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Abstract

Integration of models requires linking models which can be developed using different tools, 

methodologies, and assumptions. We performed a literature review with the aim of improving our 

understanding of model integration process, and also presenting better strategies for building 

integrated modeling systems. We identified five different phases to characterize integration 

process: pre-integration assessment, preparation of models for integration, orchestration of models 

during simulation, data interoperability, and testing. Commonly, there is little reuse of existing 

frameworks beyond the development teams and not much sharing of science components across 

frameworks. We believe this must change to enable researchers and assessors to form complex 

workflows that leverage the current environmental science available. In this paper, we characterize 

the model integration process and compare integration practices of different groups. We highlight 

key strategies, features, standards, and practices that can be employed by developers to increase 

reuse and interoperability of science software components and systems.
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1. Introduction

A model is a simplified abstraction of reality (Schmolke et al., 2010; Voinov, 2008). To 

answer questions related to environmental problems, scientists and policy-makers, may 

need to address complex issues at regional, continental, and even global scales (Harris, 

2002, Verburg et al., 2008). Developing all-inclusive models is difficult, however, and we 

must integrate individual models that represent specific domains (Gregersen et al., 2007). 

Integration of models is becoming more important due to an increased desire to understand, 

investigate, and mitigate human impact on the environment (Laniak et al., 2013, Voinov 

and Cerco, 2010). The challenge is making standalone models discoverable, reusable, and 

interoperable (Goodall et al., 2011). Here, discoverability means the availability of meta 

information of a resource so it can be effectively searched for, located and understood to 
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ensure proper use (Erl, T., 2008b). Reusability is how existing software can, in whole or in 

part, be used to develop new software (Frakes and Kang, 2005), as well as the degree to 

which an asset can be used in more than one system or in building other assets (ISO/IEC, 

2011). Reuse also implies a decision process that includes evaluating software for its ability 

to serve a new purpose. And, finally, interoperability is the ability of a system or a product 

to work with other systems or products without special effort by the user (Chang and Lee, 

2004).

In this paper a component may represent an elemental physical/chemical/biological/social 

process (e.g., infiltration or advection) or a logical integration of elemental processes (e.g., 

a watershed model). A system may be a model (an integrated set of elemental processes) or 

modeling system. Note that a model can refer to a component or a system. Finally, when 

we refer to an integrated modeling system we are including both the collection of science 

components and the framework software that facilitates their orchestration. These definitions 

apply throughout the paper.

Data exchange and data manipulation are fundamental to integrated modeling systems 

(Argent, 2004, Leimbach and Jaeger, 2005), and are often constrained by technical 

and conceptual challenges. Technically, individual models are designed to serve as stand-

alone components that serve unique purposes and goals. Conceptual challenges include 

resolving the different ways modelers and science domains represent data and knowledge. 

Interoperability of models can also be provided at different levels. At the technical level, 

models should be able to ‘talk to each other’ which requires automating data exchange, 

making models jointly executable, and ensuring repeatability and reproducibility of model 

chain configuration and processing (Knapen et al., 2013). At the semantic level, models 

should ‘understand each other’ by identifying and, if possible, bridging semantic differences 

in an automated manner. After semantic mediation, the dataset should be syntactically 

interoperable, i.e., data produced by one model are converted and formatted to serve as input 

for a receiving model.

We performed a literature review to improve our understanding of the model integration 

process and also to collect and present better strategies for building integrated modeling 

systems. At first, our review was limited to integrated climate change mitigation analysis 

systems. Due to the commonality of integration techniques with other environmental 

domains, however, we broadened the scope to include integration of models in general. 

Our search used key phrases of ‘integration of models’, ‘integrated assessment study’ and 

‘integrated modeling frameworks,’ and we considered 38 articles (see Table 1), of which 18 

focused on specific integration modeling systems (aka frameworks).

To provide structure and context for the paper, we look to model development process 

which includes requirements analysis, design, implementation, and testing phases (David 

et al., 2013, Moore and Tindall, 2005, Whelan et al., 2014), with these steps conducted in 

an iterative manner (Grimm et al., 2014, Jakeman et al., 2006). Model integration process 

follows a similar sequence and is also iterative (Holzworth and Huth, 2011, Holzworth et 

al., 2014), with a small portion of integration realized first, and more complex issues and 

functionalities incorporated through iterations. Keeping all this in mind, we divided model 
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integration process into phases of pre-integration assessment, preparation of models for 

integration, orchestration of participating models during simulation, data interoperability, 

and testing (Fig. 1).

This process forms the basis for our review. As we conducted the review, it became clear 

that three topics deserve special attention due to their significant role: interface standards 

for interoperability (within the preparation of models for integration phase); performance in 

integrating models (within the orchestration phase); and discovery, accessibility, and ease of 

use which are process-wide considerations. A summary of this structure, along with brief 

descriptions of categories of methods employed, examples of existing modeling systems, 

and references are presented in Table 1.

We note that:

• Most papers emphasize only certain phases of model integration.

• Comparing all selected frameworks with all aspects of the integration process 

is challenging due to limitations of available information. We believe, however, 

that, collectively, the full range of methods is represented.

• The set of model integration frameworks in Table 1 represents a robust, albeit 

incomplete, representation of existing frameworks.

Findings related to phases of integration: pre-integration assessment, preparation of 

models for integration, model orchestration, data interoperability, and testing are described 

in Sections 2 Pre-integration assessment, 3 Technical integration of models: preparing 

models for integration and orchestration of participating models during simulation, 4 Data 

interoperability, 5 Testing integration. To avoid repetition of content, we treat preparation 

of models for integration and orchestration of participating models during simulation 

together in Section 3. Discoverability, accessibility, and ease of use of integrated systems 

are addressed in Section 6. Section 7 presents discussion as well as conclusions, and 

finally recommendations for increasing efficiency and effectiveness of the model integration 

process are presented in Section 8.

2. Pre-integration assessment

Pre-integration assessment combines science-based requirements of an environmental 

assessment with computer technologies to create an initial integrated software system 

workflow design. The assessment may be related to research, environmental analysis, or 

decision/policy support. Pre-integration represents a key aspect of model integration since 

it establishes the roles of and relationship between scientist (performing an environmental 

assessment, for example) and software engineer (designing and building the computer-based 

modeling system). These complementary roles have often been performed by the same 

person, but as science problems and required modeling systems have grown more complex, 

these roles necessarily required a relationship between experts in the domain science and 

software engineering.
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On the science side, pre-integration assessment includes a problem statement; articulation of 

the purpose and goals of the science-based modeling effort; conceptualization of the relevant 

system (including major components and interactions); characterization of scenarios and use 

cases; analysis of alternatives; design of a science-based approach; and a statement of any 

project resource constraints and solution criteria. Collectively, this information represents 

the requirements that must be satisfied by either an existing or new software system.

Ramamoorthy et al. (1992) point out that the main cost of integration is the effort required 

to detect and resolve inconsistencies in the coupled system, a cost that can be reduced if 

inconsistencies are detected and resolved prior to integration -- that is, during the process 

of transforming the science design to a software design. To aid transformation, the software 

engineer may utilize a set of tools recommended by the System-of-Systems Engineering 

(SoSE) approach (Butterfield et al., 2008), including: context views that define relationships, 

dependencies, and interactions between the system and its environment; use cases that list 

interactions between the system and the user; activity diagrams which show the flow of 

activities while using the system; and diagrams that provide a high-level description of 

system behavior.

In reviewing existing frameworks, we found only a few scientific papers that discuss 

how pre-integration assessment was performed. In SEAMLESS (Janssen et al., 2011, Van 

Ittersum et al., 2008), pre-integration was performed through discussions that involved 

scientists, assessors, decision support specialists. The discussions focused first on defining 

scenarios and indicators (which would be tested by the integrated system), and then on 

analyzing system requirements. An assessment project ontology (Janssen et al., 2009) 

was developed to create a common understanding for people involved in the project. The 

discussions produced the overall architecture of the integrated system, specifications of 

components, and data to be exchanged between them.

