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Abstract

Stable isotopes are currently used to measure glucose fluxes responsible for observed glu-

cose concentrations, providing information on hepatic and peripheral insulin sensitivity. The

determination of glucose turnover, along with fasting and postprandial glucose concentra-

tions, is relevant for inferring insulin sensitivity levels. At equilibrium (e.g. during the fasting

state) the rate of glucose entering the circulation equals its rate of disappearance from the

circulation. If under these conditions tracer is infused at a constant rate and Specific Activity

(SA) or Tracer to Tracee (TTR) ratio is computed, the Rate of Appearance (RA) equals the

Rate of Disappearance (RD) and equals the ratio between infusion rate and TTR or SA. In

the post-prandial situation or during perturbation studies, however, estimation of RA and RD

becomes more complex because they are not necessarily equal and, furthermore, may vary

over time due to gastric emptying, glucose absorption, appearance of ingested or infused

glucose, variations of EGP and glucose disappearance. Up to now, the most commonly

used approach to compute RA, RD and EGP has been the single-pool model by Steele.

Several authors, however, report pitfalls in the use of this method, such as “paradoxical”

increase in EGP immediately after meal ingestion and “negative” rates of EGP. Different

attempts have been made to reduce the impact of these errors, but the same problems are

still encountered. In the present work a completely different approach is proposed, where

cold and labeled [6, 6-2H2] glucose observations are simultaneously fitted and where both

RD and EGP are represented by simple but reasonable functions. As an example, this

approach is applied to an intra-venous experiment, where cold glucose is infused at variable

rates to reproduce a desired glycaemic time-course. The goal of the present work is to show

that appropriate, if simple, modelling of the whole infusion procedure together with the

underlying physiological system allows robust estimation of EGP with single-tracer adminis-

tration, without the artefacts produced by the Steele method.

Introduction

Insulin resistance is the common denominator of many pathological conditions including

type 2 diabetes (T2DM), obesity, hypertension, hyperlipidemia, atherosclerosis, non-alcoholic
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fatty liver disease (NAFLD) and polycystic ovarian syndrome. Drugs that improve insulin sen-

sitivity, such as metformin or thiazolidinediones, improve glycemic control by acting in differ-

ent ways. For instance, while metformin suppresses Endogenous Glucose Production (EGP),

thiazolidinediones mainly increase peripheral glucose uptake [1]. Bariatric surgery (of differ-

ent types) determines diabetes remission both in the short [2, 3] and in the long term [4–6]

through reversal of insulin resistance [7]. However, while Roux-en-Y Gastric Bypass mainly

reduces hepatic insulin resistance, Bilio-Pancreatic Diversion increases whole-body insulin

sensitivity [8, 9], which is mostly determined by skeletal muscle mass [10]. In this context it is

clear that the assessment of the differential mechanisms, whereby insulin sensitivity is

improved, greatly benefits from the possibility of estimating Endogenous Glucose Production

(EGP).

Stable isotopes are currently used to measure glucose fluxes responsible for observed glu-

cose concentrations, providing information on hepatic and peripheral insulin sensitivity: in

particular, hepatic insulin sensitivity can be gauged by measuring EGP. During fasting, EGP

provides the necessary glucose to maintain euglycemia: the liver, through glycogenolysis and

gluconeogenesis, contributes to about 90% of EGP [11], while kidneys and gut are jointly

responsible for the remaining 10%. In the postprandial state the liver helps maintain normal

glucose levels by removing glucose from the circulatory stream and storing it into glycogen,

while EGP is suppressed. For constant plasma insulin, glucagon and growth hormone concen-

trations, a doubling of plasma glucose levels was observed to inhibit EGP by 42% and stimulate

peripheral glucose uptake by 69% in nondiabetic subjects; in T2DM patients EGP was not sup-

pressed and glucose uptake was stimulated by only 49% [12]. Portal venous hyperglycemia and

hyperinsulinemia stimulate hepatic glucose uptake [13] and promote net hepatic glycogen syn-

thesis [14]. Experimental data have indicated that extrahepatic signals may also be important

in influencing EGP. Lactate and alanine [15], but also glycerol and free fatty acids [16], are glu-

coneogenetic precursors: higher concentrations of these substrates determine an increase in

EGP. Insulin inhibits gluconeogenesis while glucagon and catecholamines stimulate it [17]. In

T2DM hyperglucagonemia contributes to EGP and hyperglycemia [18].

The determination of glucose turnover, along with fasting and postprandial glucose con-

centrations, is relevant for inferring insulin sensitivity levels. At equilibrium (e.g. during the

fasting state) the rate of glucose entering the circulation equals its rate of disappearance from

the circulation. If under these conditions tracer is infused at a constant rate and Specific Activ-

ity (SA) or Tracer to Tracee (TTR) ratio is computed, the Rate of Appearance (RA) equals the

Rate of Disappearance (RD) and equals the ratio between infusion rate and TTR or SA. In the

post-prandial situation or during perturbation studies, however, estimation of RA and RD

becomes more complex because they are not necessary equal and they may also vary over time

due to gastric emptying, glucose absorption, appearance of ingested or infused glucose, varia-

tions of EGP and glucose disappearance.

Up to the present day, the most commonly used approach to compute RA, RD and EGP

has been the single-pool model by Steele [19–21], which has been used by many investigators

[22–25]. However, several authors report pitfalls in the use of this method, such as the “para-

doxical” increase in EGP immediately after meal ingestion and, more troubling, “negative”

rates of EGP [26, 27].

One may attempt to reduce the impact of these errors by using experimental designs where

SA or TTR are kept as constant as possible and where sampling is very frequent [28], but this

would limit the range of practicable designs and red would increases experimental costs. Other

authors have proposed different approaches: Radziuk et al. advocated the use of a two-com-

partment model [29], with the introduction of an accessible and a slowly exchanging non-

accessible compartment, but the same problems were encountered as with the dual-tracer
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approach. Cobelli et al. [26] proposed the use of three tracers for the estimation of RAmeal,

EGP and RD after the ingestion of a meal: this method is however very complicated in that it

requires, in addition to the use of a third tracer, also that pilot studies are conducted and that

the intra-venous tracer infusion rates are varied over time so as to keep both oral and endoge-

nous TTR’s constant.

In the present work a completely different, novel model-based approach is proposed, where

cold and labeled [6, 6-2H2] glucose observations are simultaneously fitted and where both RD
as well as EGP are represented by simple but reasonable functions. As an example, this

approach is applied to an intra-venous experiment, where cold glucose is infused at variable

rates to reproduce a desired glycemic time-course. The goal of the present work is to show that

appropriate, if simple, modelling of the whole infusion procedure together with the underlying

physiological system allows for a robust estimation of EGP with a single-tracer administration

(as in the Steele approach), without the additional complications of double or triple tracer

administration and without the artifacts produced by the Steele method itself.

Materials and methods

Study sample

Two NGT, two IGT and two T2DM subjects (average BMI of 53.5 kg/m2) participated in an

isoglycemic experiment according to a protocol (Trial registration: ClinicalTrials.gov

NCT03223129) approved by the Ethical Commitee of the Catholic University School of Medi-

cine Policlinico Gemelli, Rome, Italy. All participants provided written informed consent.

