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SUMMARY

Histone methyltransferase SETD1A is critical for acute myeloid leukemia (AML) cell survival, 

but the molecular mechanism driving SETD1A gene regulation remains elusive. To delineate the 

role of SETD1A, we utilize a protein degrader technology to induce rapid SETD1A degradation 

in AML cell lines. SETD1A degradation results in immediate downregulation of transcripts 

associated with DNA repair and heme biosynthesis pathways. CRISPR-based functional analyses 

and metabolomics reveal an essential role of SETD1A to maintain mitochondrial respiration 

in AML cells. These SETD1A targets are enriched in head-to-head (H2H) genes. SETD1A 

degradation disrupts a non-enzymatic SETD1A domain-dependent cyclin K function, increases 

the Ser5P RNA polymerase II (RNAPII) at the transcriptional start site (TSS), and induces 
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the promoter-proximal pausing of RNAPII in a strand-specific manner. This study reveals a 

non-enzymatic role for SETD1A in transcriptional pause release and provides insight into the 

mechanism of RNAPII pausing and its function in cancer.

Graphical Abstract

In brief

Hoshii et al. report the role of histone-modifying enzyme SETD1A in the regulation of 

mitochondrial respiration in acute myeloid leukemia cells. They further show a non-enzymatic 

function of SETD1A is required for transcriptional pause release of heme biosynthesis genes.

INTRODUCTION

Histone H3 lysine 4 tri-methylation (H3K4me3) is observed around the transcriptional 

start sites (TSSs) of active genes and the gene body with enhanced transcriptional 

consistency.3 The mixed-lineage leukemia (MLL) family of histone methyltransferases, 

including SETD1A, are key regulators of H3K4 methylation. Many studies have linked the 

functional role of SETD1A to H3K4me3 level in embryonic stem cells (ESCs), tumor cells, 

and neural progenitor cells.4–9 In contrast, our group and others previously identified a non-

enzymatic role of SETD1A in leukemia, sarcoma, and ESCs.7,10 The functional location 

on SETD1A (FLOS) domain functions as a non-enzymatic domain of SETD1A crucial for 

leukemia cell survival.7 Binding between FLOS and cyclin K (encoded by CCNK) facilitates 
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the active transcription of DNA-repair-associated genes, but the molecular mechanism of 

how this interaction regulates specific gene sets remains unclear.

Cyclin K is a co-factor of cyclin-dependent kinases (CDKs) and has been shown to interact 

with CDK9/12/13.11–13 CDK9 is a catalytic subunit of positive elongation factor b (P-TEFb) 

that phosphorylates the Ser2/5 of the RNA polymerase II (RNAPII) C-terminal domain 

(CTD) at the TSS. P-TEFb is also required to overcome the effects of negative elongation 

factors to enable productive elongation.14,15 In contrast, CDK12/13 are known to promote 

transcription elongation by phosphorylating Ser2 on RNAPII at the gene body. CDK12/13 

are functionally redundant in vitro, but in vivo, knockdown of CDK12 perturbs genes of the 

DNA repair pathway, while loss of CDK13 results in changes to cellular metabolism.16,17 

Since the cyclin K-CDK12 axis is important for regulation of DNA repair genes, SETD1A-

cyclin K complex may function as a potential regulator of CDK12.7 In contrast, SETD1A 

and CDK12 display different genome-wide localization profiles, with SETD1A found at 

TSSs and CDK12 at gene bodies, suggesting that these factors may modulate disparate 

transcriptional steps. Because of the limited information on the SETD1A-cyclin K complex, 

further studies on the complex are required to elucidate the role of SETD1A in CDK 

regulation.

CDKs are promising targets for cancer therapy. The development of selective small-

molecule inhibitors against CDKs demonstrated the potential success of CDK inhibitors 

in clinical practice.18,19 CDK12/13 inhibitors are still in the preclinical stage, but these 

compounds effectively block tumor growth in patient-derived xenografts.20,21 Histone 

modification enzymes are also attractive drug targets, but there are no specific compounds 

for SETD1A. One innovative tool for drug discovery that enables selective targeting against 

non-enzymatic protein/domains, such as SETD1A FLOS, is proteolysis-targeting chimera 

(PROTAC).22,23 By utilizing this technology, we can block the molecular functions of 

undruggable targets and evaluate the kinetics of the molecular cascade following inhibition.

In this study, we first established the PROTAC model of SETD1A in leukemia cell lines. We 

report a non-catalytic role for SETD1A in releasing paused RNAPII to regulate genes of the 

heme biosynthesis pathway. We show that SETD1A degradation immediately downregulates 

heme biosynthesis pathway genes, which are required for functional cellular metabolism 

and leukemia cell proliferation. Taken together, our study reveals that SETD1A plays a 

non-enzymatic role in the regulation of RNAPII activity for productive elongation at TSS 

and suggests a potential therapeutic window for cancers with transcriptional addiction.