For FRAMES, Whelan et al. (2014) intended to accommodate multiple modeling domains 

and assessment scenarios (workflows) by designing the framework to be independent of any 

specific set of models. They suggested that developing a framework capable of constructing 

and orchestrating integrated modeling systems required detailed analysis with respect to 

19 aspects of design and implementation that they have identified. In summary, these 

requirements target metadata definition, standardized vocabularies, component connectivity, 

data-transfer compatibility, system architecture and functionality, and model accessibility.

The OpenMI project provides a formal standard for data exchange among models, including 

specification of an application program interface that describes how models should request, 

and respond to requests for, data. Various frameworks, including the OpenMI software 

development kit, implement this standard to achieve model interoperability. OpenMI 

suggests that model-linking can begin only after identifying data that can potentially be 

exchanged, defining how the data will be exchanged, and schematizing deployment and 

running of the linked computation. Developers who want to use the OpenMI framework 

should ensure that components use the same platform (for example, do not mix Java 

and .Net components); that the same OpenMI version is implemented; and that input 

data not provided by other components will be provided from external data sources. This 
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shows that pre-integration assessment must consider different levels of details in meeting 

integration goals.

The connection between integration frameworks and science domains cannot and should not 

be ignored, although there are various levels of ‘affinity’. For example, SEAMLESS was 

entirely driven by agricultural science. FRAMES or OpenMI were intended to be domain-

independent, however, they were initiated by specific science questions and domains. 

FRAMES is rooted in chemical fate and exposure modeling, but OpenMI is largely driven 

by hydrological applications. Similarly, ESMF had its origins in Earth systems modeling, 

while CSDMS was instigated by surface dynamics modeling. Such affinity to particular 

science domains is revealed by model components in the respective model repositories, in 

the types of applications where the frameworks have been tested, and also in the equations 

and methods that the frameworks typically handle.

From the literature review, we identified the following questions for facilitating pre-

integration assessment:

1. Why are we integrating? What are the objectives?

2. What system is to be simulated? What scenarios are to be simulated using the 

integrated system?

3. What indicator variables are to be tested using the integrated system? What are 

the options for calculation of the indicator values?

4. Are the required modeling components from the same science domain? Are 

the semantics compatible? Are there frameworks that cover the relevant science 

domain, or you will need to fit into a ‘foreign’ framework or develop both the 

new framework and the models within this framework?

5. How much data and information will the models exchange, such as one variable 

vs. hundreds of variables, how often, over what spatial grid and resolution? What 

processes require feedback loops?

6. Is it important (or necessary) to keep participating components independent of 

one another, or will linking be established by creating a permanent dependency 

of one component upon another, effectively merging multiple components into a 

single one?

7. What are the implications of programming languages, operating systems, and 

computer platforms used? Will language interoperability tools be required? Will 

individual components remain on their respective platforms (e.g., development 

environment or operating system) or they will they be migrated to a common 

platform in the integrated system?

8. What programming skills are required and are they available? How much new 

software will be required to link models?

9. How will system input data (i.e., data about the physical/chemical/biological/

social etc. system being modeled) be organized and distributed among 

components?
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10. Are data unit conversion functions needed?

11. Is dataset translation, aggregation/disaggregation required? If so, are the tools 

available or must they be created?

12. Are there specific performance requirements to satisfy (e.g., parallel 

computation)?

Consideration of the above-mentioned conceptual and technical questions is the basis for 

an initial design that will enable to evaluate feasibility of the integration and resource 

requirements. The result of the pre-integration assessment will be either to proceed with 

integration, not consider integration, or obtain additional information to make a better 

decision. If the decision is to continue with integration, the next questions are “How 

should the models be prepared for integration?”, and “How should model orchestration 

be conducted?” These topics are addressed in the next section.

3. Technical integration of models: preparing models for integration and 

orchestration of participating models during simulation

Technical integration requires specific software strategies that prepare modeling components 

for linked execution within a framework designed to execute the integrated modeling 

system. Because the literature does not provide sufficient detail, we will not attempt 

a technical framework-to-framework comparison. We introduce concepts of model 

preparation and system orchestration in Sections 3.1 Preparing models for integration, 

3.2 Orchestration of participating models during simulation; discuss model preparation 

strategies and requirements employed by existing frameworks in Section 3.3; and 

discuss two key issues related to model integration and orchestration, interface standards 

for interoperability and framework performance optimization, in Sections 3.4 Interface 

standards and interoperability, 3.5 Performance optimization and related issues in 

orchestrating simulations.

3.1. Preparing models for integration

From a software engineering perspective, preparing a component for integration depends 

on its native software environment (language and OS), manner in which inputs and outputs 

are organized (e.g., using files, databases, etc.), and integration approach used by the target 

system (framework). Consider a practical example of a model that produces climate change 

scenarios up to year 2100. The simulation start year is constant, but the end year is a 

user input. The model’s output, as originally designed, is accessible only after the final 

time step. If we want to link this model with another so that data is exchanged at the end 

of each time step, we must make certain modifications. Modifications include preparing 

a function that returns the values of the required variables at the end of each time step, 

and a function that receives values of selected variables from the model to be linked. In 

achieving this linkage, we need to consider that the two models are developed using different 

languages, are deployed on different platforms, treat space and time differently, etc. The 

process of preparing models for integration can thus go through some combination of steps, 

as summarized in Fig. 2. And if we want to use the model independently of the development 
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environment, or need to protect intellectual property rights of developers, we may have to 

deliver a model in binary format as DLL or EXE file rather than source code (Moore et al., 

2007).

Model modifications will sometimes be needed to enable automated input-output data 

exchange that conforms to a specific framework design. In such situations, small existing 

(legacy) models can be reprogrammed, or we may directly modify the model interface to 

conform to the framework data exchange protocol (Fig. 3). For larger and more complex 

models, however, rewriting is time-consuming and error-prone (Peckham et al., 2013). To 

avoid rewriting, it is common to develop a communication wrapper (Van Ittersum et al., 

2008) which is a thin layer of code on top of the native component that manages data 

exchanges between the native component and other components or the system. Wrappers 

could be developed to make a model language-interoperable; make a model accessible 

over a network; implement agreed-upon names for functions and variables; provide a 

custom interface with required input-output attributes; or address a combination of these 

objectives. Depending on the integration framework, a model wrapper can be developed 

following industry standards or “local” standards; some of these are discussed in Section 

3.4. Generally, the work required to develop wrappers depends on how much we want to 

adapt the existing model interface.

3.2. Orchestration of participating models during simulation

A complementary part of technical integration is orchestrating models during simulation 

which requires enabling and managing interactions between components (Madni and 

Sievers, 2014). The orchestration task includes: identifying components to be included; 

establishing linkages and overall workflow to be implemented; and managing execution of 

the workflow (initializing components, synchronizing execution, facilitating data exchange, 

error management, and system file management). Furthermore, the operational nature of the 

data exchange within an integrated system may be sequential (feed forward) or iterative 

(feedback). In feed forward systems, one component completes its execution and produces 

data for subsequent consumption. In feedback systems, components require the exchange of 

intermediate data values at certain time steps.

3.3. Commonly used approaches for technical integration of models

The actual methods employed for technical interoperability of models vary among 

development groups. From our literature review, we categorized them as component-

based, web service-based, a hybrid of component and web service-based, and tailor-made 

(custom-made) techniques. These methods can be applied to both legacy and new science 

components. A brief comparison of the methods, which are further described in the 

following sections, is presented in Table 2.

3.3.1. Component-based approach for technical integration of models—The 

component-based approach is the design and construction of computer-based systems 

using reusable software components which are independent executable entities accessible 

only through its interface (Debayan, 2011). One main difference of component-based 

development from non-component-based is the emphasis on reusability of components 
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(Crnkovic et al., 2006). This approach recognizes different levels of reusability: code-level, 

module-level, library-level, design pattern-level, and framework-level (Rekaby and Osama, 

2012).