Anthropometric characteristics of the six subjects are reported in Table 1. Details of the experi-

ment and procedures are reported in [30]. Briefly, the experiment consisted in administering

patients an oral and an intra-venous glucose test. All subjects were studied in the post-absorp-

tive state after a 12-h overnight fast. To collect arterialized venous blood, a retrograde catheter

was inserted in a dorsal hand vein, with the hand kept in a warming blanket. A forearm vein of

the controlateral arm was catheterized for the infusions. On day 1, At 08,00 h, [6, 6-2H2]glu-

cose was infused as a priming dose of 22 μmol/kg and then as continuous infusion throughout

the whole procedure at 0.22 μmol/kg/min. After 2.5 h of isotope infusion (basal period), oral

glucose loads were given and consumed over 5 minutes at intervals of two hours, three times.

The three oral loads consisted respectively of 25 g, 75 g and 100 g of glucose in aqueous solu-

tion. Glucose concentrations were evaluated before the start of the first oral glucose load and

every ten minutes thereafter. On day 2, the procedure started again, similarly to the first day,

with [6, 6-2H2] glucose infusion, first with a priming dose of 22 μmol/kg and then as a contin-

uous infusion throughout the whole procedure at 0.22 μmol/kg/min. After 2.5 h of [6, 6-2H2]

glucose continuous infusion (basal period), a 20%wt/vol adjustable glucose solution was

infused at varying rates to match the plasma glucose concentrations obtained during the oral

glucose tolerance test performed on the previous day. The 20% dextrose that was infused

Table 1. Anthropometric characteristics of the studied subjects.

Subjects Gender [M/F] Age [years] Weight [kg] BMI [kg/m2] Study Group

1 M 44 160 55.4 NGT

2 F 60 128 48.8 NGT

3 M 55 131 48.1 T2DM

4 M 19 173 53.4 IGT

5 M 36 201 65.4 T2DM

6 M 24 160 49.9 IGT

https://doi.org/10.1371/journal.pone.0278837.t001
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during the intra-venous glucose infusion test was enriched with 2, 5% of [6, 6-2H2]glucose to

minimize changes in glucose isotopic enrichment. During this experimental IV procedure

plasma glucose was measured before the start of the adjustable glucose infusion and every five

minutes thereafter in order to change the glucose infusion rate so as to obtain the “isoglyce-

mic” pattern. Plasma glucose concentrations were determined by the glucose oxidase method.

Modelling

The objective of the present work was that of developing a model-based approach to estimate

glucose liver production during the intravenous experiment described above or similar ones.

According to the experimental procedure described in the previous paragraph, the data ana-

lysed in the present work is that collected on day 2 when subjects underwent the intra-venous

glucose infusion reproducing the glycaemic Oral Glucose Tolerance Test (OGTT) patterns

derived from the administration of the three oral glucose loads on day 1 (see Fig 1). The pro-

posed modelling approach, therefore, is applied to the only intra-venous infusion procedure

which, from a modelling point of view, is the simplest part of the whole experiment. References

Fig 1. Block diagram. Schematic representation of both the one-compartment glucose model (panel A) and the whole experimental procedure (panel

B). The schematic representation of the model summarizes the intravenous procedure performed on day 2.

https://doi.org/10.1371/journal.pone.0278837.g001
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to OGTTs are made, therefore, to highlight the three different trends (mirroring the three

OGTTs) over time. We note that the proposed modelling approach is independent from the

pattern of the infusion, and that, independently from the OGTTs performed on the previous

day, it aims at modelling an intra-venous glucose experiment, by implementing the intra-

venous inputs, and the consequent physiological response.

We start by considering that in humans water represents about 65% of total body weight

(BW) and approximately 5% of BW is water in plasma, 20% in interstitial fluid and 40% in

intra-cellular fluid. For a 70 kg man we can therefore state that about 3.5 ℓ plus 14 ℓ represent

the distribution volume for glucose, about 0.25 ℓ/kg overall. In obese subjects the distribution

volume per kilogram body weight is generally smaller.

An average consumption of glucose by the brain of about 104 g/day is considered [31, 32].

This means about 0.40 mmol/min (104/1440 × 1000/180 mmol/min). Upon administration of

tracer, the total glucose uptake (sum of ‘cold’ and ‘hot’ glucose uptake, where with ‘hot’ we

indicate the [6, 6-2H2]glucose, and with ‘cold’ we indicate the tracee) by the brain can be

divided into two components. The hot component, kbrh,fun/Vgp in equations (4) is the propor-

tion TTR/(1+TTR), where TTR represents the tracer/tracee ratio:

kbrh;funðtÞ=Vgp ¼ ð104=1440� 1000=180Þ � TTRðtÞ=ð1þ TTRðtÞÞ

which varies over time as function of TTR(t), while the total uptake in Eq (1), represented by

the term kbr/Vgp is constant with kbr equal to 0.40 mmol/min (being Vgp the plasma glucose dis-

tribution volume expressed in ℓ/kg).

Two different models were evaluated: the simplest model includes only one physical glucose

compartment, while a more detailed model includes both plasma and interstitial compart-

ments. When evaluating the last model two volumes were thus separately considered: plasma

volume, whose typical value is approximately 0.05 ℓ/kgBW, and interstitial volume, whose typi-

cal value is about 0.20 ℓ/kgBW.

All the model state variables and model parameters are described in Tables 2 and 3, respec-

tively, along with their corresponding units of measurement.

At time -150 min, corresponding to the time of the priming infusion, the system is sup-

posed to be at steady state and all the starting conditions of the model equations are referred to

Table 2. Model variables and input variables (external inputs) along with their unit of measurement and

description.

Model Variable Units Description

GP mM ‘Total’ glucose concentration in plasma

GI mM ‘Total’ glucose concentration in interstitium

HP mM Concentration of infused ‘hot’ glucose [6, 6−2 H2] in plasma

HI mM Concentration of infused ‘hot’ glucose [6, 6−2 H2] in interstitium

Y # Tracer on tracee ratio

Ra,gut mmol/kg/min Glucose absorption from gut

Ra,liv mmol/kg/min Rate of liver glucose production

Rupt(Gp, I) mM/min Insulin dependent ‘total’ glucose elimination rate

Rupt(Hp, I) mM/min Insulin dependent ‘hot’ glucose elimination rate

Rkid mM/min Glucose renal extraction

Input Variable Units Description

I pM Insulin plasma concentration (interpolated)

Rinf mmol/kg/min Infusion of ‘cold’ glucose

Rinf,H mmol/kg/min Infusion of ‘hot’ glucose

https://doi.org/10.1371/journal.pone.0278837.t002
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that time point. Some model parameters are determined from the model equations, when the

system is in the left neighbourhood of time −150: t 2 (−150−�, −150), (t = −150−).

‘Total’ glucose concentration in plasma. The variation of ‘total’ glucose over time (‘hot’

plus ‘cold’ glucose and indicated with GP(t) in the equation below) is determined by the exter-

nal glucose infusion (Rinf), by the insulin-dependent uptake of glucose by tissues (Rupt, func-

tion of GP(t) and of the plasma insulin concentration I(t)), by the insulin-independent brain

Table 3. Model parameters along with their unit of measurement, description and typical value.