RESULTS

dTAG-based SETD1A protein degradation induces apoptosis in leukemia

To evaluate the primary response of leukemia cells to SETD1A depletion, we constructed 

FKBP12F36V-HA-tagged SETD1A expression vectors (Figure 1A). First, we transduced 

these vectors into mouse inducible Setd1a knockout MLL-r leukemia cells and established 

Setd1a knockout cells, which can grow with the replaced exogenous FKBP12F36V-HA-

tagged SETD1A. We validated the effect of PROTAC compound dTAG-13 treatment by 

western blot analysis and cell growth assay (Figures 1A and S1A). We observed comparable 
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degradation between N terminus and C terminus tagged SETD1A but selected the N 

terminus FKBP12F36V-HA-tagged SETD1A (FKBP-SETD1A) for subsequent experiments 

due to a more robust response to dTAG-13 as observed by cell growth assay. Next, we 

established MOLM-13 human MLL-r leukemia cells harboring both Cas9 and exogenous 

FKBP-SETD1A. We disrupted the endogenous SETD1A in these cells using a single 

guide RNA (sgRNA) that targets the intron-exon junction of endogenous SETD1A (Figures 

1B and S1B–S1D). The IC50 value of dTAG-13 on the FKBP-SETD1A cells was 8.6 

nM, with complete suppression of cell growth at 6 days post-treatment occurring with a 

dTAG-13 concentration of 100 nM (Figure 1C). dTAG-13 (500 nM) induced remarkable 

SETD1A degradation after only 30 min (Figure 1D). Treatment of FKBP-SETD1A cells 

with dTAG-13 minimally suppressed the cell cycling at 24 h post-treatment and led to 

significant apoptosis by 48 h in the MOLM-13 cell line (Figures 1E–1G). To validate 

this system in another MLL-r leukemia cell line, we generated a MV4–11 leukemia cell 

line expressing FKBP-SETD1A (Figure 1H). This cell line showed growth retardation 

at 6 days post-dTAG-13 treatment (Figure 1I). These data indicate that in human acute 

myeloid leukemia (AML) cells, 24 h post-dTAG-13 treatment is the ideal time point for 

gene expression analysis as we observe complete degradation of FKBP-SETD1A prior to 

significant cell-cycle arrest and apoptosis.

SETD1A directly regulates the heme biosynthesis pathway

Using the HA-tagged FKBP-SETD1A protein, we were able to detect chromatin binding 

of the exogenous SETD1A in the transduced leukemia cells. We observed a strong overlap 

between endogenous and exogenous SETD1A peaks and saw higher signal intensity of 

HA-tagged SETD1A compared with endogenous SETD1A (Figures 2A and 2B). These 

overlapped SETD1A peaks are observed around TSSs, with the peak centers most abundant 

at ±5 kb, especially at 0 to 5 kb, from TSSs (Figure 2A). We also performed RNA 

sequencing (RNA-seq) analyses at 1 or 4 days post-dTAG-13 treatment and identified genes 

that are downregulated after dTAG-13 treatment (Figures 2C and S2A). We compared our 

list of annotated genes that contained SETD1A peaks with those that were downregulated 

following dTAG-13 treatment and identified a list of 123 overlapping genes as the potential 

downstream targets of SETD1A in human leukemia cells (Figure 2C). In this study, we 

labeled the 123 downregulated targets and 10,734 non-regulated targets of SETD1A as 

DR and NR, respectively. The SETD1A peaks that are annotated to DR genes were 

remarkably enriched around the TSS (Figure S2B). To understand the functions of these 

bona fide SETD1A targets, we analyzed the gene list with Gene Ontology (GO) analyses 

and identified the enrichment of genes associated with DNA repair and heme biosynthesis 

processes (Figures 2D and S2C). We also confirmed the downregulation of genes in heme 

biosynthesis processes (porphyrin metabolism) in SETD1A-deficient MV4–11 cells (Figures 

S2D and S2E). From motif analysis of the TSS regions of DR genes, we identified that 

SETD1A binds to CG-rich sequences (Figure 2E). Chromatin immunoprecipitation (ChIP)-

seq peak scores from the endogenous SETD1A showed that heme biosynthesis genes 

(COX15, HMBS, and UROS) have stronger SETD1A binding than DNA-repair-pathway-

associated genes (FANCD2, MLH1, and ATR), which are the known SETD1A targets 

(Figure 2F). The downregulation of COX15 expression by SETD1A disruption is also 

observed in non-MLL-r leukemia cell lines (U937 and K562) as well as sarcoma cell 
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lines (A673 and RH30) (Figures S2F and S2G). Off-target effects of dTAG-13 did not 

influence the expression of heme biosynthesis genes in the parental MOLM-13 leukemia 

cells (Figure 2G). In human AML cell lines, expression of SETD1A and COX15/COX18 are 

highly correlated in DepMap database (DepMap, 2022; https://depmap.org/) (Figure S2H). 

In TCGA database, the expression of SETD1A is positively correlated with the expression 

of HMBS/UROS but is negatively correlated with COX15/COX18 (Figures S2I and S2J). 

These results imply that leukemic heterogeneity or the secondary compensatory upregulation 

of heme biosynthesis genes creates a complex situation of gene-expression profiles in vivo. 

We evaluated the gene-expression kinetics of HMBS and COX15 at 1, 3, 6, and 9 h post-

dTAG-13 treatment (Figure 2H). Expression of both genes was immediately downregulated 

at 1 h and significantly downregulated at 3 h post-dTAG-13 treatment. These data revealed 

that the heme biosynthesis pathway is regulated by SETD1A-dependent transcriptional 

activation in AML cells.

