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A B S T R A C T   

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is rampant all over the world, and rapid and 
effective virus detection is the best auxiliary to curb the spread of the epidemic. A diagnosis can only be made if 
two or more different nucleic acid sequences are confirmed at the same time, and in most of traditional detection 
technologies, these target sequences have been detected separately. In this work, an electrochemiluminescent 
(ECL) biosensor employing a single ECL probe as signal output and responding to dual-target simultaneously is 
proposed for the first time. Taking the two sequences located in ORF 1ab region and N region of SARS-CoV-2 
gene sequence as the model target and nitrogen doped carbon quantum dots (CDs) as ECL beacon, supple-
mented with catalytic hairpin assembly (CHA) reaction for signal amplification, the presented strategy has been 
successfully applied to the rapid detection of SARS-CoV-2. The developed SARS-CoV-2 biosensor based on the 
series CHA systems can realize the quantitative determination of SARS-CoV-2 in the range of 50 fM to 200 pM 
within 40 min. Moreover, the clinical validity of this method has been verified by the high consistency between 
the detection results of using this method and those using RT-qPCR for seven clinical pharyngeal swab samples.   

1. Introduction 

Nucleic acid, including DNA and RNA, is an important carrier of 
genetic information in life activities, and its programmability and 
Watson-Crick base pairing also make it one of the effective elements for 
exploring superior sensing systems and improving analytical perfor-
mance [1]. Electrochemiluminescence (ECL), as a powerful analytical 
technique, has been widely applied in clinical laboratory diagnosis, 
environmental analysis, food safety regulation and biosensing due to its 
high sensitivity, easy operation and simple optical equipment [2–5]. In 
the past few years, a great deal of effort has been devoted to construct 
various ECL nucleic acid sensors and exploring their potential for 
practical applications. The vast majority of nucleic acid-based ECL 

sensors that have been developed are aimed at quantitative analysis of a 
single target [6–9]. However, in some specific cases, especially for the 
accurate determination of virus infection, in order to feed back the viral 
load information more accurately, and to make the sensor have higher 
specificity to avoid the interference of virus’s nucleic acid from different 
sources, simultaneously detect sequences located in two or more char-
acteristic regions of the viral gene is usually required [10,11]. For 
example, for the detection of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), which is currently raging around the world and 
causing coronavirus disease 2019 (COVID-19), two or three sequences 
located in its ORF 1ab, N, and E gene regions are usually selected as 
targets at the same time [12–14]. Therefore, it is necessary to establish a 
non-single target-responsive sensing strategy to meet the needs of the 
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ECL sensing platform in accurately determining viral infection. 
Dual-target detection nucleic acid biosensors based on two different 

beacons to output two distinguishable signals have been developed and 
applied in practice. For example, in real-time PCR, two pairs of fluo-
rescent groups with different emission wavelengths and their quenching 
groups are often used to label probes [15]. While in electrochemical 
sensors, two substances with electroactivity at different potentials are 
generally selected as beacons [16–19]. In multiplex analysis, some 
sensing strategies using different ECL indicator simultaneously have 
been reported [20–24]. However, coupling multiple luminophores to 
biomolecules is not only cumbersome, but also increases the difficulty of 
the experiment and leads to more uncertainties in the detection results. 
In addition, there are problems such as crosstalk between different re-
action systems due to poor compatibility of co-reactants or quenching 
mechanisms between probes, as well as compromising the accuracy of 
quantitative analysis due to the use of the same co-reactant. In order to 
overcome the cross-reaction between ECL probes, in recent years, 
several ECL sensing strategies have been developed that employ Boolean 
logic gates to achieve multiple target detection with a single ECL emitter 
[25–28]. However, these ECL strategies can only detect analytes 
sequentially rather than simultaneously, and thus cannot provide the 
determination information of coexisting multiple targets. It should be 
noted that the two targets used in virus detection are located on the same 
gene and have equal expression levels in the sample. Therefore, the 
output of a single signal through the joint regulation of two targets is 
expected to provide a new solution for the construction of ECL sensor 
that simultaneously detects two sites in the virus gene sequence. 