The component-based development lifecycle involves two main phases, component 

production and component integration or utilization (Rekaby and Osama, 2012). In the 

component-based approach, components have standardized calling interfaces (DeLuca et al., 

2012) or ‘sufficient commonality’ (Debayan, 2011) which enables developers to formulate 

predictable architectural patterns that manage interactions between them. As a result, the 

workflow-managing functionality can itself be developed as a reusable framework-level 

component.

The component-based approach is one of the most commonly used techniques to prepare 

models for integration and manage simulations. For example, the Earth System Modeling 

Framework (ESMF) uses a component-based approach to integrate models (DeLuca et al., 

2012); ESMF is based on the principle that complicated applications are broken into smaller 

components with standard calling interfaces. A model component that implements the 

ESMF standard interface can communicate with the ESMF shell and inter-operate with other 

models. Similarly, the CSDMS (Peckham et al., 2013) requires models to be presented as 

components to join the integration framework. Component-based programming is chosen so 

components can be added or replaced at runtime, and to ensure that components written with 

different programming languages and hosted on remote locations can join the framework. 

The CSDMS framework requires models to implement the two-level component-interface 

standard provided. The CSDMS uses functionalities of the common component architecture 

(CCA) framework1 to coordinate communication between components developed using 

different frameworks (Peckham et al., 2013). FRAMES (Whelan et al., 2014), a feed 

forward modeling framework, employs the component-based approach and incorporates data 

dictionaries for data exchange. Wrappers are written for each component to read and write 

data to the dictionaries. The framework then manages transfer of data between components 

during runtime through an inter-component communication API. The API consists of 

routines that read model inputs, write model outputs, handle language interoperability, 

manage unit conversions, and provide error handling.

Existing component-based frameworks mostly employ a local data exchange standard. The 

exception involves the OpenMI standard that provides plug-and-play model access by 

implementing a component-based software development paradigm. The OpenMI strategy 

is to access model input-output directly at run-time and not use files for data exchange. 

OpenMI-compliant components can exchange data without any supervising authority if the 

components have information about each other (Gregersen et al., 2007). If, however, the 

communication involves iterations -- that is, feedbacks and looping over components -- a 

separate controller component is required; the controller contains an iteration algorithm and 

a link to individual components involved in the iteration. The OpenMI standard has been 

implemented in some framework designs such as SEAMLESS-IF (Janssen et al., 2011, Van 

Ittersum et al., 2008), SIAT (Verweij et al., 2010), NITROEUROPE (Sutton et al., 2009), 

EVOLTREE,2 and FluidEarth.3
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The component-based approach has a number of advantages for the modeling domain, 

including:

• Components can be added or deleted from a simulation at runtime (Armstrong et 

al., 1999, Peckham et al., 2013);

• It is suitable for rapid execution of workflows because when an application 

(in this case, the workflow manager) calls a component, the component can 

run within the process space occupied by the calling application, and it can 

share memory and processor time with the calling application. This makes the 

communication between the calling application and the component very fast;

• It enables models to be independent and, thus, reusable entities;

• It enables creation of both tightly- and loosely-coupled systems; and

• It facilitates sharing of models and possibly collaboration among modelers or 

workgroups who share components.

Although the component-based approach has many advantages, it also has many challenges:

1. Communication between components developed using different programming 

languages requires language interoperability tool (Peckham et al., 2013). Some 

systems avoid this by requiring all components to be written in the same 

language, but some use a language interoperability tool-- for example, the 

CSDMS framework uses Babel4 a language interoperability tool that manages 

communication between components written in C, C++, Java, Python, or 

FORTRAN;

2. Communication between components hosted on different computers is 

commonly done via tight-coupling. For example, both CSDMS and FRAMES 

use Remote Method Invocation (RMI) for remote communications. RMI enables 

an object hosted on one computer to invoke an object hosted on another. RMI has 

disadvantages, however, since it operates on the object level (i.e., components 

are treated as objects rather than independent applications), and it creates tight-

coupling between components. RMI is also slow and can be used only with Java, 

making it programming language-dependent (Tanenbaum and Van Steen, 2007);

3. Due to the many unique implementations of data exchange protocols, the 

component-based approach has resulted in interoperability that is typically 

constrained to a specific framework, versus a common standard (as proposed 

by OpenMI) that would facilitate global or universal reuse and interoperability.

3.3.2. Web services and service-oriented approach for technical integration 
of models—Web services are web application components that can be accessed via 

the World Wide Web. Unlike the component-based approach, web services can interact 

independently of the underlying platform. They eliminate interoperability complications 

related to programming language, operating system, and computer platform (Castronova et 

al., 2013, Dubois et al., 2013, Goodall et al., 2011). Independently-built heterogeneous 

services can be linked to build integrated modeling systems using a Service-Oriented 
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Architecture (SOA) design approach. SOA is based on design principles: standardized 

service contract or description; service loose-coupling; service abstraction (hiding 

unnecessary information); service reusability; service autonomy (keeping the service as an 

independent unit); service statelessness (minimizing the time in which the service will stay 

stateful); service discoverability (use meta information that accurately describe the service); 

and service composability (design services that will be composed with other services) (Erl, 

2008b).

A main factor that differentiates the service-oriented approach from the component-based 

approach is that service-orientation implies distributed components will interoperate over a 

network (Huhns and Singh, 2005, Goodall et al., 2011). SOA enables building distributed 

applications by composing or putting together services while keeping them autonomous, 

regardless of their heterogeneity (Pessoa et al., 2008). In SOA, unlike a component-

based approach, a langauge interoperability tool is not required for communication of 

heterogeneous services. Services may also run on different operating systems, and can 

encapsulate legacy systems. Configuration of services into integrated modeling systems can 

occur dynamically (Erl, 2008a; Papazoglou, 2008) and is scalable (Nativi et al., 2013).

Model developers use web services for various reasons, and the service-based approach 

is becoming increasingly popular. For example, the Group on Earth Observation (GEO) 

Model Web initiative (Nativi et al., 2013) suggests that presenting models as a service 

will increase interoperability and facilitate interaction of models, databases, and websites. 

They use a SOA-based approach to orchestrate distributed components, introduce a broker 

component to facilitate discovery of services, intermediate (i.e., inter-component) services to 

adapt output content and format of one model to an appropriate format before it is passed 

to the next, and handle asynchronous communication between remote servers. Similarly, 

the Model Web for Ecological models (Geller and Melton, 2008, Geller and Turner, 

2007) suggests that an open-ended network of interoperable models and databases that is 

maintained, operated, and served independently can be realized with web services. The 

Model as Service approach (Roman et al., 2009), which is an extension of the Model Web 

initiative, notes that web services can migrate a stand-alone model into a service on the Web.

The AWARE5 integration framework (Granell et al., 2010) uses the open geospatial services 

standard to make environmental models interoperable. They selected SOA because services 

can be published, discovered, aggregated, invoked, and reused independent of the underlying 

technology used to build them; service standards define how to interact with the available 

services in a uniform manner; the interoperability of web service provides the opportunity 

to present legacy models as services; and SOA enables creation of value-added functionality 

by linking existing services. Web services can be delivered to end users for visual service-

chaining by presenting them via Cloud computing, and Grid computing technologies, 

and service-oriented infrastructures. Goodall et al. (2011) recommends a service-oriented 

computing approach to orchestrate models in simulation since SOA views integrated 

modeling systems as an interconnected collection of distributed components. Similarly, 

eHabitat (Dubois et al., 2013) uses SOA with brokers to handle service composition. A 

discovery broker, access broker, and semantic discovery broker mediate communication 

between services and hide the heterogeneity of underlying services.
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The web service approach is used mainly to enable cross-language interoperability and 

link components that reside on different operating systems. Its main disadvantages are that 

request and replay messages are based on XML, which is larger in size than binary protocol; 

and performance on the Internet varies from time to time and place to place. It may require 

high availability.