Heme A biosynthesis pathway genes are essential for leukemia cell proliferation

To validate the function of SETD1A target genes (COX15, HMBS, UROS, RRNAD1, 

NUDT18, GSTZ1, HINT2, and COX18) in leukemia cells, we performed a CRISPR-based 

competitive cell proliferation assay in doxycycline-inducible Cas9-expressing MOLM-13 

leukemia cells (Figures 3A and S3A). We found a strong dependency for COX15, 

HMBS, and UROS in leukemia cells (Figure 3A). These three genes are all required 

for heme A biosynthesis, which is an essential metabolite for reduction of oxygen on 

the inner mitochondrial membrane by complex IV. To monitor mitochondrial phenotypes, 

we performed mass spectrometry analysis against purified mitochondria and detected the 

reduction of COX15 protein in mitochondria of dTAG-13-treated cells (Figures 3B, S3B, 

and S3C). Mitochondrial proteomics also indicated that the oxidative phosphorylation 

(OXPHOS) pathway is disrupted in SETD1A-deficient cells (Figure S3D). Unlike AML 

cells, we found that non-AML cells do not exhibit a strong dependency on COX15, 

suggesting that the heme biosynthesis pathway may be a specific dependency of AML 

cell lines (Figure S3E). To evaluate the effect of suppression of these SETD1A targets 

on mitochondrial oxygen consumption in leukemia cells, we measured the mitochondrial 

oxygen consumption rate (OCR) of sgRNA-expressing leukemia cells by flux analyzer 

(Figure 3C). Both COX15 and HMBS knockout significantly reduced the OCR at the basal 

level (Figure 3C). In contrast, COX18, the other SETD1A-dependent complex IV assembly 

factor, was dispensable for leukemia cell growth as well as OCR (Figures 3A, S3A, and 

S3F). Consistent with these results, a reduction in OCR was observed in the dTAG-13-

treated FKBP-SETD1A-expressing cells (Figure 3D). Reduced oxygen consumption can be 

compensated by upregulation of glycolysis, but SETD1A degradation did not result in a 

significant difference in the extracellular acidification rate, even in stress conditions (Figure 

S3G). ATP production was moderately reduced in SETD1A-deficient cells (Figure S3H). 

We labeled mitochondria with MITO-tag (OMP25-GFP) to monitor mitochondrial mass 

and morphology but did not observe any apparent changes to the morphology or the total 

mass of the mitochondria upon SETD1A degradation (Figures S3I and S3J). These results 

strongly suggest that SETD1A is specifically required for the maintenance of mitochondrial 

respiration through modulation of the heme biosynthesis pathway in AML cells.
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SETD1A is required for the glutamine metabolism in leukemia cell

To investigate the roles of SETD1A-dependent metabolic regulation in leukemia cell 

proliferation, we performed metabolome analysis at 24 and 48 h post-dTAG-13 treatment 

in FKBP-SETD1A-expressing cells. Most metabolites were unaffected by SETD1A loss, 

but surprisingly, glutamine (Gln) and glutamate (Glu) levels were significantly increased 

in SETD1A-deficient cells (Figures 3E and S3K). An increase in Gln/Glu accumulation 

was also observed with the cell-based Gln/Glu detection assay in SETD1A-deficient cells 

(Figures 3F and S3L). Gln and Glu are known ingredients for the heme biosynthesis 

pathway, and defective Gln metabolism was also observed in heme degradation enzyme 

BLVRB-knockout cells.24 We therefore hypothesized that SETD1A-deficient cells may have 

lower consumption of these metabolites (Figure 3G). To examine the role of the heme 

biosynthesis pathway in Gln accumulation, we evaluated Gln levels in COX15- or HMBS-

knockout cells. As expected, the knockout of COX15 or HMBS also increased the Gln 

level (Figure 3H). These results indicate that SETD1A promotes Gln/Glu consumption by 

regulating the heme biosynthesis pathway in AML cells.

SETD1A loss increases the CTD-Ser5 phosphorylated RNAPII

Our study indicates a role for SETD1A in regulation of mitochondrial respiration and 

metabolism, but the mechanism of how SETD1A regulates these specific gene sets in 

AML cells remains unclear. To investigate histone modification modulation and changes 

in RNAPII activity on SETD1A target genes after SETD1A depletion, we detected HA-

tagged SETD1A, active histone marks (H3K4me1, H3K4me3, H3K27Ac, H3K36me3, and 

H3K79me2), open chromatin (assay for transposase-accessible chromatin [ATAC]), and 

phosphorylation states of RNAPII (total, Tyr1 phosphorylation [Tyr1P], Ser7P, Ser5P, and 

Ser2P) at 24 h post-dTAG-13 treatment (Figures 4A, 4B, and S4A). As we observed in 

Setd1a-knockdown NIH3T3 cells, the total RNAPII signal was significantly increased at the 

TSS in the dTAG-13-treated cells (Figures 4A and 4B).7 In contrast, histone modifications, 

including H3K4me1, H3K4me3, H3K27Ac, and H3K79me2, showed comparable levels 

across the two conditions at SETD1A target genes (Figure 4A). Consistent with the mRNA 

expression levels of DR genes, H3K36me3 was reduced on DR, but not NR, genes (Figures 

4A and 4B). We also assessed RNAPII phosphorylation and detected a significant increase 

in Ser5P at TSSs on both DR and NR loci (Figures 4A and 4B). Similar to the total 

RNAPII signal, dTAG-13-treated cells also displayed an increase in Tyr1P at the TSS 

(Figure 4A). Although Ser7P is also primarily observed at the TSS, we did not detect 

changes in Ser7P levels at DR loci (Figure 4A). We found that the Ser2P signal, which is 

usually more abundant at transcript end sites (TESs) than at TSS, was decreased at the TES 

on DR loci in dTAG-13-treated cells (Figures 4A and 4B). ATAC-seq results revealed that 

the open chromatin around the TSS was not changed by SETD1A depletion (Figure 4A). 