Parameter Units Meaning Value Type Model

t0 min Starting time for numerical integration -150 - -

Vgp L/kg Glucose distribution volume for plasma compartment 0.25 free both

Vgi L/kg Glucose distribution volume for interstitium compartment 0.14 free two-

comp

kxGI,1 1/min/pM Insulin dependent tissue Glucose Uptake rate during the first OGTT 0.0001 free both

kxGI,2 1/min/pM Insulin dependent tissue Glucose Uptake rate during the second OGTT 0.0001 free both

kxGI,3 1/min/pM Insulin dependent tissue Glucose Uptake rate during the third OGTT 0.0001 free both

kIG,max mmol/kg/

min

Maximal Endogenous Glucose Production 0.01 determined (Eqs (7) or (9)) both

λGI 1/mM/pM Exponential decay constant of Endogenous Glucose Production with increasing in

Glycemia and Insulinemia

0.0001 free one-

comp

KG mM Glucose value at which the glucose multiplicative effect is the half 6 free two-

comp

γG # Hill exponent, with which the glucose effect decrease with the increase of glucose

concenteation

0.01 free two-

comp

KI pM Insulin value at which the insulin multiplicative effect is the half 70 free two-

comp

γI # Hill exponent, with which the insulin effect decrease with the increase of insulin

concenteation

0.001 free two-

comp

GPb mM Basal glucose plasma concentration 5 free both

GIb mM Basal glucose interstitium concentration 5 computed (3) two-

comp

Ib pM Basal insulim concentration 35 observed both

kig 1/min first order transfer rate from plasma to interstitium glucose compartment 0.1 free two-

comp

kgi 1/min first order transfer rate from interstitium to plasma glucose compartment 0.1 determined (Eq (4)) two-

comp

Rinf0 mmol/kg/

min

‘Cold’ glucose infusion at the starting point 0 from the experimental

procedure

both

Weight kg Body weight 128 observed both

kb mmol/kg/

min

Rate of uptake of ‘total’ glucose by brain 0.0025 computed both

Yb # Predicted tracer to tracee ratio at the starting of the experimental procedure 0.015 computed (Eq 6) both

kbh,funb mmol/kg/

min

Basal rate of uptake of ‘hot’ glucose by brain 4.5e-

05

computed (Eq (1) for TTR(t)

=Yb)

both

Ra,livb mmol/kg/

min

baseline value of Ra,liv at initial time (t0) 0.0053 computed both

HPb mM Plasma [6, 6−2 H2] glucose concentration at the starting point 0.087 computed both

HIb mM Interstitial [6, 6−2 H2] glucose concentration at the starting point 0 - two-

comp

Dhot mmol/kg Infused priming dose of [6, 6−2 H2] glucose at the start of the experimental procedure 0.022 from the experimental

procedure

two-

comp

Ruptb mM/min Basal insulin-dependent glucose elimination rate 0.01 computed both

https://doi.org/10.1371/journal.pone.0278837.t003
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uptake (kbr) and by the term related to the exchanges between plasma and interstitium when

two glucose compartments are considered (with GI(t) the total glucose concentration in the

interstitium compartment). Because we consider experiments where very high glucose con-

centrations are not reached, we have set renal glucose extraction (represented in the model

with the term Rkid) to zero. While in principle this choice could be simplistic, plasma glucose

concentration in fact never exceeded the “threshold” of 11 mM [33] during the analyzed exper-

iments. Moreover, because in a more general representation of the glucose dynamic the rate of

appearance from the gastrointestinal tract could also be considered, this has been introduced

in the formalization and indicated with Ra,gut, set to zero here because no oral administration

occurs.

In the presence of additional glucose input from the gastrointestinal tract, or as part of

modeling a simple OGTT experiment, Ra,gut can be modeled as f�Ggut(t)/Vg p. Here f is the frac-

tion of the amount of glucose administered that is effectively absorbed through the intestine,

and Ggut(t) is the glucose that goes through the intestinal tract, possibly approximated as a

series of consecutive compartments representing the length of the entire intestine, starting

from the proximal down to the most distal part. Endogenous glucose production is repre-

sented by the term Ra,liv in Eq (1). The expression for ‘total’ glucose variation is therefore the

following:

dGPðtÞ
dt

¼
Ra;gutðtÞ

Vgp
þ

Ra;livðtÞ
Vgp

þ
Rinf ðtÞ
Vgp

� RuptðGPðtÞ; IðtÞÞ

� RkidðtÞ �
kbr

Vgp
� kigGPðtÞ þ kgi

Vgi

Vgp
GIðtÞ; GPð� 150Þ ¼ GPb

ð1Þ

where Rupt [mM] is a piecewise function:

RuptðGPðtÞ; IðtÞÞ ¼

kxGI;1 � GPðtÞ � IðtÞ if t < 120

kxGI;2 � GPðtÞ � IðtÞ if 120 � t < 240

kxGI;3 � GPðtÞ � IðtÞ if t � 240

8
>>><

>>>:

ð2Þ

with

RuptðGPð� 150Þ; Ið� 150ÞÞ ¼ RuptbkxGI;1 � GPð� 150Þ � Ið� 150Þ:

The function in Eq (2) depends upon three different constant insulin-dependent glucose

elimination rates kxGI,j (j = 1,2,3), one for each of the three experimental sub-periods. We

hypothesize, therefore, that the insulin sensitivity of a subject may vary over the course of the

whole procedure: glucose administration, causing insulin release, would thus have different

effects when given repeatedly. While some hypoglycemia-preventing mechanism, limiting

over time the effect of circulating insulin, may be associated with oral glucose administration,

the actual mechanisms involved in the variation of insulin sensitivity are not the object of the

present work, but deserve to be investigated.

The terms −kig GP(t) and kgi
Vgi
Vgp

GIðtÞ in Eq (1) represent the exchanges between the plasma

and the interstitium compartment, with parameter kig indicating the rate of transfer from the

plasma to the interstitium and parameter kgi the constant transfer rate from the interstitium to

plasma.

Finally, in the one-compartment glucose model, since there is no interstitial compartment,

the last two terms in Eq (1) must be eliminated.

PLOS ONE Mathematical modelling of hepatic glucose production

PLOS ONE | https://doi.org/10.1371/journal.pone.0278837 December 21, 2022 7 / 32

https://doi.org/10.1371/journal.pone.0278837


‘Total’ glucose concentration in the interstitium. Different mathematical models for the

description of the equilibrium between plasma glucose versus interstitial glucose have been

proposed in literature. These models are based on the assumption of free diffusion of glucose

molecules between plasma and interstitium, and of glucose uptake from the interstitial fluid by

tissue cells [34–37]. Rebrin and Steil proposed a “two-compartment” formulation, where inter-

stitium and plasma are two independent compartments separated by a diffusional barrier

which glucose is free to traverse, based on its concentration gradient [36, 38, 39]. In this for-

mulation glucose is cleared from the interstitial fluid by tissue cells, at a rate dependent on the

interstitial glucose concentration itself. We adopted essentially the same formulation, assum-

ing no external loss from the interstitium. Moreover we hypothesized that the two compart-

ments are at equilibrium at steady state so that their concentrations before the beginning of

the experimental procedure are the same. Transfer of glucose from plasma to interstitium and

vice versa is described by the transfer rate constants kig and kgi.

dGIðtÞ
dt
¼ kig

Vgp

Vgi
GPðtÞ � kgiGIðtÞ; GIð� 150Þ ¼ GIb ¼ GPb ð3Þ

From equilibrium conditions on Eqs (1) and (3) it follows that two parameters can be deter-

mined:

kgi ¼
kigGPbVgp

VgiGIb
¼ kig

Vgp

Vgi

and

Ra;livb ¼ RuptðGPb; IbÞVgp þ kb

where Rab,liv is the basal endogenous glucose production. The last equation is also valid for the

one-compartment glucose model.