3.3.3. Hybrid of component-based and web service-based approach for 
technical integration—Constructing an integrated modeling system using a specific 

software architecture or framework may not be optimal since a mix approaches may be more 

useful. Some modelers use a hybrid of component-based and service-oriented approaches 

to manage technical integration of models. Consider the following two cases where both 

used two-level wrapping to access a model hosted on a remote machine, as shown in Fig. 4. 

Castronova et al. (2013) used an OGC WPS wrapper and an OpenMI component wrapper to 

prepare the models for integration. Implementing the WPS on a model transforms it into a 

web service which can be accessed remotely via Internet. The linking of models is handled 

through the OpenMI-based HydroModeler environment, however, which requires wrapping 

models with the OpenMI interface standard. They developed an OpenMI compliant-wrapper 

that invokes WPS-based services.

Likewise, Goodall et al. (2013) used the hybrid approach to enable coupling across modeling 

frameworks. They linked two existing modeling frameworks -- ESMF and OpenMI -- using 

a service-oriented architectural approach. A climate model developed within ESMF and 

hosted on a high performance computing cluster was made available as a web service, 

and an OpenMI-based client that accesses the service was also built. The Soil and 

Water Assessment Tool (SWAT), a hydrological model, was hosted on a Windows-based 

personal computer and made OpenMI compliant. Communication between the two OpenMI-

compliant components was organized using the OpenMI configuration editor which handled 

the transfer and translation of the exchanged items. From these two examples we can see 

that the service-oriented approach overcame heterogeneity due to computer architecture and 

programming language differences and the component-based framework was utilized to 

re-use the existing OpenMI integration tool.

3.3.4. Tailor-made (custom-made) techniques for technical integration of 
models—Some integration frameworks use interoperability techniques that are unique 

and neither component-based nor web service-based. We use the term ‘tailor-made’ or 

‘custom-made’ to group those frameworks into one category. In the custom-made approach, 

developers use an ad hoc collection of methods/techniques for technical interoperability. 

They use framework-specific ‘principles’ and this could hinder the continuity and 

extensibility of such frameworks. Each is quite different and has its own advantages and 

disadvantages.

In the Common Modeling Protocol (CMP), models are presented, for technical 

interoperability, as an executable file or dynamic link library (Moore et al., 2007). No further 

specification is required on the structure of the model interface. Simulation specification 

is a hierarchical arrangement of components (i.e., a system is a tree of subsystems) using 

the Simulation Description Markup Language (SDML). It uses message-passing system 
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to coordinate communication between components. To run a simulation, the user must 

define the configuration of components and initial values of state variables in an XML 

document that conforms to the SDML schema. Similarly, the Agricultural Production 

System Simulator (APSIM) (Keating et al., 2003) modules are self-contained and a central 

message-passing system is used for inter-module communication. Every simulation in 

APSIM must be represented as an XML document. Users employ the GUI to specify a 

simulation configuration by selecting preferences from a set of toolboxes. On the other hand, 

the TIME modeling framework (Rahman et al., 2003) requires models to be developed as a 

class using any.NET language such as C#, Visual J#, Visual Basic .NET, or Fortran 95.NET 

because cross-language interoperability6 between models is handled by the Common 

Language Runtime7 environment of the .NET framework.

Domain Specific Languages (DSL) (Fowler, 2010), programming languages developed to 

meet specific needs of a domain, also manage orchestration of models in simulation (Holst 

and Belete, 2015). OMS3 provides a domain-specific language named ‘Simulation DSL’ 

to configure simulations (David et al., 2013). The DSL is developed independently of the 

framework and functions as a layer on top of participating components. Similarly, the 

Universal Simulator for Ecological Models – UniSim – (Holst, 2013) uses DSL to define 

orchestration of components in a simulation.

In the custom-made approach, we observe that frameworks do not impose explicit model 

interface standards for interoperability, which could imply they require custom code 

to access specific models. Incorporating new versions of models could also require 

modification of the custom code. Custom-made approaches thus have the disadvantages 

of lacking flexibility, maintainability, and extensibility.

3.4. Interface standards and interoperability

Wrapping of models is commonly done for technical interoperability. If the wrapper 

interface is developed using a set of standard names for functions and variables, however, 

semantic interpretation of their attributes will be uniform and software can be included to 

test the correctness of data exchanges. Interface standards can therefore serve both technical 

and semantic interoperability. Currently, a standard does not imply universal awareness, 

acceptance and use, but rather that a framework designer has either specified or adopted 

a standard for use; thus, different interface standards are available. Commonly interface 

standards have mandatory and optional parts. They can be applied in developing new models 

or in re-factoring of existing models. A brief comparison of existing interface standards is 

provided in Table 3.

3.5. Performance optimization and related issues in orchestrating simulations

Performance of computer simulation is an important concern for all modeling and integrated 

modeling, in particular. In this context, performance optimization is the process of tuning 

a software system to execute rapidly. Performance can be affected by the design of the 

software itself, the operating system, middleware, hardware or communication networks 

(Woodside et al., 2007). Here we discuss two performance optimization concepts applied 
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by developers of integration frameworks: high performance computing (HPC) and parallel 

processing (multi-threading).

HPC is a cluster computing environment with a number of nodes containing both processing 

power and memory (Gavrilovska et al., 2007). The benefit of HPC is that data which are too 

large to process by one server will be distributed over a number of nodes. The HPC platform 

manages the distribution and processing. HPC has been used by modeling frameworks to 

simulate complex workflows such as by ESMF for climate simulations (Hill et al., 2004). 

Linking the integrated system with the HPC platform is an added value.

In designing integration, orchestration of models can be treated as a serial or parallel 

process. In reality, many natural processes represented by integrated models can happen in 

parallel, but such parallel processes are commonly represented using sequential execution 

of simulation models. In fact, almost all modern computers currently have multi-core 

CPUs, and the parallel execution approach provides effective utilization of available 

processing resources (David et al., 2013). Parallel execution of processes can be achieved 

using multithreading techniques (Tanenbaum and Van Steen, 2007). This also improves 

performance in non-HPC environments because threads in a process share the same memory 

area which reduces the time spent for process context-swapping. For example, OMS3 uses 

a multithreading technique for parallel processing of components in one machine (David et 

al., 2013). On the other hand OpenMI’s control flow is pull-driven -- that is, the succeeding 

component requests information from the preceding component in a chain. A component 

handles only one request at a time before acting upon another request; however, the called 

process can handle the request by using multiple threads or by a parallel computing sessions, 

depending on the developer’s preference. In OpenMI, functionalities such as parallel, cloud 

or high performance computing are yet to be developed (Knapen et al., 2013).

For non-HPC environments, integration frameworks can increase performance by applying 

multithreading techniques over distributed computers. Multithreading has a significant effect 

on system performance since subsystems can be executed in parallel on different computers 

(Tanenbaum and Van Steen, 2007). And if each process takes longer to execute (compared 

to the time to exchange data), multithreading will generate particular rewards in performance 

gains (Wainer et al., 2008).

4. Data interoperability

4.1. Issues on data interoperability

Data interoperability is the ability to correctly interpret data that crosses system or 

organizational boundaries (Renner, 2001). At the core of integrated modeling simulations 

is the exchange of data between workflow components. Implicit in our previous discussion 

of component preparation and workflow orchestration aspects is the need to ensure 

that data being transferred between components is: semantically interoperable – that is, 

has unambiguous meaning and is correctly mapped and, if necessary, translated; and 

structurally interoperable – that is, the dataset is formatted in the required form. Semantic 

interoperability issues for data are the largest hurdles in model integration (Argent, 2004). 

Differences in entity naming, scales used to represent space and time, and ways we represent 
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a concept in relationship to others are the most common causes of semantic heterogeneity 

among models.

It is often necessary to perform additional computations on data as it is transferred from 

one model to another. Data mediation requires identification of the WHAT, WHERE, 

and WHEN of data in the context of each model (Moore and Tindall, 2005). WHAT is 

the name, definition, and quantitative description of the data represented by the variable, 

including factors such as units, allowable minimum/maximums, etc. WHERE is location 

information and spatial resolution. WHEN describes temporal information and resolution. 