Both H3K36me3 and Ser2P are well-known markers of transcriptional elongation, and we 

observed coordinated reduction of these signals on DR genes, suggesting that transcriptional 

elongation may be specifically perturbed by SETD1A loss (Figures S4A and S4B). Since 

the H3K36me3 level was reduced as early as 1 h post-dTAG-13 treatment, this suggests that 

SETD1A directly regulates transcriptional elongation at these loci (Figure S4C).
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Ser5P signal intensity is well correlated with the intensity of SETD1A at the TSS, 

and Ser5P signals are selectively enhanced at SETD1A-binding sites upon depletion of 

SETD1A, indicating a role for SETD1A in the maintenance of Ser5P RNAPII level at 

TSSs (Figures 4C and S4D). H3K36me3 signals in the gene body are also correlated with 

the intensity of SETD1A at the TSS, but the slopes of simple linear regression were not 

significantly different after SETD1A depletion (Figures 4D and S4E). The accumulation 

of Ser5P signals at all SETD1A-binding sites and the locus-specific downregulation of 

H3K36me3 signals indicated that additional factors may contribute to the locus-specific 

transcriptional elongation defects in SETD1A-deficient cells. We also compared the CTD 

Ser phosphorylation level per total RNAPII between DR and NR genes. Ser5P showed a 

higher ratio at the promoter for both DR and NR genes, and DR genes showed an even 

higher ratio of Ser5P to NR genes in SETD1A-deficient cells. (Figures 4E, 4F, and S4F). 

In contrast, DR genes showed a lower ratio of Ser2P at the gene body in SETD1A-deficient 

cells (Figures 4F and S4F). Despite the upregulation of the Ser5P ratio at the promoter, the 

ratio of all phosphorylation marks was downregulated at the TES of DR genes in SETD1A-

deficient cells (Figure S4G). To examine the immediate effects of SETD1A degradation 

on RNAPII, we analyzed the RNAPII levels starting from 1 h post-dTAG-13 treatment. 

Ser5P was continuously increased at the COX15 TSS from 1 to 6 h post-dTAG-13 treatment 

(Figure S4H). Both the amounts of Ser5P and RNAPII were increased at the TSS of 

DR genes at 1 h post-dTAG-13 treatment (Figures 4G and 4H). The ratio of Ser5P was 

increased, especially in the region surrounding the TSS of DR genes, at 1 h post-dTAG-13 

treatment (Figures 4G and 4H). These data demonstrate that Ser5P RNAPII accumulation at 

the TSS is a hallmark of transcriptional perturbation of SETD1A target genes.

SETD1A is required for the release of paused RNAPII on head-to-head (H2H) genes

To confirm the effect of SETD1A loss on RNA synthesis, we also performed nascent 

RNA-seq in dTAG-13-treated cells at 1.5 and 24.5 h post-dTAG-13 treatment and observed 

a significant reduction of newly synthesized mRNA from DR genes (Figures 5A and S5A). 

We previously identified that SETD1A binds with cyclin K, a co-factor of CDK9/12/13, 

which are all known as CTD kinases. CDK12 inhibition tends to suppress the expression 

of long genes, but DR and NR genes did not show any significant differences in gene 

size (Figure S5B).17 These data suggested that SETD1A might regulate elongation via a 

mechanism distinct from CDK12.

Genes for both DNA repair systems and mitochondrial respiration can be classified as 

H2H genes, which are regulated by bidirectional promoters.25 Interestingly, 43% of DR 

genes are classified as H2H genes with another gene located on the opposite strand within 

1 kb upstream from the TSS (Figure 5B). H2H pairs tend to show similar expression 

patterns because of the shared promoter activity, but DR H2H pairs showed divergent 

gene expression after dTAG-13 treatment (Figures 5C and 5D).26,27 SETD1A localization 

just downstream from the TSS, the accumulation of Ser5P RNAPII, and the retardation 

of strand-specific RNAPII activity suggests an increase in promoter-proximal pausing of 

RNAPII at DR loci in a strand-specific manner. Paused RNAPII is modulated by the 

PAF1 complex, the negative elongation factor (NELF) complex, and the 5,6-dichloro-1-β-d-

ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) complex containing 
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SPT5.14 In the DepMap database, SETD1A shows top co-dependencies with both PAF1 and 

SPT5, suggesting its role as a positive regulator of transcriptional elongation (Figure 5E). 

Although chromatin distributions of both PAF1 and SPT5 were not changed in dTAG-13-

treated FKBP-SETD1A cells, NELFe, a subunit of the NELF complex, was significantly 

increased at the TSS of DR genes (Figures 5F, 5G, and S5C–S5E). In addition, both PAF1 

and SPT5 were significantly decreased at the TES of DR genes (Figures 5H, 5I, and S5F). 

We also monitored the distributions of these factors at TSS of GAPDH (an NR gene), HBB 
(a non-SETD1A binding gene), and COX15 (a DR gene) as well as the gene body of COX15 
by ChIP-qPCR (Figures S5G–S5I). High NELFe/PAF1 and NELFe/SPT5 ratios were only 

observed at COX15 and were significantly increased by SETD1A depletion (Figures 5J and 

S5J). Taken together, our data demonstrate that SETD1A is required as a positive elongation 

regulator for the removal of the NELF complex followed by the release of paused RNAPII at 

H2H genes.