In this study, taking two sequences in the ORF 1ab region and N 
region of the SARS-CoV-2 gene sequence as model targets, a dual-target 
responsive ECL biosensor was designed and applied for SARS-CoV-2 
detection. Carbon quantum dots (CDs), has rich functional groups on 
the surface, are favorable for conjugated with nucleic acids, had been 
chosen as ECL probe [29–33]. Since the concentrations of targets in the 
sample are very low, signal amplification is necessary. Catalytic hairpin 
assembly (CHA), developed according to toehold-mediated strand 
displacement, is a typical nucleic acid signal amplification technology 
with constant temperature and does not require the participation of 
enzymes, which has the advantages of low cost, low requirements on 
reagent storage conditions [34,35]. Therefore, CHA had been chosen in 
this study to amplify the signal. The designed biosensor has simple 
operation, short reaction time, and excellent specificity for the dual-sites 
detection of SARS-CoV-2. 

2. Materials and methods 

2.1. Regents and instruments 

Citric acid, ethylenediamine, N-Hydroxysuccinimide (NHS), alumina 
polishing powder, 6-mercaptohexanol (MCH) and Tris(2-carboxyethyl) 
phosphine (TCEP) were purchased from Sigma-Aldrich (Shanghai, 
China). 1-(3-Dimethylaminopropyl)− 3-ethylcarbodiimide hydrochlo-
ride (EDC) was purchased from Alfa Aesar China Co. Ltd. (Tianjin, 
China). The related oligonucleotides are shown in Table S1. The in-
struments are listed in the Supplementary Material. 

2.2. Synthesis of CDs and preparation of the CDs-labeled NH2 (NH2- 
CDs) 

The synthesis steps of CDs and the preparation of the CDs-labeled 
NH2 (NH2-CDs) was described in the Supplementary Material. 

2.3. Preparation of Au electrode for probe connection 

The activation steps of Au electrode in this experiment, please 
referring to the Supplementary Material for details. The thiol modified 
capture probe (1 µM) pretreated by TCEP was dropped onto the surface 

of the activated Au electrode and placed at 37 ℃ for 3 h. Through the 
interaction of Au-thiol bonds, the Au electrode connected with the 
capture probe was obtained. And then MCH (1.0 mM) was added for 1 h 
to block the nonspecific active binding sites. Further, 0.4 µM OH2 was 
continuously added onto the above electrode, the capture probe and 
OH2 hybridized based on base complementary pairing, and the free end 
of the capture probe on the electrode surface was blocked by OH2. The 
prepared electrode was stored at 4 ◦C for further use. 

2.4. Analysis procedure 

The obtained electrode was immersed in a mixture of 0.4 µM OH1, 
0.4 µM NH1, 5 µL NH2-CDs and a certain concentration of targets (equal 
concentration of O and N) and reacted at 37 ◦C for 40 min. The three- 
electrode system was immersed in 1 × PBS buffer solution containing 
10 mM K2S2O8 by using Au electrode as working electrode, platinum 
wire electrode as counter electrode and Ag/AgCl electrode as reference 
electrode. The voltage of the photomultiplier tube was set to − 1000 V, 
conduct cyclic voltammetry scanning at the speed of 100 mV/s in the 
range of 0 to − 1.3 V, and collect signals by a BPCL ultra-weak lumi-
nescence analyzer. Each sample was determined three times and aver-
aged for quantitative analysis. 