While space and time are obvious contexts, other “dimensions” must be considered as well: 

for example, differences between how components categorize land use, or human/ecological 

species demographics, chemicals, etc. must be resolved. Thus, unlike technical integration 

of modules, developing a ‘generic’ module that will handle data mediation among different 

models is quite difficult.

A related issue is, which component will perform the data mediation? An independent 

module be dedicated to this purpose, or will the participant models themselves mediate 

the data. In most integration frameworks, a dedicated module for data interoperability is 

developed, but participating models can also be responsible. For example, in OpenMI, the 

producing (source) component is responsible for identifying and extracting the requested 

data, performing appropriate conversions, and determining semantic mapping to variables 

from the receiving component (Moore and Tindall, 2005). It is assumed that data conversion 

“can be done in the most optimal way by the source component” (Gregersen et al., 2007). 

This indicates that, if the source component can be linked to five components, it should 

contain implementations of dataset conversion for each of them. Such architecture has two 

problems: a duplication of effort by implementing dataset conversion functions for each 

model and a lack of manageability when the number of components grows because the 

method may not be extensible.

Frameworks generally vary in the degree to which they codify the metadata and conversions 

related to data exchange. Data interoperability is achieved either by hard-coding, using an 

in-house developed standard and annotations, or via a controlled vocabulary and ontology, 

as shown in Table 4 (Athanasiadis and Janssen, 2008, David et al., 2013, Rahman et al., 

2003). In the following subsections we discuss data interoperability techniques used in the 

frameworks we reviewed.

4.2. Hard-coding for data interoperability

Hard-coding uses an explicit rather than symbolic name for something that will likely be 

changed8. In the context of data interoperability, this means that mapping and transfer 

of variables and related metadata from one component to another is achieved by direct 

connection between components. One ramification is that the mapping and transfer 

code must be generated for every combination of components that may share the data, 

resulting in duplication of code and high maintenance costs. Hard-coding is the most 

frequently used technique for data mediation because it is relatively easy to implement, 

but its implementation varies among frameworks. For example, in CMP (Moore et al., 

2007) designers stress that adopting a set of conventions on component interfaces to 
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address semantic and dataset interoperability is difficult. To reconcile inconsistency of data 

representation between components, they suggest using the component that translates the 

meaning of attribute names, quantities, and units of one component to another, or writing 

code in one component about the other components and adapting its interface at run-time.

4.3. Framework specific annotations for data interoperability

An annotation is a form of metadata which could be a comment or an explanation that is 

attached to text, image, or data (Yu, 2011). The second method of data interoperability is 

using application of specific annotations. Data mediation operations are performed based 

on information fetched from the annotations. A major advantage is that annotations for a 

component are reusable. Its disadvantages include that it is framework-dependent and that 

information presented in the annotation is dependent on how the developer defined the 

annotation.

Consider that TIME (Rahman et al., 2003) uses .NET metadata tags for classifying and 

documenting different attributes of models such as input-output, minimum and maximum 

allowed values, and units. OMS3 (David et al., 2013) similarly provides metadata 

information of classes, fields, and methods as annotations which contain information 

about component execution, unit and range constraints of data, and documentation. We 

consider the extension of the OpenMI standard in this category. The basic definition of the 

standard does not provide conventions for naming quantities and data operations (Gregersen 

et al., 2007). Data is expressed only in terms of data types, such as double, integer or 

string. However, the extension of the standard provides protocols (i.e., IBaseExchangeItem 

interface) to define how quantities, space, and time are described in the specific context of 

the data. This information can be fetched by calling functions, which provide metadata about 

the component such as ValueDefinition, SpatialDefinition, and TimeSet.

4.4. Controlled vocabulary and ontology for data interoperability

A controlled vocabulary is a list of “preferred terms” and definitions. When those terms 

are organized using a layer of interrelationships, axioms, and classes the result is ontology. 

As we progress toward more technical integration and automated data exchange, the need 

for standardized data interoperability via shared terminology and ontology becomes more 

important (Geller and Turner, 2007, Villa et al., 2009).

For example, the CSDMS framework handles semantic mediation by using Standard Names 

(Peckham, 2014) in the BMI and CMI interfaces. Semantic information about components 

can be found by accessing Model Information Functions of the BMI interface such as 

grid type and time steps. Dataset conversion functions are designed as reusable service 

components and can be accessed by CMI functions. Standard Names standardize not only 

variable names but also ‘model assumption names,’ based on a set of naming conventions. 

The naming conventions are based on ‘object name + quantity name’ and assumption names 

can be associated with variable names using an XML-based 〈assume〉 tag. Modelers are 

thus expected to use existing standard names in developing new models and contribute to 

identification and documentation of new standard names. Another example is the FRAMES 

(Whelan et al., 2014) integrated modeling framework which uses Dictionary files (DICs) 
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for standardized data exchange between models. DICs consist of a list of standard names 

for variables and related metadata that component-models are expected to write to and read 

from. For dataset mediation, FRAMES has a service component that brokers data movement 

into and out of DICs. The mediation component performs quality checks on the data and 

executes any necessary unit conversions.

The goal of standardizing names is an ontology for automatic semantic mediation 

(Papazoglou, 2008, Peckham, 2014) which preserves semantics of the data and eliminates 

the need for custom-developed code for semantic mediation (Papazoglou, 2008). An 

ontology enables higher levels of reuse (Wang et al., 2002) and also enables framework-

independent representation of knowledge on data structures (Rizzoli et al., 2008). Building 

ontology to address semantic interoperability across multi-disciplinary models is not a task 

for a few individuals (Argent, 2004) -- constructing a multi-disciplinary ontology requires 

huge collaborative efforts by different disciplines, as in Janssen et al. (2009).

Our literature review indicates ontologies are not commonly included in model integration 

frameworks. The GEO Model Web initiative (Nativi et al., 2013) suggests that Semantic 

Web technologies (RDF,9 OWL,10 SKOS,11 SPARQL12) can create understanding 

between models since they provide machine-understandable semantics; it also suggests that 

automatic semantic mediation can be realized only if the naming of service properties is 

unambiguously defined. Standardized model metadata is a means to achieving semantic 

interoperability.

Although four models are linked In SEAMLESS, ontology was built to avoid the hard-

coding of semantic mediation. The ontology enables semantic mediation among models, 

indicators and data sources (Janssen et al., 2009), and also makes mediation process 

extensible to incorporate new models. The SEAMLESS ontology and its content is stored in 

a knowledge base, and model output is written to a database; the database and the ontology 

are linked by a relational database schema. The framework has a dedicated Knowledge 

Manager (KM) module to maintain links between components, manipulate data sources, and 

facilitate data exchange (Athanasiadis and Janssen, 2008). The KM is based on an ontology 

specifying the data exchange among participating models. Inter-component communication 

occurs via underlying databases and is dependent on the KM. The KM operates as a 

mediator by receiving data from models and mapping them to appropriate database tables.

5. Testing integration

Testing verifies or validates whether a system satisfies certain specified requirements 

and improves the integrated system’s quality. Integration of models is error-prone since 

it requires both scientific and programming efforts (Bruggeman and Bolding, 2014). 

Even though individual components are tested independently and may perform correctly, 

integration output can still produce unexpected results due to different assumptions made 

during integration (Voinov and Cerco, 2010). Testing remains difficult regardless of the 

integration strategy used (Ramamoorthy et al., 1992). As we have seen, there are many 

potential sources of error in designing and implementing software to facilitate data-exchange 

within integrated modeling systems, including matching of variables, conversion of units, 
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use of metadata to perform semantic operations, and translation of space and time 

dimensions. Identifying and reporting specific sources of error (debugging) in integrated 

systems is also a challenge.

Integration of complex data and models is likely to propagate uncertainty throughout the 

model chain (Dubois et al., 2013) and uncertainty tends to increase as more models are 

chained together (Geller and Turner, 2007). Quantifying and communicating uncertainty in 

a model chain is challenging but crucial if we want to ensure the integration output will be 

accepted by the larger user community. In addition, time-stepping and numeric integration 

methods selected for linked components have their own effect on error and uncertainty in 

integration output (Belete and Voinov, 2016).