Non-enzymatic role of SETD1A via cyclin K supports transcriptional activation and 
mitochondrial respiration in leukemia

SETD1A consists of three major domains including the N-terminal RNA recognition motif 

(RRM), central FLOS, and C-terminal NSET/SET domains. WDR82, the interaction partner 

of RRM, is known to bind with both Ser5P and CTD phosphatase (SSU72), but cyclin K, the 

interaction partner of FLOS, is known as a co-factor for CTD kinases (Figure 6A). Our data 

raised the possibility that the disruption of SETD1A may cause pausing of RNAPII in an 

SETD1A-complex-subunit-dependent manner. To evaluate the roles of WDR82 complexes 

and cyclin K complexes in human leukemia cells, we performed a CRISPR functional 

assay against these complex subunits and confirmed the strong dependency on WDR82, 

cyclin K, and their binding partners (Figures 6B and S6A). Despite the significant growth 

suppression in cyclin K-, WDR82-, and SSU72-knockout cells, only cyclin K knockout 

downregulated the expression of COX15 (Figures 6B and 6C). To examine the role of FLOS 

and enzymatic domain in downstream COX15 transcription, we established a cDNA rescue 

system in the PROTAC-based SETD1A-knockout model (Figure S6B). Consistent with our 

previous work, NSET/SET domain mutants rescued the cells from dTAG-13 treatment, 

but the FLOS domain mutant did not (Figure 6D). FLOS domain mutant-expressing cells 

also showed a similar decrease in expression and hypomethylation of H3K36me3 in the 

COX15 gene compared with empty-vector-expressing cells (Figures S6C and S6D). Both 

the COX15 expression and Gln levels were maintained in NSET/SET mutant-expressing 

rescued cells (Figures 6E and 6F). The hypomethylation of H3K36me3 was also rescued 

by NSET/SET domain mutant expression (Figures 6G and S6G). These results suggested 

that the SETD1A-cyclin K axis is the main upstream pathway for the COX15 regulation. 

Supporting this model, cyclin K knockout results in H3K36me3 reduction on DR genes 

as well as the Gln accumulation (Figures 6H, S6H, and S6I). Cyclin K knockout, but 

not the individual CDK9/12/13 knockout, inhibited mitochondrial respiration (Figure 6I). 

Thus, the specificity under the SETD1A-cyclin K axis may not be dependent on a single 

CDK. Moreover, the cyclin K knockout showed reduction of both Ser5P and total RNAPII 

levels at the TSS (Figures 6J and S6J). These results suggest a requirement for cyclin 

K in SETD1A-loss-induced RNAPII pausing. To investigate the roles of CDK/cyclin K 

complex activities in SETD1A-loss-induced pausing, we treated cells with the CDK/cyclin 
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K inhibitor CR8 or THZ1. The accumulation of both Ser5P RNAPII and NELFe at COX15 
locus were suppressed by both inhibitors (Figures 6K and S6K). Using a DRB release assay, 

we were able to confirm that there was a significant reduction of released RNAPII at the 

COX15 locus after SETD1A loss and CR8 treatment (Figure 6L). The sustained release 

of RNAPII from the paused site, which was observed in control cells by 50 min after the 

DRB release, was not seen in dTAG-13-treated cells. Taken together, our study indicates that 

the aberrant function of the CDK/cyclin K complex following SETD1A disruption induced 

promoter-proximal pausing of RNAPII at H2H loci, which encode genes for DNA repair and 

mitochondrial metabolism.

DISCUSSION

Heme biosynthesis regulation in SETD1A-dependent cancer

Our results revealed that SETD1A is essential for the maintenance of gene expression 

contributing the heme biosynthesis pathway (Figure 7). Upregulation of the heme 

biosynthesis pathway caused by an increase of UROD expression is observed in pediatric 

AML samples with high MYCN expression.28 A recent study indicated the useful 

application of the knockdown of the heme biosynthesis pathway against Bcl-2 inhibitor 

resistance in AML cells.29 In this study, AML cell lines showed strong sensitivity to 

COX15-targeting sgRNAs, unlike chronic myeloid leukemia (CML) and sarcoma cell 

lines. Therefore, dependency on the heme biosynthesis pathway would partly explain 

the effectiveness of SETD1A-targeting therapy, specifically in AML. One critical role of 

the heme biosynthesis pathway could be the maintenance of mitochondrial respiration. 

However, mitochondrial defects, besides the reduction of respiration, have not been observed 

in previous reports nor our study. These results suggest a specific role for the heme 

biosynthesis pathway in AML cell proliferation. In this study, we also identified the 

upregulation of Gln levels in SETD1A/cyclin K-deficient cells. Gln is an ingredient of heme 

biosynthesis and an important nutrient for cell proliferation. The inhibition of Gln uptake 

is currently being studied as a potential therapeutic tool for AML therapy.30,31 Therefore, a 

future combination therapy of SETD1A inhibition and Gln uptake inhibition could represent 

an approach for AML treatment.

SETD1A is frequently mutated in the brain of patients with neurogenerative 

disease,32,33 and the heterozygous mutation in mice recapitulates the schizophrenia-related 

phenotypes.4,6 These mutations are not only observed at the enzymatic domain but also 

at the FLOS domain.32 Understanding the molecular mechanisms behind the SETD1A-

dependent heme biosynthesis pathway will offer insight into neuronal disorders and other 

diseases.