3. Results and discussion 

3.1. The principle of the proposed ECL biosensor 

The mechanism regarding the proposed dual-target responsive ECL 
biosensor based on two sets of CHA signal amplification systems in series 
is systematically presented in Scheme 1. Taking the two sequences 
located in ORF 1ab region and N region of SARS-CoV-2 gene sequence as 
model targets (denoted as O and N, respectively) and CDs as ECL bea-
cons. The thiol-modified capture probe was immobilized on the surface 
of the Au electrode through Au-thiol bonds, and hybridized with the 
hairpin probe OH2 by base complementary pairing. Target O and target 
N were designed as the initiators of the CHA I and CHA II reactions, 
respectively. When O is present, O opens the hairpin probe OH1 of the 
CHA I reaction through the toehold nature, forming an O-OH1 double- 
stranded complex. In this complex, the exposed single-stranded region 
of OH1 can be hybridized with another hairpin probe OH2 (pre-com-
bined on the electrode surface by hybridization) for the CHA I reaction 
to form an OH1–2 double-stranded complex. At the same time, O is 
replaced into the next cycle of CHA I, the capture probe previously 
blocked by OH2 is exposed and can hybridized with the hairpin probe 
NH1 for the reaction of CHA II. In the presence of N, the CHA II reaction 
was triggered, and the obtained amplification product NH1–2-CDs 
double-stranded complex was captured on the electrode surface due to 
the hybridization of the NH1 segment with the capture probe. With 
S2O8

2- as co-reactant, CDs shows excellent ECL response at − 1.3 V po-
tential (vs Ag/AgCl), therefore, a strong ECL signal can be measured 
when O and N are present simultaneously. Conversely, when O is absent 
(regardless of whether N is present or not), the stability of the capture 
probe hybridized with OH2 is stronger than that of the capture probe 
hybridized with NH1. Therefore, the binding site of the capture probe is 
always blocked by OH2, and CDs cannot be aggregated to the electrode 
surface, so only weak ECL signal can be obtained. In addition, when O is 
present, but N is absent, even if the capture probe can bind to NH1, only 
weak ECL signals can be detected because the CHA II reaction is not 
activated and NH2-CDs cannot bind to the electrode surface. According 
to the designed strategy, the determination of the presence of two co- 
existing targets can be accomplished using only a single ECL signaling 
probe. 

3.2. Feasibility assay 

The size and surface groups of the as-prepared CDs were investigated 
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by transmission electron microscopy (TEM), the high-resolution TEM 
(HRTEM) (Fig. S1A) and FTIR analysis (Fig. S1B), and the ECL properties 
of the CDs were also investigated (Fig. S2). The migration rate of each 
band in gel electrophoresis is feedback of the molecular weight of 
nucleic acid. Sequences with more bases have higher relative molecular 
mass and slower migration rate in gel electrophoresis. Electrophoretic 
analysis was carried out using 12% polyacrylamide gel. The results of gel 
electrophoresis (Fig. S3) confirmed that the probes used were reason-
ably designed and the two sets of reactions of CHA I and CHA II were 
successfully triggered. Detailed information was described in the Sup-
plementary Material. 

In addition, various forms of the negatively charged nucleic acid 
structures capable of repelling the negatively charged Fe(CN)6

3- and Fe 
(CN)6

4- to different extents. As shown in Fig. 1A, electrochemical 
impedance spectroscopy was used to characterize the electrodes in 
different states. Compared with the bare Au electrode (curve a), the 
impedance of the electrode modified with capture probe (curve b, 275 
ohm) increased significantly due to the negative charge of the nucleic 
acid, and further increased after treatment with MCH (curve c, 325 
ohm). Curve d (1143 ohm) represents the impedance measured after 
blocking the capture probe with OH2. When O exists, OH2 separate from 
the electrode surface due to the triggering of the CHA I reaction, and the 

impedance of the electrode surface reduce (curve e, 514 ohm), while the 
capture probe previously blocked by OH2 is exposed and could continue 
to hybridize with NH1 (curve f, 1044 ohm), and the electrochemical 
impedance increased (compared with curve e). When both O and N are 
present, the surface resistance of the electrode is further increased 
(curve g, 1361 ohm) due to the binding of NH1–2-CDs to the electrode 
via the capture probe. 

The changes of the ECL signal caused by the presence of target in the 
sensor is also investigated. As shown in Fig. 1B, when there is only O or 
only N, the measured ECL strength is equivalent to that in the absence of 
both O and N, while the ECL strength of the system is significantly 
enhanced in the presence of both O and N at the same time. It shows that 
the sensor only responds to the simultaneous existence of O and N, 
which proves the feasibility of the designed sensing strategy. 