Plasma concentration of infused ‘hot’ [6, 6−2 H2] glucose. The isotopic hypothesis is

that ‘hot’ [6, 6−2 H2] glucose has the same metabolic destiny as ‘cold’ glucose, so that, apart

from the terms related to the Endogenous Glucose Production and forcing input functions,

the variations of ‘hot’ glucose can be described, in analogy with Eq (1), by the following equa-

tion:

dHPðtÞ
dt

¼
Rinf ;HðtÞ

Vgp
� RuptðHPðtÞ; IðtÞÞ þ 0:025�

Rinf ðtÞ
Vgp

�
kbrh;funðtÞ

Vgp
þ

� kigHPðtÞ þ kgi

Vgi

Vgp
HIðtÞ; HPð� 150Þ ¼ HPb ¼

Dhot

Vgp

ð4Þ

where

Dhot ¼ 22� 10� 3mmol=kg: ð5Þ

As described before, a priming dose of 22 μmol/kg was infused at the start of the experimen-

tal procedure (t = −150 min) and it is represented in the model as the initial condition in Eq

(4); the term Rinf,H represents instead the continuous infusion of 0.22 μmol/kg−1 administered

throughout the whole procedure, as described in the subsection “Study Sample”.

Interstitial concentration of infused [6, 6−2 H2] glucose. In the same way as for ‘total’

glucose, a linear transfer between plasma and interstitial compartments is considered for ‘hot’

glucose, with the difference that while ‘total’ glucose is assumed at equilibrium at time t0, ‘hot’

glucose starts at t0 from a concentration of zero, introducing a delay with which ‘hot’
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interstitial glucose concentrations follow ‘hot’ plasma glucose concentrations:

dHIðtÞ
dt

¼ kig

Vgp

Vgi
HPðtÞ � kgiHIðtÞ; HIð� 150Þ ¼ HIb ¼ 0

Tracer ([6, 6−2 H2] glucose) to tracee ratio. An external substance, the tracer, is used to

follow a natural substrate, the tracee, when such a substance exhibits the identical metabolic

fate as the tracee. Tracers used in human research are usually identical to the tracee, except

that one or more atoms differ from the natural form. The assumption that tracers, isotopes,

are treated in identical fashion as their counterparts is at the basis of tracer methodology. The

isotopes fall into two classes: radioactive and stable. When dealing with radioactive isotopes

the unit of enrichment is the specific activity, SA:

SA ¼
tracer
tracee

¼
dpm
mmol

Since scintillation counting is able to detect small quantities of radioisotope, the infused tracer

is essentially “massless” and the amount of tracer is represented by disintegrations per minute

(dpm) [40]. When dealing with stable isotopes, large amounts of labeled compound are neces-

sary. The analogue of SA when stable isotopes are considered is the Tracer to Tracee Ratio

(TTR), that is the ratio of the concentrations of tracer to tracee.

From time 0 onwards, the Tracer to Tracee ratio (TTR) is measured every 20 minutes and

in the present modelling is given by the ratio of ‘hot’ glucose over ‘cold’ glucose:

YðtÞ ¼
HPðtÞ

ðGPðtÞ � HPÞ
; Yð� 150Þ ¼ Yb ¼ HPð� 150Þ=ðGPð� 150Þ � HPð� 150ÞÞ

Y represents the model prediction of the observed TTR’s. Because ‘cold’ glucose concentra-

tions were measured every 10 minutes, missing data were estimated by interpolation. From

observed TTR’s and observed glucose concentrations, observed ‘hot’ glucose concentrations

were derived and used in the parameter estimation procedure. Estimation was performed by

minimizing a loss function incorporating deviations between observed ‘total’ glucose concen-

trations, ‘hot’ glucose concentrations and their respective model predictions, see below.

Infusion of ‘cold’ glucose. Infusion of ‘cold’ glucose appears in both Eqs (1) and (4) and

is indicated with Rinf. It is not properly only ‘cold’ glucose since the 20% dextrose infused was

enriched with 0,25% of [6, 6-2H2] glucose. This forcing input function is derived from the

data, transformed to match the unit of measurements adopted by the experimenters and those

adopted in the present work (i.e. from ml/h to mmol/kg/min). Considering that the infused

solution was at 20%wt/vol, measurements were multiplied by the factor Minf = 1000×0.2/

(180×Weight × 60), where Weight is the subject’s Body Weight in kg.

Rate of liver glucose production. Two formulations of the Rate of Appearance from the

liver (that is Endogenous Glucose Production, EGP) have been tested. Liver glucose produc-

tion from precursors is mediated by the inhibitory effects of insulin and of glucose itself.

Hyperinsulinemia is moreover accompanied by suppression of glycogenolysis. Even if some

studies suggest that insulin acts on EGP suppression through an extrahepatic route, such as via

the suppression of the liberation of FFA’s from adipose tissue [41, 42], the adopted formula-

tions synthetically model the effect of insulin and glucose directly on EGP.

A first mathematical formalization may adopt multiplication effects: EGP decreases from a

maximal production rate, indicated with kIG,max ([mmol/kg/min]), towards zero for increasing
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insulin and glucose concentrations according to the following equation:

Ra;livðtÞ ¼ kIG;max
KgG

G

GPðtÞ
gG þ KgG

G

KgI
I

IðtÞgI þ KgI
I

ð6Þ

which, from the steady-state condition derived from Eq (1), leads to the following expression

for the parameter kIG,max:

kIG;max ¼
ðVgp � kxGI;1 � GPð� 150Þ � Ið� 150Þ þ kbÞ

½
KgG

G

GPð� 150Þ
gG þ KgG

G

KgI
I

Ið� 150Þ
gI þ KgI

I
�

ð7Þ

Adopting the above formulation requires the estimation of four free parameters related to

EGP modeling. With the aim of reducing the number of free parameters to be estimated, so as

to reduce identifiability problems due to overparametrization, a simpler formulation, requir-

ing only two parameters, has been evaluated and then adopted as the definitive formulation:

Ra;livðtÞ ¼ kIG;maxe� lGI�IðtÞ�GPðtÞ ð8Þ

which, from the steady state condition of Eq (1) implies:

kIG;max ¼
ðVgp � kxGI;1 � GPð� 150Þ � Ið� 150Þ þ kbÞ

eð� lGI Ið� 150ÞGPð� 150ÞÞ
ð9Þ

Given that the parameter kIG,max can be thus determined, the single free parameter to be

estimated in Eq (8) is λGI.

Infusion of ‘hot’ glucose. After a priming dose of [6, 6-2H2]glucose, administered at time

t=-150, a continuous infusion of ‘hot’ glucose is given during the whole procedure. The forcing

function in this modelling formulation has been indicated with Rinf,H ([mmol/kg/min]) and

appears as the first term in Eq (4), constant throughout the whole procedure. The 0.25% of the

forcing function Rinf contributes to the ‘hot’ glucose infusion. The priming dose has been

introduced instead in the model as the initial condition of the same equation.

Insulin plasma concentration. Insulin concentrations were measured at times 0, 20, 60,

100, 140, 180, 220, 260, 300, 340 minutes. Modelling of insulin secretion would in all likelihood

prove beneficial from the point of view of overall model robustness, but a detailed discussion

of this aspect would cloud the present issue. For the purpose of this work we have therefore

performed a linear interpolation of the observed measurements, smoothing the obtained vec-

tor with a Gaussian-weighted moving average filter. The insulin forcing function was denoted

with I(t) ([pM]).

