
the scientific community, policymakers, planners and local authorities 
to mitigate air pollution problems in the future. This study can be further 
extended to other regions and countries by findings new correlations 
factors between ambient air pollutants and meteorological parameters. 
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