3.3. Optimization of experimental conditions 

Some important conditions and parameters of the experiments were 
optimized for the best sensing performance. In order to ensure that CDs 
can be combined with NH2 as much as possible, the concentration of 
CDs was firstly optimized. Fig. 2A shows the ΔECL intensity (ΔECL refers 
to the difference between the measured ECL signal and the signal 

Scheme 1. The schematic diagram of dual-target responsive ECL sensor using single ECL probe based on CHA signal amplification systems in series.  

Fig. 1. (A) Electrochemical impedance spectroscopy of 
various probes modified at electrode: (a: bare Au 
electrode; b: electrode ‘a′ + capture probe; c: electrode 
‘b′ + MCH; d: electrode ‘c′ + OH2; e: electrode ‘d′ +

CHA I-II system (but without NH2) + 100 pM O and N; 
f: electrode ‘d′ + CHA I-II system + 100 pM O; g: 
electrode ‘d′ + CHA I-II system + 100 pM O and N) in 
5.0 mM [Fe(CN)6]3-/4- including 100 mM KCl. (B) ECL 
intensity of the proposed sensing system in the absence 
of target and in presence of 5 pM O, 5pM N, and 5 pM O 
and N, respectively.   
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measured for the blank.) of NH2-CDs prepared with different concen-
trations of CDs for sensor construction. With the increase of CDs con-
centration, the ΔECL intensity first increased and reached a plateau at 
the concentration of 50 µg/mL, indicating that at this concentration, 
CDs has fully coupled with the added NH2 used to form NH2-CDs. 
Therefore, 50 µg/mL CDs was selected as the best synthesis condition 
for NH2-CDs synthesis. 

Since the signal is generated from CDs, and the amount of CDs 
enriched on the electrode surface is limited by the hybridization of NH2- 
CDs with capture probe, the dosage of NH2-CDs and the concentration of 
OH2 used to block the free end of the capture probe also need to be 
optimized. The results in Fig. 2B show the relationship between the 
dosage of synthetic NH2-CDs and the measured ΔECL intensity. With the 
gradual increase of the dosage of NH2-CDs, the ΔECL intensity also 
gradually increases and tends to be stable at 5 µL. Therefore, the optimal 
volume of NH2-CDs is determined as 5 µL. As shown in Fig. 2C, ΔECL 
intensity increases with the increase of OH2 concentration and reaches a 
plateau at 0.4 µM, indicating that 0.4 µM OH2 is sufficient to block the 
free segment of the capture probe to prevent the NH1 probe from 
interacting with the capture probe. Considering that the hybridization 
ratio of the two hairpin probes in CHA reaction product is 1:1, and in the 
designed sensing strategy, the dosage of NH1–2-CDs that can be con-
nected to the capture probe is equivalent to that of the CHA I reaction 
product (OH1–2). Therefore, the concentrations of OH1 and NH1 in the 
experiment were also determined to be 0.4 µM. 

Finally, the effect of reaction time was investigated. As shown in 
Fig. 2D, with the increase of reaction time, the ΔECL also increased, and 
when the incubation time exceeded 40 min, the ΔECL was not signifi-
cantly increased, indicating that 40 min is sufficient to conduct the CHA 
reaction and complete the enrichment of NH1–2-CDs on the electrode 
surface. 

3.4. Performance of the developed biosensor 

Since the two targets are sequences located in two regions of the 
same gene, they have the same expression level. Therefore, the 

quantitative detection performance of the sensor for the two targets at 
equal concentrations was investigated under the optimal experimental 
conditions. As depicted in Fig. 3 A, in the concentration range of 50 fM 
to 200 pM, the ECL intensity increases with the increase of the target 
concentration. And within this concentration range, the measured ECL 
intensity and the logarithm of target concentration shows a good linear 
relationship (Fig. 3B). The correlation equation is shown as follows:  

ECL = 775⋅6 Lg Ctarget +1434⋅4 R2 = 0⋅987                                             

where ECL refers to the measured ECL intensity, Ctarget refers to the 
concentrations of O and N added, and R is the correlation linear coef-
ficient, the detection limit is calculated to be 20 fM (S/N = 3). 