Estimation

Model parameters, their descriptions, units of measurements and corresponding plausible val-

ues are reported in Table 3. The last column of the table shows if the parameter is “free” (and

hence to be estimated), “determined” from the steady state conditions or “computed” on the

basis of initial conditions. When the parameter is “determined”, the corresponding equation

in the manuscript is also reported. When it is “computed“, the computation is shown in the

table. Fig 1 shows a schematic representation of both the experimental procedure and its

modelling approach for the one-compartment glucose model. The model was adapted to data

by minimizing the weighted sum of squared deviations of the observed ‘total’ glucose concen-

trations and ‘hot’ glucose concentrations data from their respective predictions, with weights

the inverse of the squared predictions. Estimation was also performed introducing serial
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correlation within each individual. The hypothesised correlation matrix is:

Corrðyi1; yi2Þ ¼ expð� a1 j ti;1 � ti;2 jÞ ¼ CðaÞ ð10Þ

where observations yi1 and yi2 on the i−th subject are taken at times ti,1 and ti,2, respectively.

Such a matrix accommodates situations of not equally spaced observations and of a correlation

that decreases with increasing lags. If the model for correlation is given by (10) then the covari-

ance for the observation vector yi is specified by the following expression:

CovðyiÞ ¼ s
2Diagðŷ2ðyÞÞ

1=2CðaÞDiagðŷ2ðyÞÞ
1=2
¼ s2 � S� 1 ð11Þ

with θ the parameter vector of the model free parameters. Estimation of parameters σ, α and θ
was carried out by a recursive procedure which implements subsequent steps:

1. derive an initial estimates ŷ of θ by means of an Ordinary Least Squares or Weighted Least

Squares approach;

2. use ŷ to obtain an estimate for α and σ with the pseudolikelihood method which minimizes

the following function:

PLðŷ; a; sÞ ¼ log j s2Cov j þðy � f ðŷÞÞTCov� 1ðy � f ðŷÞÞ ð12Þ

3. compute the covariance matrix Cov with â and ŝ from the previous step in (11) and use it

to perform a Weighted Least Squares estimation with weights in Cov−1

4. repeat step 2) and step 3) until convergence.

In any case the final estimation of σ2 is computed on the estimation of θ and α according:

ŝ2 ¼
1

n � p
ðy � f ðŷÞÞTS� 1ðŷ; âÞðy � f ðŷÞÞ ð13Þ

Under the hypothesis of normally distributed errors, the approximate covariance matrix Sŷ of

ŷ is given by:

Sŷ ¼ ŝ
2½JTS� 1ðŷ; âÞJ�� 1

ð14Þ

where J is the Jacobian, that is the (n×p) matrix with jth row equal to f ðxj; yÞ
0

, with n and p the

number of observations and the number of free parameters, respectively.

Free parameters to be estimated in the final adopted mathematical formulation were Vgp,

kxGI,j, for j = 1, 2, 3, GPb and λGI. When using the two-compartments glucose model, two more

parameters had to be estimated: Vgi and kig. The use of the multiplication effect would required

the estimation of three additional parameters: four new parameters would appear (KI, KG, γI

and γG), while one (λGI) would disappear. The remaining parameters were determined by

steady state conditions or were set to values either known from the literature (this is the case

for the glucose uptake by the brain, see the “Modelling” section above) or derived according to

the experimental design (such as some initial conditions).

Results

The results related to the model including multiplicative effects have not been reported:

although the fittings obtained were good, parameter estimates exhibited large variations

among the studied subjects, and good model performance on the same subject could be
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obtained with very different values of the four parameters (KG, KI, γG, γI), leading to the con-

clusion that this model was overparametrized. All results detailed below refer therefore to the

model without multiplicative effects.

Fig 2 shows the EGP computation from the Steele equation, both in the case TTR data are

smoothed and in the case they are only interpolated (continuous green line and red dashed

line, respectively, in Panel A). The figure reports four different trends of the EGP calculated by

also varying the volume of distribution for glucose. According to [43], reasonable values for

the volume could range indeed from 40 (plasma volume) to 230 ml/kg (extracellular fluid vol-

ume). The value often used is 145 ml/kg, which corresponds to a proportion p = 0.63 of the

total volume (i.e., 230 ml/kg). The figure shows the EGP trend obtained with raw data after

they have been only interpolated in the entire interval of observation (dashed red line) by

using the standard volume of 145 ml; the dashed blue and black lines refer to computations

Fig 2. Endogenous glucose production. TTR data (Panel A), only interpolated (dashed red line) and smoothed (continuous green line); EGP

computation from the equation of Steele in case TTR data are smoothed and in case they are only interpolated (Panel B). Four different trends of EGP

were computed using not smoothed (dashed red line) or smoothed (blue and black dashed lines) TTR data with different glucose distribution volumes

(145 ml/kg or 40 ml/kg, respectively), and derived by the model predictions (continuous black line).

https://doi.org/10.1371/journal.pone.0278837.g002
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performed by using smoothed interpolated TTR data, as well as smoothed Ra and EGP data,

with distribution volumes equal to 145 ml and 40 ml, respectively; the continuous black line

represents the predicted EGP estimated with the proposed modelling approach.

Figs 3–8 report the observations and the predictions of ‘total’ and ‘hot’ plasma glucose con-

centrations, as well as of TTR, along with the model predicted EGP (continuous lines)

Fig 3. Predictions for Subject 1. Observed (asterisks) and predicted (line) variables over time (NGT subject). EGP: Endogenous Glucose Production;

TTR: Tracer to Tracee ratio. Plasma glucose concentration (Panel A); Plasma [6, 6-2H2]glucose (Panel B); TTR (Panel C); EGP (Panel D), dashed line is

the predicted EGP with the Steele model; Rate of disappearance (panel E); Plasma Insulin concentrations (Panel F). All the observed points refer to data

measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose observations

from the OGTTs of day 1. Black lines in panels A, B, C, D and E are model predictions from WLS estimation procedure; blue lines derive from the

estimation approach which uses autocorrelated errors.

https://doi.org/10.1371/journal.pone.0278837.g003
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superimposed to the estimated EGP as derived by the Steele equation (dashed line). The last

two panels report smoothed insulin concentrations and the estimated rate of glucose disap-

pearance (given by the sum of insulin-dependent glucose uptake and by the zero-order brain

uptake) for the six studied subjects under the one-compartment glucose model. While it is

Fig 4. Predictions for Subject 2. Observed (asterisks) and predicted (line) variables over time (NGT subject). EGP: Endogenous Glucose Production;

TTR: Tracer to Tracee ratio. Plasma glucose concentration (Panel A); Plasma [6, 6-2H2]glucose (Panel B); TTR (Panel C); EGP (Panel D), dashed line is

the predicted EGP with the Steele model; Rate of disappearance (panel E); Plasma Insulin concentrations (Panel F). All the observed points refer to data

measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose observations

from the OGTTs of day 1. Black lines in panels A, B, C, D and E are model predictions from WLS estimation procedure; blue lines derive from the

estimation approach which uses autocorrelated errors.

https://doi.org/10.1371/journal.pone.0278837.g004
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evident the good performance of the model in the studied subjects, it is especially important to

consider the predictions of EGP. The mathematical formulation adopted produces predictions

that can only assume positive values; furthermore, the paradoxical increase in EGP in the first

minutes after the start of the experiment never occurs with the adopted model formulations.