SETD1A is a critical regulator for the CTD code

Our data show unexpected upregulation of Ser5P in SETD1A-deficient AML cells. Ser5 is 

a well-characterized CTD phosphorylation site that is phosphorylated by multiple CDKs, 

including CDK7/9/12/13. Together with the PAF complex, Ser5P promotes the recruitment 

of Set1, a SETD1A homolog, to the TSS in yeast.34,35 However, the molecular mechanism 

by which loss of SETD1A alters the phosphorylation of the CTD code was unclear.
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Here, we only evaluated the role of SSU72, which is a CTD phosphatase that binds with the 

SETD1A subunit WDR82. A recent study identified the new CTD phosphatase activity on 

the integrator complex.36 Ser5-dephosphorylation-associated proteins (RPRD1A/RPRD1B) 

may also contribute to the SETD1A-dependent phenotypes.37 While there is a possibility 

that SETD1A may cooperate with multiple phosphatases, our data indicated the essential 

role of cyclin K in the upregulation of Ser5P by through the multiple CDKs. In addition to 

the cyclin K-dependent CDKs, CDK7 may partly contribute the accumulation of Ser5P since 

the treatment of THZ1, a covalent inhibitor of CDK7/12/13, suppressed the phosphorylation 

in SETD1A-knockout cells.38 We also observed the upregulation of the Ser5P/RNAPII ratio 

at the gene body of NR genes. Interestingly, the increased Ser5P in the TSS and gene 

body has also been reported in PAF1-deficient cells.39 In contrast, DR genes showed an 

unaffected level of Ser5P and a decrease of Ser2P at their gene body. These similarities 

and differences indicated that further studies on the SETD1A-PAF1-CDKs axis would be 

required to understand the regulation of CTD code as well as the regulation of specific genes 

followed by the SETD1A degradation.

Inhibition of CDKs by small-molecule compounds has already been achieved in many 

studies, and these inhibitors will be great opportunities for cancer therapy, but the specificity 

against CDK/cyclin K complexes and the locus dependency on chromatin remain unclear. 

Unlike the inhibition of cyclin K, inhibition of SETD1A suppressed the Ser2P and 

productive elongation without inhibiting the Ser5P (Figure 7). As we observed the locus-

dependent transcriptional defect after SETD1A degradation, an SETD1A inhibitor will 

provide a more specific tool for cancer therapy than CDK kinase inhibitors by modulating 

the CTD code on cancer-associated genes.

Possible evolutionary background of the RNAPII pause release via SETD1A

An interesting feature of the SETD1A-sensitive loci is that the encoded genes are regulated 

under the H2H promoters in a strand-specific manner. Previous works only focused on the 

H3K4 methyltransferase activity of Set1 as a downstream effector and did not examine 

whether Set1 or SETD1A itself is required for the pause release.34,35 The emerging nascent 

RNA is recognized by an SPT4/SPT5 complex called DSIF, then the NELF complex 

binds the RNAPII/DSIF complex and pauses the weakly activated RNAPII at the promoter-

proximal region.40 NELF homologs have been identified in metazoans but not in yeast and 

plants; therefore, NELF would contribute the specific roles in the transcriptional regulation 

in metazoans.40 The SETD1A FLOS domain has also not been identified in yeast and 

evolved from vertebrates, therefore the SETD1A-NELF axis would play a specialized action 

for the RNAPII regulation in vertebrates.

Genes under bidirectional promoters are thought to have biological significance in 

vertebrates, whose genomes are more dispersed than the densely organized genomes of yeast 

and lower organisms. One of the common features of the bidirectional loci is the presence of 

a CpG island (CGI) on the promoter.27 Non-methylated CGI in active loci is important for 

the recruitment of CXXC domain-containing protein, such as CXXC1, a binding partner of 

SETD1A/B.41 In contrast, CXXC1 binds to the NSET domain of SETD1A, but the loss of 

elongation was fully restored in the NSET domain mutant. Further study will be necessary to 
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demonstrate whether the CGI recognition of SETD1A is required for the regulation of H2H 

gene activation.

Genes under bidirectional promoters are required for DNA repair, replication, and 

mitochondria function. Thus, a synchronized regulation for these genes could be important 

for cell division with continuous cell cycling.25,27 The pause release of RNAPII also 

has an important role in synchronous patterns of gene activation.42 The evolution of the 

pause release system in H2H genes might have coincided with the molecular evolutions 

of the SETD1A-NELF axis to enable more precise and synchronized gene regulation in 

vertebrates. Taken together, targeting of this pathway with a SETD1A inhibitor will provide 

therapeutic benefits for mammalian cancers and diseases.

Limitations of the study

We used MLL-r leukemia cell lines for the SETD1A PROTAC model in this study but did 

not utilize them for in vivo assays. We evaluated these cells under normal cell culture 

conditions; therefore, this study may not reflect in vivo responses under the specific 

microenvironments.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Takayuki Hoshii (hoshiit@chiba-u.jp).

Materials availability—All unique/stable reagents generated in this study are available 

from the lead contact with a completed Material Transfer Agreement.

Data and code availability

• The accession number for the RNA-seq and ChIP-seq data reported in this 

paper is NCBI GEO: GSE189894. The MS raw data and result files have been 

deposited in the ProteomeXchange Consortium: PXD029667 via the jPOST 

partner repository: JPST001381.1 The metabolomics data is available via the 

Metabolomics Workbench: PR001489.2

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—293T, MV4–11, U937, K562, A673, RH30 human cell lines were obtained 

from ATCC. MOLM-13 human cell line was obtained from DSMZ. Plat-A, Plat-E cell lines 

which were both based on the 293T cell line were obtained from Dr. Toshio Kitamura. 

293T, A673, Plat-A, Plat-E cell lines were maintained in DMEM medium containing 

10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. U937, MOLM-13 and 

RH30 cell lines were maintained in RPMI1640 medium containing 10% FBS and 1% 
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penicillin-streptomycin. MV4–11 and K562 cell lines were maintained in IMDM medium 

containing 10% FBS and 1% penicillin-streptomycin. All cell lines were authenticated 

using STR profiling with a GenePrint 24 system (Promega). Murine Setd1aflox/flox;CreER 
MLL-r leukemia cells were established previously.7 Murine MLL-r leukemia cells were 

maintained in RPMI1640 medium containing 10 ng/mL rmIL3, 10% FBS and 1% penicillin-

streptomycin. Cells were maintained in a humidified incubator at 37°C, 5% CO2.