3.5. Selectivity and reproducibility of the ECL biosensor 

Single base mismatch sequences (OM1 and NM1) and double base 
mismatch sequences (OM2 and NM2) were designed for two targets (O 
and N) to study the specificity of the method. The sensing method was 
applied to the detection of two targets with the same concentration (5 
pM) and their mismatched sequence samples. The result of Fig. 4A shows 
that the ECL signals obtained with the target sample is much higher than 
those obtained with the mismatched sequence samples, which proves 
that the method has good specificity for target detection. 

To explore the reproducibility of this sensor, NH2-CDs were prepared 
with the same batch and different batches of CDs, respectively, for the 
construction of the sensor to detect 5 pM targets. The relative standard 
deviation (RSD) of ECL intensity of same batch CDs is 2.93%, while that 
of different batches CDs is 3.19%, indicating that the sensing platform 
has good reproducibility (as shown in Fig. 4B). 

3.6. Application of the proposed biosensor 

In clinical practice, oropharyngeal swabs are mainly collected to 
extract viral nucleic acid and gene amplification method is used to 
determine whether patients are infected with novel coronavirus. To 
validate the clinical practicability of the proposed assay for the detection 

Fig. 2. The effect of (A) the concentration of CDs, (B) the concentration of OH2, (C) the dosage of NH2-CDs and (D) the reaction time on the change of ECL intensity. 
The error bars represent the standard deviation of three replicate detections. 
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of SARS-CoV-2, seven samples were obtained from Affiliated Hospital of 
Putian University (the samples numbered #2, #5, #6 are uninfected 
negative samples, and the positive samples numbered #1, #3, #4, #7 
are taken from patients with confirmed COVID-19). RNA from these 
clinical samples was extracted using MagaBio plus Virus DNA/RNA 
Purification Kit III (Hangzhou Bioer Technology Co., Ltd.), and frag-
mented by ultrasound to obtain short fragments of RNA. The above work 
was completed in the laboratory of the Affiliated Hospital of Putian 
University, and the experiment was conducted in strict accordance with 
the protocol approved by the Ethics Committee of the Affiliated Hospital 
of Putian University. As shown in the Fig. 5, compared with the no target 
control, the samples from the four confirmed cases resulted in a 

significant statistical difference (P < 0.01), while no statistically sig-
nificant differences were found between the signals from the three 
healthy volunteers and the no template controls (P > 0.01). Four SARS- 
CoV-2 positive clinical samples and three samples of healthy volunteers 
can be identified by the sensing method proposed in this paper, which 
were consistent with the test results of the hospital. 

4. Conclusions 

In this study, a highly selective ECL biosensor was developed for the 
rapid detection of SARS-CoV-2. The most important highlight of this 
biosensor strategy is that by regulating the connection domain of the 
capture probe modified on the electrode surface, two sets of the same 
signal amplification strategies are connected in series, and an ECL 
nucleic acid sensing platform with a single signal output by the joint 
regulation of dual-target is successfully established for the first time. The 
proposed biosensor was successfully applied to the detection of SARS- 
CoV-2 in clinical throat swab samples, and the detection results of 
SARS-CoV-2 RNA extracted from clinical samples are 100% consistent 
with the hospital report using RT-qPCR detection, indicating its promise 
in clinical use. In addition to this, the approach enables rapid analysis of 
SARS-CoV-2 in a response time of 40 min, compared to that of 3–5 h in 
other electrochemical and ECL studies. Although the detection limit is 
not better than some viral nucleic acid detection methods, and more 
efforts are still needed to improve the performance of detection sensing 
platforms, the proposed ECL sensing strategy opens an interesting 
avenue for virus nucleic acid analysis based on dual-target response. 
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