Fig 5. Predictions for Subject 3. Observed (asterisks) and predicted (line) variables over time (T2DM subject). EGP: Endogenous Glucose Production;

TTR: Tracer to Tracee ratio. Plasma glucose concentration (Panel A); Plasma [6, 6-2H2]glucose (Panel B); TTR (Panel C); EGP (Panel D), dashed line is

the predicted EGP with the Steele model; Rate of disappearance (panel E); Plasma Insulin concentrations (Panel F). All the observed points refer to data

measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose observations

from the OGTTs of day 1. Black lines in panels A, B, C, D and E are model predictions from WLS estimation procedure; blue lines derive from the

estimation approach which uses autocorrelated errors

https://doi.org/10.1371/journal.pone.0278837.g005
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Fig 6. Predictions for Subject 4. Observed (asterisks) and predicted (line) variables over time (IGT subject). EGP: Endogenous Glucose Production;

TTR: Tracer to Tracee ratio. Plasma glucose concentration (Panel A); Plasma [6, 6-2H2]glucose (Panel B); TTR (Panel C); EGP (Panel D), dashed line is

the predicted EGP with the Steele model; Rate of disappearance (panel E); Plasma Insulin concentrations (Panel F). All the observed points refer to data

measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose observations

from the OGTTs of day 1. Black lines in panels A, B, C, D and E are model predictions from WLS estimation procedure; blue lines derive from the

estimation approach which uses autocorrelated errors.

https://doi.org/10.1371/journal.pone.0278837.g006
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Fig 7. Predictions for Subject 5. Observed (asterisks) and predicted (line) variables over time (T2DM subject). EGP: Endogenous Glucose Production;

TTR: Tracer to Tracee ratio. Plasma glucose concentration (Panel A); Plasma [6, 6-2H2]glucose (Panel B); TTR (Panel C); EGP (Panel D), dashed line is

the predicted EGP with the Steele model; Rate of disappearance (panel E); Plasma Insulin concentrations (Panel F). All the observed points refer to data

measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose observations

from the OGTTs of day 1. Black lines in panels A, B, C, D and E are model predictions from WLS estimation procedure; blue lines derive from the

estimation approach which uses autocorrelated errors.

https://doi.org/10.1371/journal.pone.0278837.g007

PLOS ONE Mathematical modelling of hepatic glucose production

PLOS ONE | https://doi.org/10.1371/journal.pone.0278837 December 21, 2022 17 / 32

https://doi.org/10.1371/journal.pone.0278837.g007
https://doi.org/10.1371/journal.pone.0278837


Fig 8. Predictions for Subject 6. Observed (asterisks) and predicted (line) variables over time (IGT subject). EGP: Endogenous Glucose Production;

TTR: Tracer to Tracee ratio. Plasma glucose concentration (Panel A); Plasma [6, 6-2H2]glucose (Panel B); TTR (Panel C); EGP (Panel D), dashed line is

the predicted EGP with the Steele model; Rate of disappearance (panel E); Plasma Insulin concentrations (Panel F). All the observed points refer to data

measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose observations

from the OGTTs of day 1. Black lines in panels A, B, C, D and E are model predictions from WLS estimation procedure; blue lines derive from the

estimation approach which uses autocorrelated errors.

https://doi.org/10.1371/journal.pone.0278837.g008
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Panels from A to E show two different prediction lines, black and blue, derived from WLS

parameter estimation procedure and from the approach taking into account autocorrelated

observation errors. When the two procedures produce very similar results, the two curves in

each panel are superimposed and only the blue line is evident.

Of interest is the comparison between the performance of the two model formulations

including or excluding the interstitial compartment. Figs 9 through 14 show the plasma glu-

cose GP, the ‘hot’ glucose (HP) and TTR prediction together with their respective observations,

as well as the estimated EGP for all patients with model A (not including the interstitial com-

partment, right panels) and model B (including the interstitial compartment, left panels).

Table 4 reports the estimated distribution volumes (only plasmatic, VgpA, for the one-compart-

ment glucose model and both plasmatic and interstitial, VgpB and VgiB, for the two-compart-

ments glucose model) along with the transfer rate constants from the two compartments

(plasma and interstitium) for model B as well as the loss function values, the Akaike (AIC) and

BIC criteria obtained with the two formulations.

Both the AIC and BIC values privileged the simpler model (Table 4) and from the visual

inspection (Figs 9–14) it is clear that in general little gain is obtained passing from the one-

compartment glucose to the more complex two-compartment glucose model, except for Sub-

ject 2 for which the simpler model seems to perform better (Fig 10, panels A and C for the

two-compartment glucose model and panels B and D for the one-compartment glucose

model). Table 5 reports the estimates of the free parameters of the one-compartment glucose

model under the WLS approach, whereas Table 6 reports the parameter estimates under

the hypothesis of correlated errors. Fig 15 shows the scatter plot of weighted residuals

towards observations. The average estimates and standard deviations derived from 14 are: Vgp

= 0.246±0.036; kxGI,1 = 3.67×10−05±1.42×10−05; kxGI,2 = 2.37×10−05±9.42×10−06; kxGI,3 =

4.09×10−05±1.13×10−05; λGI = 0.0027±0.0013; GPb = 6.10±3.24. Values of the three indices of

insulin sensitivity highlight for each studied subject a decreasing trend from the first to the sec-

ond phase of the experimental procedure and an increasing trend from the second to the third

phase, suggesting an intraday variability of the insulin sensitivity. On the contrary, Figs 4–7

clearly show the occurrence of the inappropriate initial EGP peak when using the Steele equa-

tion, which also produces in all subjects the typical (erroneous) negative EGP predictions. The

EGP time courses obtained with the modelling approach proposed in the present work are in

accordance with the observed and predicted glucose concentrations: after an initial fall from

the basal condition (due to the start of the adjustable glucose infusion), the model-predicted

EGP remains mostly constant or presents slight oscillations for the whole experimental proce-

dure, increasing over the intervals where glucose concentrations are restored to their basal val-

ues. It is interesting, in this respect, to observe that in Fig 7 a persistent increase in glucose

concentration corresponds to nearly zero liver glucose production.

Table 4. Distribution volumes, loss, Akaike (AIC) and BIC criterium in the two model formulations: one-glucose compartment model (A) vs glucose two-compart-

ments model (B). For Model B also the transfer rates between plasma and interstitium are reported.