From the perspective of software engineering, testing occurs at different stages of 

development including unit testing, integration testing, system testing, and acceptance 

testing (Luo, 2001). Unit testing is the lowest level and is performed to verify correct 

component function. Integration testing assesses whether interfaces between different 

components of a system are communicating correctly. System testing attempts to check 

end-to-end functioning of the system, and acceptance testing is done to deliver the system to 

end users. We must also consider emergent properties that appear when we link components 

into integrated systems (Ammann and Offutt, 2008). Best practices indicate software testing 

can be improved by characterizing the Why, How, How Much, What, Where, and When 

(Bertolino, 2007):

• Why – Are we looking for errors or we are trying to improve the usability of the 

user interface?

• How – How do we select test samples?

• How Much – How big should the sample be that we will use for testing?

• What – Are we going to perform unit test, component/subsystem test, or 

integration test?

• Where – Are we going to test the simulated environment or the final context?

• When – At which stage of the product life cycle will we perform the testing?

Testing does not always get the appropriate emphasis due to time or cost constraints 

For instance, Holzworth et al. (2015) points that the agricultural modeling community 

fails to give appropriate attention to testing. However, some frameworks have applied 

various testing approaches. While the naming was different, they provided certain testing 

functionalities to evaluate the system or its components. For example, FRAMES provided 

a “testbed” with error archiving functions (Whelan et al., 2014), from which users can 

closely examine system errors. Similarly, TIME provided a generic “test bench” (Rahman 

et al., 2003) in which model-component developers can test and calibrate a model. In 

ModCom (Hillyer et al., 2003) the framework distribution incorporates a “test suit” that 

covers all functionalities of the framework, and which is mainly aimed at debugging the 

framework libraries. In APSIM (Holzworth et al., 2014), automated testing is incorporated 

into the system to improve stability and robustness; whenever a modified version of code is 

submitted, automated testing runs the test suit.
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When integrating models, a test plan should be part of development. The test plan should 

clearly outline the scope of testing and incorporate test cases, the list of functionalities 

to be tested, and by whom and when the testing will be performed. Depending on the 

context, testing can be done by developers, software testers, or end users. OpenMI testing, 

for example, was done in two phases -- first by the design team and then by external experts 

(Moore and Tindall, 2005). Testing was performed by eight universities and companies with 

the aim of migrating and linking different models with the provided tools and guidelines 

(Gregersen et al., 2007). Testing of integration can be done with bottom-up or top-down 

approaches (Myers et al., 2011). Bottom-up testing begins with testing system components 

at the lowest level and progresses to higher-level combinations of components. In top-down, 

testing begins with the highest-level components and continues to individual components 

at lower levels. Once the testing strategy is selected, testing procedures can be automated 

which has advantages of saving time and repeatability. The challenge is that it may not be 

possible to automate everything we would like to test, and automated testing cannot always 

replace manual testing (Berner et al., 2005). This requires us to respond to questions like: 

How do we scientifically know that it works and that we did not create a false positive? 

For example, SIAT’s developers used automated unit testing for code but not for the GUI 

(Verweij et al., 2010), the reason being that they found automated unit testing technology for 

GUIs is immature.

6. Discovery, accessibility and ease of use of integrated systems

Discoverability and accessibility of a model is significant in model integration. Despite the 

large number of modeling components, users generally lack tools to locate them. And if 

discovered, the next challenge is to gain operational access and evaluate their relevance to 

the user’s problem (Booth et al., 2011). Finally, ease of use is important when deciding 

about model incorporation into a user’s integrated system. For example, ESMF has been 

developed with a goal of enhancing ease of use, portability, and reuse in coupling climate 

and weather prediction models (da Silva et al., 2003, DeLuca et al., 2012). One of design 

goal of ModCom (Hillyer et al., 2003) is to provide a visual tool that enables model linkage 

and execution. Similarly, the TIME modeling framework (Rahman et al., 2003) includes 

a ‘visually rich user interface’ and reusable data handling and visualization components 

for integration of models. In the SEAMLESS-IF integration framework, the graphical user 

interface is designed to assist users in performing integrated assessment for alternative 

policy options (Van Ittersum et al., 2008). The GUI offers easy access and display of system 

functionalities and outputs.

Preparing software for easy use requires knowing the needs of target user groups of the 

framework. For example, the Biophysical Model Applications (BioMA13) framework was 

developed to rapidly bridge model development from prototypes to operational applications 

with re-usable components. In this case, target users are both application users and advanced 

users. Ease of use features for application users relate to running and viewing available 

model simulations, while ease of use features for advanced users include creating and 

developing models.
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With the advance of web technology, presenting model interfaces and integration 

frameworks in web pages has become more popular since it significantly increases model 

discoverability, accessibility and usability. Web-based user interfaces that target specific 

communities – e.g. scientists, policy makers, and the public – improve access to data and 

models and facilitate model reuse. “Apps for the environment”14 developed by the U.S. 

Environmental Protection Agency is a good example. The introduction of a browser-based 

Web Modeling Tool15 (WMT) by CSDMS to replace the older desktop-based Component 

Modeling Tool (CMT) also points in this direction. Improving the WMT’s ease of use is 

a focus of current development. Likewise, Systo,16 a web-based model whose technical 

design is based on the desktop-based Simile,17 InsightMaker18 and STELLA,19 is a 

successful effort to make a model more accessible and easier to use.

Providing models via the web is not without challenges. As Brooking and Hunter (2013) 

point out, these challenges include managing large volumes of data, complexity of the 

required software platform, and computational demand for model execution are barriers 

that limit sharing and re-use of models over the web. Similarly, Nativi et al. (2013) 

point out developing a flexible architecture to link distributed components, minimizing 

interoperability agreements, optimizing performance, and securing availability in the long 

term are challenges in presenting models on the web.

Presenting models using web pages also creates a challenge since model usage is 

constrained by how the web page presents it. For example, users may want to display 

model output as part of another application, which leads to providing a “model as a service”, 

making it available as a web service (Geller and Melton, 2008, Geller and Turner, 2007, 

Roman et al., 2009). This approach makes models and their output more accessible, more 

comparable, more scalable, and can be implemented using a variety of approaches (Nativi 

et al., 2013). One example of such a platform is eHabitat (Dubois et al., 2013) which is 

part of the European Union Digital Observatory for Protected Areas (DOPA20) project. In 

eHabitat, models and data sources are presented as a pool of OGC WPS services; using a 

web-based interface, users can select and assemble them like Lego blocks. Another example 

is the iPlant cyberinfrastructure (Goff et al., 2011) which provides several biology-related 

applications as a web service API so bioinformatics experts and software developers can 

embed them in their tools.

Some modeling frameworks use purposely-designed semantic technology features to 

improve discoverability of models and related resources. For example, Galaxy (Goecks 

et al., 2010) – a computational framework for life sciences – uses tagging (labeling) to 

describe resources. During simulation, the system automatically tracks input datasets, tools 

used, parameter values, output datasets, and a series of analysis steps that it stores as history. 

The user can add annotations about analysis steps. The authors report that tagging supports 

reproducibility of experiments. Similarly, the system biology data and model platform - 

SEEK (Wolstencroft et al., 2015) – provides a web-based environment for day-to-day 

collaboration and public access. It uses the Resource Description Framework (RDF) to 

store metadata of resources that facilitate data and model exploration. All of these efforts 

indicate that incorporation of purposely-designed semantic technology features can improve 

discoverability of models beyond simple search operations.
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7. Discussion and conclusions

Our goal was to identify existing strategies and recommend additional ones that facilitate 

efficient reuse and interoperability of science-software components to enable cost-effective 

construction and execution of integrated multi-disciplinary modeling systems. We organized 

the review around the model integration process that includes pre-integration assessment, 

preparation of models for integration, orchestration, data interoperability, and testing. We 

highlight various methods employed by developers to achieve each process step. The 

following observations and conclusions emerged from this review. We expand this in the 

final section with recommendations intended to foster a community-wide conversation to 

improve implementation of the overall process, and design and deployment of modeling 

components in particular.