METHOD DETAILS

Drug treatment—Doxycycline was prepared to a stock solution in 1 mg/mL in PBS and 

used as 1:1000 dilution.

dTAG-13, CR8 or THZ1 was prepared to a stock solution in 1mM in DMSO. For dTAG-13, 

we use 500 nM dTAG-13 for a final concentration if we didn’t mention the concentration in 

each data. For CR8 or THZ1, we use in 0.5/0.1 μM or 20/10 nM, respectively.

Establishment of dTAG-SETD1A system—Human SETD1A (NM_014712) cDNA 

was cloned into pLEX_305-N-dTAG or pLEX_350-C-dTAG plasmid vector. Expression 

vector was transduced into mouse Setd1aflox/flox;CreERT2;MLL-AF9 leukemia cells or 

Cas9-expressing human leukemia cells.7 Transduced cells were selected by 2 μg/mL 

puromycin for a week. To remove the endogenous SETD1A expression, 1 μg/mL tamoxifen 

was administrated into cell culture medium for mouse leukemia cells. For human cell 

lines, SETD1A sgRNA for intron-exon junction was transduced into the puromycin-resistant 

human leukemia cells and GFP-positive sgRNA-expressing cells were collected by cell 

sorter SH800S (SONY). Single cell clones from these cells were established by limiting 

dilution. All single cell clones were genotyped by PCR, and each indel sequence was 

determined by sanger sequencing. Protein expression from exogenous FKBPF36V-tagged-

SETD1A construct or the endogenous SETD1A allele were monitored with anti-HA 

antibody or anti-SETD1A antibody on western blot analyses, respectively.

cDNA expression in leukemia cells—EGFP-OMP25-expressing vector was transduced 

into Setd1aflox/flox;CreER MLL-AF9 leukemic cells by retrovirus which is generated in 

Plat-E cells. EGFP-OMP25 subcellular localization in leukemic cells was monitored by 

FLUOVIEW FV10i (Olympus). Signal intensities of EGFP-OMP25 was quantified by 

CytoFLEX flow cytometry (Beckman coulter). For cDNA rescue experiment, SETD1A-

expressing vector with hygromycin-resistant gene was transduced into FKBP-SETD1A 

leukemic cells by retrovirus which is generated in Plat-A cells. Transduced cells were 

selected by 1 mg/mL hygromycin for a week. For the SETD1A mutant constructs, FLOS 

(387–586 aa), NSET (1425–1562 aa) or SET (1568–1691 aa) domains were deleted from 

SETD1A-expression vector by inverse PCR method.

Western blotting—Lysate was mixed with 43 SDS Sample Buffer and beta-

mercaptoethanol, and proteins were denatured by boiling for 5 min. Denatured proteins were 

separated on a 5–20% SuperSep TM Ace gel (Wako) in 25 mM Tris/192 mM Glycine/0.1% 

SDS Running Buffer and transferred to a PVDF membrane (Merck Millipore) in 25 mM 

Tris/192mM Glycine/20% Methanol Transfer Buffer with Mini Trans-Blot Cell (Bio-Rad). 
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Blots were blocked with 5% skim milk in TBS-T for 30 min, and incubated with primary 

antibodies (which are listed in the key resource table) at 4°C overnight. Immunocomplexes 

were labeled by HRP-conjugated anti-mouse IgG or anti-rabbit IgG and visualized using 

Amersham ECL Prime (Cytiva). The signals were deteceted with ChemiDoc Touch MP 

(Bio-Rad).

RNA analyses—Total RNA was purified with RNeasy Mini kit with DNase set 

(Qiagen). For RT-qPCR, cDNA was synthesized with ReverTra Ace qPCR RT Master 

Mix (TOYOBO). cDNA fragments were quantified by a SYBR green qPCR with gene 

specific primers and Taq DNA polymerase (NEB) with CFX96 Touch real-time PCR 

detection system (Bio-Rad). For Nascent RNA analysis, 1 × 106 cells were treated with 

500 nM dTAG-13 for 1 h or 24h. 500 nM EU was added and incubated for additional 0.5 

h. After the EU incorporation, total RNA was extracted with Direct-zol RNA miniprep 

kit (Zymo Research) at 1.5 h or 24.5 h post-dTAG-13 treatment. RiboMinus Human/

Mouse Transcriptome Isolation Kit (ThermoFisher) was used for the removal of rRNA, 

and then EU-labelled RNA was enriched by using Click-iT Nascent RNA Capture kit 

(ThermoFisher). Libraries for RNA-seq were prepared by using the TruSeq Stranded mRNA 

Sample Prep Kit (Illumina). The DNA library was validated using TapeStation (Agilent 

Technologies) and was quantified using a QuantiFluor dsDNA system (Promega) and a 

Quantus Fluorometer (Promega). Libraries were pooled and sequenced on Illumina HiSeq 

1500 or NextSeq 500. Data were analyzed by using HISAT2 and Cufflinks, or workflows 

on Basepair (https://www.basepairtech.com). List of interest genes were analyzed by Enrichr 

tool (https://amp.pharm.mssm.edu/Enrichr/).

ChIP analyses—MOLM-13 leukemia cells were fixed with 2 mM DSG for 30 min 

followed by 1% formaldehyde for 10 min and treated with 0.125 M Glycine for 5 min. 