Subject VgpA LossA AICA BICA VgpB VgiB kigB kgiB LossB AICB BICB

1 0.251 0.786 110.02 127.92 0.130 0.197 0.039 0.026 0.278 111.97 135.84

2 0.324 0.395 117.4 135.3 0.096 0.320 0.643 0.194 0.731 122.86 146.72

3 0.263 0.459 93.60 111.50 0.230 0.148 0.003 0.004 0.421 97.45 121.32

4 0.279 0.635 59.94 77.84 0.220 0.087 0.015 0.038 0.597 63.78 87.65

5 0.287 0.711 217.16 234.89 0.140 0.274 0.024 0.012 0.539 220.46 244.11

6 0.160 0.368 113.29 131.19 0.104 0.233 0.008 0.003 0.180 116.52 140.39

https://doi.org/10.1371/journal.pone.0278837.t004
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Fig 9. Model comparison for Subject 1. Observed (asterisks) and predicted (line) variables over time with glucose two-compartment model (Panels A,

C, E) and one-compartments-glucose model (Panels B, D, F). Dashed line is the predicted EGP with the Steele model. All the observed points refer to

data measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose

observations from the OGTTs of day 1.

https://doi.org/10.1371/journal.pone.0278837.g009
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Fig 10. Model comparison for Subject 2. Observed (asterisks) and predicted (line) variables over time with glucose two-compartment model (Panels

A, C, E) and one-compartments-glucose model (Panels B, D, F). Dashed line is the predicted EGP with the Steele model. All the observed points refer to

data measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose

observations from the OGTTs of day 1.

https://doi.org/10.1371/journal.pone.0278837.g010
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Fig 11. Model comparison for Subject 3. Observed (asterisks) and predicted (line) variables over time with glucose two-compartment model (Panels

A, C, E) and one-compartments-glucose model (Panels B, D, F). Dashed line is the predicted EGP with the Steele model. All the observed points refer to

data measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose

observations from the OGTTs of day 1.

https://doi.org/10.1371/journal.pone.0278837.g011
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Fig 12. Model comparison for Subject 4. Observed (asterisks) and predicted (line) variables over time with glucose two-compartment model (Panels

A, C, E) and one-compartments-glucose model (Panels B, D, F). Dashed line is the predicted EGP with the Steele model. All the observed points refer to

data measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose

observations from the OGTTs of day 1.

https://doi.org/10.1371/journal.pone.0278837.g012
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Fig 13. Model comparison for Subject 5. Observed (asterisks) and predicted (line) variables over time with glucose two-compartment model (Panels

A, C, E) and one-compartments-glucose model (Panels B, D, F). Dashed line is the predicted EGP with the Steele model. All the observed points refer to

data measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose

observations from the OGTTs of day 1.

https://doi.org/10.1371/journal.pone.0278837.g013
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Fig 14. Model comparison for Subject 6. Observed (asterisks) and predicted (line) variables over time with glucose two-compartment model (Panels

A, C, E) and one-compartments-glucose model (Panels B, D, F). Dashed line is the predicted EGP with the Steele model. All the observed points refer to

data measured on day 2. Plasma glucose concentrations (panel A) are derived from the glucose intra-venous infusion to match plasma glucose

observations from the OGTTs of day 1.

https://doi.org/10.1371/journal.pone.0278837.g014
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Discussion

Determination of glucose turnover, fasting and postprandial glucose concentrations is impor-

tant for the assessment of possible impairment of glucose/insulin metabolism. Insulin resis-

tance, both central and peripheral, plays an important role in the development of type 2

diabetes [44–46]. The liver is crucial for the maintenance of normal glucose homeostasis; it

produces glucose during fasting and stores glucose as glycogen in the postprandial state: net

hepatic glucose production derives from the sum of glucose fluxes determined by gluconeo-

genesis, glycogenolysis, glycogen synthesis, glycolysis and other pathways. In the postprandial

state the liver helps to maintain normal glucose tolerance by absorbing glucose from plasma

and storing it into glycogen, while hepatic glucose production (EGP) is suppressed.

Stable isotopes are currently used to measure glucose fluxes and for providing important

information on hepatic and peripheral insulin resistance. Tracer techniques are commonly

employed to estimate the rate of Appearance (RA) and the Rate of Disappearance (RD). In the

post-prandial situation or during perturbation studies, estimation of RA and RD is rather

complex due to gastric emptying, glucose absorption, appearance of ingested or infused glu-

cose, variations of EGP and of glucose uptake.

The single-pool model by Steele [19–21] has been for a long time the most commonly

employed approach for estimating RA, RD and EGP and is still widely employed in clinical

investigations. However, the method suffers from at least two problems: on one hand it pro-

duces “paradoxical” increases in EGP immediately after glucose intake or after a meal, when,

on the contrary, physiology would predict a compensatory fall in EGP. The Steele approach

also leads to the computation of “negative” rates of EGP: it is to be kept in mind, in this con-

text, that the EGP we refer to here is not a net glucose production balance by the liver, but a

true hepatic glucose output, and that therefore negative EGP values are by definition not

Table 5. Parameter estimates of the one-glucose compartment model.

Subject Vgp kxGI,1 kxGI,2 kxGI,3 λGI GPb kIG,max

1 0.251 5.31E-05 3.37E-05 5.33E-05 0.001 5.937 0.007

2 0.324 3.89E-05 1.64E-05 6.05E-05 0.018 5.213 0.491

3 0.263 3.42E-05 2.01E-05 2.50E-05 0.001 6.166 0.011

4 0.279 4.57E-05 3.30E-05 6.22E-05 0.0004 4.938 0.007

5 0.287 4.89E-06 3.49E-13 6.40E-06 0.001 8.951 0.106

6 0.160 1.97E-05 2.28E-05 2.78E-05 0.001 5.801 0.009

mean 0.260 3.27E-05 2.10E-05 3.92E-05 0.0037 6.17 0.105

SD 0.050 1.62E-05 1.13E-05 2.08E-05 0.0065 1.31 0.176

https://doi.org/10.1371/journal.pone.0278837.t005

Table 6. Parameter estimates of the one-glucose compartment model with autocorrelated errors.

Subject Vgp kxGI,1 kxGI,2 kxGI,3 λGI GPb kIG,max

1 0.251 5.31E-05 3.37E-05 5.33E-05 0.001 5.937 0.007

2 0.304 4.69E-05 2.02E-05 5.82E-05 0.0124 5.159 0.125

3 0.263 3.37E-05 2.01E-05 2.51E-05 0.0011 6.162 0.011

4 0.241 5.67E-05 4.04E-05 6.99E-05 0.0003 4.905 0.007

5 0.280 5.37E-06 3.68E-13 6.90E-06 0.001 8.906 0.079

6 0.136 2.43E-05 2.79E-05 3.22E-05 0.0006 5.545 0.008

mean 0.246 3.67E-05 2.37E-05 4.09E-05 0.0027 6.10 0.039

SD 0.053 1.79E-05 1.28E-05 2.15E-05 0.0043 1.32 0.046

https://doi.org/10.1371/journal.pone.0278837.t006
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possible. Experimental designs with frequent sampling [28] have been employed to reduce

these errors; Radziuk [29] suggested the use of a two-compartment model incorporating an

accessible and a slowly exchanging nonaccessible compartment; other authors followed the

dual-tracer approach, but the same problems were still encountered. Cobelli et al. [26] even

proposed a more complicated method involving the use of three tracers for the estimation of

the Rate of appearance (Rameal), EGP and RD after the ingestion of a meal together with vari-

able IV tracer infusion rates so as to keep both all TTR’s constant. All of these methods are

more expensive in terms of resources and human labor, and they do not satisfactorily solve the

original problems anyway.