1. There is wide variation in strategies for implementing and documenting model 

integration across the development community. The process is driven by a 

science-based need to explore processes, problems, and solutions related to 

the environment that uses software-based tools to express the knowledge and 

execute modeling workflows. Science-based needs determine the requirements 

for the integrated software system. The variation in strategies is largely related to 

computer-based technologies (hardware and software) rather than differences in 

science-based requirements.

2. Frameworks that facilitate construction and orchestration of modeling workflows 

are complex, requiring significant resources to build and a steep learning curve 

to understand and utilize them for those outside the development and targeted 

user groups. We found that the literature describing the overall process and 

frameworks, in particular, varies widely in aspects of the integration process and 

frameworks that are discussed and in the level of detail in those discussions.

3. There is wide variation in strategies for orchestrating execution of workflows 

within the frameworks, and preparing modeling components for assimilation 

into the frameworks. With few exceptions, current practice is to design and 

implement integrated modeling systems to satisfy requirements of individual 

projects and development/user group preferences. This strategy has resulted in a 

large number of frameworks, but little reuse of the modeling components (and, 

thus, the embedded science) among the frameworks.

4. Data interoperability involves interpreting and converting data produced by one 

component to satisfy content and format requirements of components that will 

consume it. Again, there is wide variation in how this is implemented. Methods 

include explicit and hard-coded mapping of variables, use of metadata that 

describes data attributes (units, min/max range), use of controlled vocabularies 

and ontologies to ensure semantic consistency, and intermediate components 

designed to manipulate data (translate, interpolate, aggregate, disaggregate) to 

resolve dimensional conflicts (spatial/temporal grid conflicts). Such variation in 

component design creates significant barriers to interoperability and sharing of 

science, expressed as software components, among frameworks.
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5. Testing of integrated modeling systems verifies operational integrity of the 

system design as implemented, i.e., the system correctly formulates and 

processes the overall workflow from system inputs, to component-level data 

exchanges, to generation of results. Testing is particularly challenging in 

integrated systems because of the increased potential for error and error 

propagation. The reviewed literature paid relatively little attention to details 

on this topic. It appears that formal testing (with documentation) is often 

limited due to resource constraints and some developers conduct and document 

testing from the component-to the system-level. Systems with limited testing 

are generally operated by the developers only, while systems with more formal 

testing are easier to transfer to users. This lack of documentation of testing limits 

acceptance of the system by developers outside the original team.

6. Discoverability, accessibility and ease of use are fundamental requirements 

for users. For existing systems, discoverability is typically limited to local 

knowledge within a group, the literature, and Google searches. As stated above, 

the literature often does not provide sufficient detail to determine important 

characteristics of the software required to make a decision about pursuing its 

reuse. On a positive note, we see a movement toward the web as a platform for 

deployment of modeling components which appears motivated by an emerging 

desire to address interoperability by making models available as a service, thus 

eliminating issues of incompatible computer languages and operating systems. 

As a secondary benefit, model discoverability is also enhanced with web-based 

deployment.

Our overall conclusion is that integrated modeling can be significantly enhanced if 

the global community of developers specifically focuses on cross-framework reuse and 

interoperability in design and implementation strategies. This will take us beyond sharing 

science knowledge via literature and move us toward sharing this knowledge more 

efficiently and cost-effectively in computer-based software form. Based on our review, we 

conclude that this is not only possible but that it is already occurring, although in an ad hoc 

rather than an organized manner. In the next section we make several recommendations to 

increase awareness of these possibilities and focus on specific efforts.

8. Recommendations

Using the perspective gained from this review we organized a list of recommendations 

for moving forward as a global community in developing integrated modeling systems. 

Note that the recommendations do not include details such as specific standards that 

should be utilized or developed, but rather where standards apply and what they should 

include (i.e., the science content). We chose this approach despite the fact that specific 

standards already exist (e.g., OpenMI, OGS WPS) because we believe it is more important 

to come to a community-wide awareness of the benefits of reuse and interoperability and 

to increase participation in them. Our recommendations reflect the software engineering 

concept of “separation of concerns” and the science-based concept of ontologies. Separation 

of concerns focuses on developing software components that perform a specific, limited 
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set of functionalities. As more functionality is packaged in a single piece of software, its 

flexibility and use (and reuse) becomes more and more constrained in an integrated context. 

Ontologies are a structured way to represent knowledge about a domain; they define and 

describe concepts (things) included within a knowledge domain, as well as their related 

properties and relationships.

We begin by identifying three principal elements of integrated modeling systems: user 

interface, model integration infrastructure and tools (i.e., frameworks), and science-based 

components. We recommend properties of each and the communication-based relationship 

between them. Each element can be further separated into lower-order elements, properties, 

and relationships.

8.1. User interface

The user interface should be “thin” and focus on specific problems or classes of problems 

that give users the ability to select or construct a scientific workflow involving data, 

modeling, and tool components relevant to the user-specified problem; and visualize and 

process results of workflow execution. Workflows should accommodate at least two levels of 

complexity: first, a straightforward linking of multiple data, model, and tool components to 

enable both feed forward and feedback interoperability; and second, it should accommodate 

special “system”-level functionality such as data acquisition and harmonization tools, 

ability to perform system-wide sensitivity and uncertainty analysis, Monte Carlo simulation, 

and analytical tools for synthesizing intermediate and endpoint data processing. These 

workflows define the requirements for design of the model integration framework and its 

components.

Users should have access to a repository of components and sufficient metadata about 

them to determine which ones are relevant to a user-stated problem and are interoperable. 

Metadata about model components (aka meta-models) should be standardized to ensure 

machine-readability and processing. The repository may be local (to an organization or a 

development group, for example) but, ideally, would be linked to a global collection of 

socio-environmental science software components.

Output of the user interface should be a standalone (and, ideally, standards-based) 

description of the workflow to be executed. The interface should also provide access to 

tools that consume and process results of the integrated modeling execution.

8.2. Model integration

The model integration framework implements workflow produced via the user interface. 

Important elements of the integration process, as gleaned from the review, include execution 

management, semantic mediation, dataset conversion, and error handling. Integration tools 

or complete frameworks may be designed to optimize model system execution on high 

performance computers, parallelization of execution (e.g., leveraging the cloud), and web-

based integration.
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8.3. Science components

Science components should be designed and implemented in a framework-independent 

manner. We encourage individual scientists to publish software in a way that can be 

discovered, understood, and integrated within any user interface and model integration 

system. Essential features associated with the design of components to meet these high-level 

requirements include:

a. An explicit API. At the highest level, it enables initializing, running, and closing 

functions. At a secondary level, it describes and enables programmatic access to 

science knowledge and functionality expressed in the component.

b. Metadata for input/output/internal variables that describe at least the:

i. Meaning of variables, including assumptions made about variables and 

processes

ii. Measure/units unambiguously

iii. Valid range of values, if appropriate

c. In the context of a) and b), the content should be described using a controlled 

vocabulary and, eventually, a full ontology to describe relevant concepts and 

relationships.

d. Software is open source and available via public access version control systems 

such as gitHUB.

To develop the global repository, components must be published with science content and 

functionality to enable discovery, understanding, and integration. Their publication must 

include metadata that fully describe inputs, outputs, and internal workings of the component 

(aka black box). This will require controlled vocabularies and an ontological framework 

for describing data and modeling science. To achieve this, the modeling community should 

reinforce collaboration on developing and improving standards which can be used across 

frameworks. Adoption of the OpenMI Standard v2.0 as an OGC standard is an example of 

one such effort.
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Fig. 1. 
Iterative relationship among model integration phases.
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Fig. 2. 
Alternative paths in preparing a model for integration.
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Fig. 3. 
Common strategies to implement framework data exchange protocol on existing models are 

to modify the model interface directly to conform to the framework data exchange protocol 

or develop a wrapper as a separate component.
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Fig. 4. 
Two-level-wrapping for cross-platform interoperability: Web service and OpenMI-compliant 

component wrapper.
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Table 1.