With the object of overcoming such problems, in this work a completely model-based

approach is followed, using a simple compartmental model for glucose (either including or

not including an explicit interstitial compartment). The proposed model is actually only one

Fig 15. Weighted residuals. Scatter plot of weighted residuals towards observations under the hypothesis of correlated errors.

https://doi.org/10.1371/journal.pone.0278837.g015
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out of many possible models that can be used for the analysis of stable isotope or radioactive

data, with the aim of estimating endogenous glucose production. What is here advocated is

not the use of this particular model (even though this model appears to work well, at least for

the present experimental application), but rather a shift to an altogether different approach:

the simultaneous estimation of both ‘total’ and ‘hot’ glucose concentrations produces a more

accurate assessment of tissue glucose uptake and of EGP, by representing them directly with

simple but reasonable functions. By considering jointly the time courses of ‘hot’ and ‘total’ glu-

cose concentrations, the glucose rate of disappearance can be estimated more precisely from

the dynamics of ‘hot’ glucose, since RA is the only unknown in the equation. The RA of ‘cold’

glucose is then derived directly from the isotopic assumption, that ‘cold’ and ‘hot’ glucose are

subject to the same metabolic processes.

To exemplify this approach, we applied it to an intra-venous experiment, where ‘cold’ glu-

cose is infused at variable rates to reproduce a desired glycemic time-course: in this experi-

ment, we have to deal with an intrinsically non-steady-state situation, since the glycemic

profile we are attempting to reproduce is itself not constant.

We tested two different mathematical formulations: one including only one compartment

for glucose distribution in the body (the plasma compartment) and one including an addi-

tional compartment for glucose distribution in the interstitial space. The one-compartment

glucose model has only six free parameters to be identified from glucose concentration and

TTR data, considering insulin as a forcing function. The introduction of the interstitial com-

partment with which plasma glucose reaches equilibrium through free diffusion (determined

by the concentration gradient as formulated also in Rebrin and Steil [38]) introduces two

more parameters to be estimated.

Judging on the basis of the present dataset and the currently estimated parameter values it

is not clear whether the additional compartment is necessary. The results highlight a signifi-

cant increase in fitting performance with the two-compartment glucose model only for patient

1 (see loss values in Table 4), with an equivalent EGP time course (see Fig 9). In two cases, in

the face of an essentially equal performance of the two formulations (see for example Figs 11

and 12 for Subject 3 and 4 respectively), the estimated parameters suggest that the additional

compartment may produce not plausible parameter values: the optimization procedure leads

to smaller values for the interstitial distribution volume Vgi than expected, and produces

smaller values for Vgi than for the plasmatic volume Vgp. Moreover, for Subject 2 the simpler

model produces a better data interpretation (as shown in Fig 4 and in Table 4). Given these

considerations, along with the computed AIC and BIC values, the present observed data sug-

gests the adoption of the more parsimonious formulation.

The mathematical formulation adopted for EGP avoids the occurrence of the two problems

that emerge with the Steele formulation (Figs 4–7). The typical erroneous negative EGP pre-

dictions never happen, due to the intrinsically positive qualitative behaviour of the solutions

for EGP. The paradoxical increase in EGP in the first minutes after the start of the experiment

also does not occur. Our approach predicts nearly constant production rates after an initial

decay immediately after the experimental glucose infusion, with few oscillations and for all

subjects, with increasing endogenous glucose productions rates at the end of the experiment,

when glucose concentrations tend to their basal values. This behaviour is in fact in excellent

accord with the physiological understanding of the processes at play.

Other similar attempts of modelling the endogenous glucose production appeared in the lit-

erature [47, 48]. In the first work, the Krudys et.al proposed a compartmental model including

three differential equations for the EGP production representation (amount of available glu-

cose in the liver, endogenous glucose mass in the accessible compartment and endogenous

glucose mass in the slowly equilibrating compartment), with a total of nine parameters plus
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other two parameters in the equation related to the remote insulin compartment. The model

proposed by Krudys et.al therefore appears very expensive from the point of view of parameter

estimation, especially in situations where the number of experimental observations is limited.

In the work by Visentin et al., EGP is modelled by means of a total of two differential equations

and two algebraic equations. The main equation describes the suppression of the EGP as pro-

portional to the glucose rate of change, to glucose concentration and to the delayed insulin

action. Two differential equations are used for the description of the dynamics of the delayed

insulin action and one algebraic function is used for the contribution to the glucose rate of

change, for a total of seven parameters, where one is determined from other model parameters

(EGPb) and two other also appear in other model equations (Gb and Ib), for a total of four addi-

tional parameters. Besides contemplating an extra parameter to be estimated, it is to be noted

that, a-priori, the EGP from Eq (8) can assume negative values due to the fact that the negative

terms appearing in Eq (8) are in principle unlimited. This is particularly true for the term pro-

portional to the Glucose derivative which could be very large in correspondence of large glu-

cose administration. A restricted region in the parameter space could be guarantee the

positiveness of the solutions and should be investigated.

Our proposed formulation, instead, needs only one additional parameter (λGI) to model the

glucose contribution by the liver, since the parameter KIG,max can be estimated by steady state

conditions. In the present model EGP is represented as an input (an algebraic function) into

the plasma glucose compartment, providing a more compact representation of the entire glu-

cose/insulin system.

The estimated values obtained for the insulin sensitivity indices (parameter kxGI,j, j = 1, 2, 3)

are of interest. In order to get a better fit of the model to the data, it was necessary to consider

three different indices for the three phases of the experimental procedure, each quantifying the

effect of insulin on glucose disposal in the corresponding phase. The trend of insulin sensitivity

seems to be the same in all subjects: it decreases during the second phase and then increases

corresponding to the third OGTT. These results are in agreement with the results of [49],

according to which there is intra-day variability of insulin sensitivity. Even if the experiment

lasted only 8.30 hours, less than a full day, and even if the variations over time in insulin sensi-

tivity do deserve further ad hoc studies, the results obtained seem to be in line with what was

hypothesized in [49]. In [49] the results showed that insulin sensitivity was on average lower at

breakfast than at lunch and dinner, despite a great variability between subjects and despite the

fact that evidence of a diurnal pattern was demonstrated in a study conducted only on subjects

with type I diabetes. It is not possible to say with certainty that the increase observed in this

series of experiments is the beginning of a trend leading to greater insulin sensitivity during

the last hours of the day. However, the results obtained seem to give credence to this

hypothesis.

Conclusion

Although the model appears to fit fairly well with intravenous glucose data, future work will

need to address a number of shortcomings. First of all, this approach will need to be adapted

to the more complex setting of the estimation of glucose turnover in non-steady state condi-

tions due to the ingestion of glucose. Also, insulin secretion and its effect on glucose disposal

should be improved: in fact, while parameters can be reliably estimated under the assumption

of autocorrelated error, the reason for such autocorrelation is still obscure. This may imply

that the proposed model structure does not represent all necessary physiological mechanisms,

or that these are represented in an overly simplistic form. Although improvements can be

made, the strength of this model lies in the fact that it respects the physiological assumptions
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without producing artefacts, as otherwise happens with models which, while producing curves

with an apparently better fit to the data, do so at the cost of producing implausible predictions,

such as variables that take negative values. In the future it will be therefore necessary to devise

a more complex model, which also includes a mathematical representation of the gastrointesti-

nal tract, and because of this it will be necessary to estimate a larger number of parameters,

while in any case ensuring that physiology is respected, for instance by exhibiting limited and

positive solutions. In conclusion this work shows that appropriate, if simple, modelling of the

whole infusion procedure, together with a coherent mathematical representation of the physi-

ology, allows plausible, robust estimation of EGP without recourse to high-frequency sampling

or complicated double or triple tracer administration. This approach prevents the artifactual

occurrence of negative or spiking EGP predictions, as is instead produced by the Steele

procedure.
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