Elements or aspects of model integration practices.

Elements or aspects of 
model integration

Different 
approaches to 

implement 
elements

Description and example frameworks References

Pre-integration 
assessment

– How selection of models and system 
conceptualization is done. Examples in: 
FRAMES, OpenMI, SEAMLESS

Butterfield et al., 2008, Janssen et al., 2009, 
Janssen et al., 2011, Van Ittersum et al., 2008, 
Whelan et al., 2014

Preparing models for 
integration

Component 
based

Models are presented as components for 
interoperability. Examples in: CSDMS, 
ESMF, FRAMES, OpenMI, SEAMLESS

DeLuca et al., 2012, Janssen et al., 2011, 
Peckham et al., 2013, Van Ittersum et al., 2008, 
Whelan et al., 2014;

Web service 
based

Models are presented as web services for 
interoperability. Examples in: AWARE, 
eHabitat, GEO Model Web

Dubois et al., 2013, Goodall et al., 2011Granell 
et al., 2010, Geller and Melton, 2008, Geller 
and Turner, 2007, Nativi et al., 2013, Roman et 
al., 2009;

Hybrid Some models are presented as components 
and others as web services.

Castronova et al., 2013, Goodall et al., 2013;

Tailor-made Custom-made techniques for 
interoperability. Examples in: CMP, TIME

Moore et al., 2007, Rahman et al., 2003;

Interface standards for 
interoperability

– Model interface standards designed by 
the modeling community. Examples in: 
CSDMS, ESMF, OpenMI, OGC WPS.

da Silva et al., 2003, DeLuca et al., 2012, 
Goodall et al., 2011, Hill et al., 2004, Moore 
and Tindall, 2005, Peckham, 2014, Schut and 
Whiteside, 2007;

Orchestration of 
interaction of models 
during simulation

Component 
based

Orchestration of models is done using 
component-based development. Examples 
in: CSDMS, FRAMES, OpenMI, 
SEAMLESS

Gregersen et al., 2007, Janssen et al., 2011, 
Van Ittersum et al., 2008, Peckham et al., 2013, 
Whelan et al., 2014;

SOA based SOA principles are used for orchestrating 
models. Examples in: AWARE, eHabitat, 
GEO Model Web.

Dubois et al., 2013, Butterfield et al., 2008, 
Goodall et al., 2011, Granell et al., 2010, Nativi 
et al., 2013;

Hybrid Both component-based and SOA-based 
approaches are used.

Castronova et al., 2013, Goodall et al., 2013;

Tailor-made An ad hoc collection of techniques for 
orchestration. Examples in: APSIM, CMP, 
OMS,

David et al., 2013, Holst, 2013, Moore et al., 
2007, Keating et al., 2003;

Performance in 
integrating models

– How performance optimization is treated 
by integration frameworks. Examples in: 
ESMF, OMS

David et al., 2013, Hill et al., 2004, Knapen et 
al., 2013.

Data interoperability Hard-coding Hard-coding is used for data 
interoperability. Examples in: CMP, 
eHabitat

Dubois et al., 2013, Moore et al., 2007;

Framework 
specific 
annotations

Application-specific annotations are used 
for data interoperability. Examples in: 
OMS, TIME

David et al., 2013, Rahman et al., 2003;

Controlled 
vocabulary and 
ontology

Reusable vocabulary and ontology is used 
for data interoperability. Examples in: 
FRAMES, SEAMLESS

Argent, 2004, Athanasiadis and Janssen, 2008, 
Geller and Turner, 2007, Nativi et al., 2013, 
Rizzoli et al., 2008, Van Ittersum et al., 2008, 
Whelan et al., 2014;

Testing Unit test, 
integration test, 
automated 
testing, test 
bench

How frameworks treat testing. Examples 
in: APSIM, FRAMES, ModCom, 
OpenMI, SIAT, TIME

Bertolino, 2007, Bruggeman and Bolding, 2014, 
Hillyer et al., 2003, Holzworth et al., 2014, 
Holzworth et al., 2015, Luo, 2001, Moore and 
Tindall, 2005, Rahman et al., 2003, Verweij et 
al., 2010, Whelan et al., 2014;

Discovery, accessibility, 
and ease of use

– Efforts to improve discovery, accessibility, 
and ease of use of models. Examples in: 
BioMA, eHabitat, InsightMaker, iPlant, 
ModCom, SEEK, Systo,

Brooking and Hunter, 2013, da Silva et al., 
2003, DeLuca et al., 2012, Goecks et al., 
2010, Goff et al., 2011, Hillyer et al., 2003, 
Wolstencroft et al., 2015;
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Table 2.

Brief comparison of technical integration methods commonly used by integration frameworks.

Component-based SOA-based Hybrid of component-based 
and SOA

Custom-made

Primary 
characteristics

Reusability of components 
and system level 
functionalities.

Loosely coupled 
systems; distributed 
services.

Models as components and as 
web services.

An ad hoc collection 
of methods/techniques is 
used.

Advantages Plug & play; separation 
of concern; minimizes 
context switching time of 
components.

Plug & play; location 
independence; platform 
independence; scalable.

Enables linkage to 
different frameworks; manage 
heterogeneity; reuse existing 
frameworks.

Developers can use 
ad hoc techniques for 
orchestration.

Disadvantages Developing reusable 
orchestration engine is 
challenging.

May require heavy data 
exchange, and high 
availability.

Requires parsing data between 
components and web services.

May not support new 
version of models; lack of 
extensibility.

Examples CSDMS, OpenMI, 
FRAMES, SEAMLESS

AWARE, eHabitat Castronova et al., 2013, 
Goodall et al., 2013

APSIM, CMP
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Table 3.

Some interface standards used by the modeling community.

Name of 
interface 
standards

Description Some of its features Reference

OpenMI 
standard

A collection of programming 
interfaces for components.

It consists of a list of function names or method 
signatures called initialize, update, inputItems, status, etc. 
that enable the model being wrapped to request data from 
other models and respond to requests for data.

Moore and Tindall (2005)

CSDMS 
standard

Developed to simplify 
conversion of an existing 
model to a reusable, plug-and-
play model component.

It has two levels of specification: (1) BMI
a
 developed 

to provide model metadata to the next level and (2) 

CMI
b
 communicates with BMI functions as well as with 

Service Components and the CSDMS Framework

https://csdms.colorado.edu

OGC WPS Specifications on how inputs 
and outputs of geospatial 
services are handled.

It has three mandatory operations that should 
be implemented by all services: GetCapabilities, 
DescribeProcess, and Execute.

Schut and Whiteside (2007)

ESMF standard Developed to have standard 
interface for model 
components.

To make a model ESMF-compliant, it should include 
methods named initialize, run, and finalize.

da Silva et al., 2003, 
DeLuca et al., 2012, Hill et 
al., 2004)

Web service 
standard for the 
water domain

Developed to present models 
from water resources domain 
as web services.

It combines semantic features like where, what, and 
when of the exchanged data from the OpenMI with web 
service features of the OGC WPS standards.

Goodall et al. (2011)

a.
BMI - http://csdms.colorado.edu/wiki/BMI_Description.

b.
CMI - http://csdms.colorado.edu/wiki/CMI_Description.
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Table 4.

Brief comparison of data interoperability techniques used by integration frameworks.

Hard-coding In-house developed standard and 
annotations

Controlled vocabulary and an ontology

Primary 
characteristics

Uses an explicit rather than a 
symbolic name.

Use metadata for mediation. Use vocabulary or ontology for mediation.

Advantages Easier to implement. Flexible and extensible. Flexible, extensible, and accommodate 
change.

Disadvantages Lacks extensibility and 
flexibility.

Usage is limited to small group. Difficult to construct the vocabulary or 
ontology.

Examples CMP TIME, OMS3 SEAMLESS, FRAMES
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