Fixed cells were washed twice with cold PBS. Washed cells were re-suspended in ChIP 

Lysis Buffer (50 mM HEPES pH8, 140 mM NaCl, 1 mM EDTA, 10% Glycerol, 0.5% 

NP-40, 0.25% Triton-X100, 13 protease inhibitor cocktail) and centrifuged at 3,200 rpm 

for 5 min at 4°C to collect the nuclei pellet. The pellet was washed with ChIP Wash 

Buffer (10 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA), and re-suspended in ChIP Shearing 

Buffer (0.1% SDS, 1 mM EDTA, 10 mM Tris-HCl, 13 protease inhibitor cocktail) and 

then frozen at −80°C. Nuclear samples were shredded using Picoruptor (Diagenode) and 

pre-cleared with Dynabeads protein G (Thermo Fisher Scientific) for 60 min at 4°C with 

gentle rotation. Appropriate amounts of antibodies were added into the chromatin and 

incubated overnight at 4°C. The immune complex was collected with Dynabeads protein 

G and washed sequentially in the Low Salt Wash Buffer (20 mM Tris pH8, 150 mM 

NaCl, 0.1% SDS, 1% Triton-X100, 2 mM EDTA), the High Salt Wash Buffer (20 mM Tris 

pH8, 500 mM NaCl, 0.1% SDS, 1% Triton-X100, 2 mM EDTA), the LiCl Wash Buffer 

(10 mM Tris pH8, 250 mM LiCl, 1% NP-40, 1% Sodium Dexyxholate, 1 mM EDTA) 

and TE. Chromatin was eluted with Elution Buffer (1% SDS, 20 mM Tris-HCl, 10 mM 

EDTA) containing RNaseA, and then reverse cross-linked with proteinase K at 65°C for 

overnight. DNA was purified with a PCR purification kit (Qiagen) and was quantified 

using a QuantiFluor dsDNA system (Promega) and a Quantus Fluorometer (Promega). ChIP 

DNA was quantified by SYBR Green Real-time PCR with the specific primers and NEB 
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taq polymerase (NEB) using CFX96 Real-Time PCR detection system (Bio-rad). Libraries 

were prepared and sequenced as described above. Data were mapped to the University of 

California Santa Cruz human genome assembly (hg19) using Bowtie2, and then duplicated 

reads were removed by Picard tools. Peak calling was performed using HOMER software. 

Heatmaps or histograms of ChIP-seq data were generated by using EaSeq software (http://

easeq.net). Gene annotation to ChIP-seq peaks were performed with the Genomic Regions 

Enrichment of Annotations Tool (GREAT) using the basal plus extension method.

CRISPR

Doxycycline-inducible Cas9-expressing human MOLM-13 (MOLM-13iCas9), U937 and 

K562 leukemia cells and constitutive Cas9-expressing A673 and RH30 sarcoma cells were 

established previously.7 sgRNA vectors with a GFP or tagRFP657 reporter were constructed 

and used for competitive growth assay (Table S1). At least four sgRNA oligos for each 

target were selected from CRISPick at Broad institute (https://broad.io/crispick). The empty 

vector backbone was used for the negative control, and the human RPA3-targeting sgRNA 

was used for the positive control in competitive growth assay. The SETD1A intron 7-exon 

8 junction-targeting sgRNA was used for the deletion of endogenous SETD1A genes in 

human leukemia cells (Table S1). In competitive growth assay with these sgRNA constructs, 

vectors were transduced to the iCas9 leukemia cells or Cas9 sarcoma cells with lentivirus. 

The expression of fluorescent proteins was confirmed at 3 days post-infection by using 

CytoFLEX flow cytometry (Beckman coulter), then doxycycline was added in the culture 

medium. In doxycycline inducible system, the first day for the doxycycline administration 

was set as day 0 for the competitive growth assay, and the percentage of fluorescent protein-

positive population was measured every 3 days. Percentage of sgRNA/RFP657-expressing 

cells were normalized with the percentage at 0 day post-dox For the sarcoma cell lines, the 

percentage of fluorescent protein-positive population was confirmed at 3 days post-infection, 

and monitored every 6 days.

Detection of mitochondria respiration and glycolysis—Oxygen consumption rate 

and extracellular acidification rate of leukemia cells were measured by Seahorse XF 

Analyzer (Agilent) with XF Cell MitoStress Test Kit (Agilent) and XF Glycolysis Stress 

Test Kit (Agilent), respectively. Cell culture plate for XFe96 was coated with Cell-Tak cell 

tissue adhesive (Corning) and 1 × 105 leukemia cells were plated before the measurement. 

10 μM of Oligo (Oligomycin: ATP synthase inhibitor), 20 μM of FCCP (OXPHOS 

uncoupler) and 5μM of Rot/AA (Rotenone/antimycin A: inhibitors of mitochondrial electron 

transport chain) were used for each well in Mito stress Test Kit at indicated time points. 20 

μL of 100 mM Glucose, 22 μL of 10 μM Oligomycin and 25 μL of 500 mM 2-DG were 

used for each well in Glycolysis Stress Test Kit. We set 3 min for mixture and 3 min for 

measurement for each cycle, and actual recorded time point were shown on graphs.

Mitochondria isolation and proteomics—Human Mitochondria Isolation Kit 

(Miltenyi Biotec) was used for the mitochondria isolation from MOLM-13 leukemia cells. 

1 × 107 cells were harvested and washed with cold-PBS and resuspended in 1 mL ice-cold 

Lysis Buffer. Cells were homogenized by using a 29 G syringe at 20 strokes. To remove 

nuclei, cell lysates were centrifuge at 1,000 × g for 5 min at 4°C, then transfer the 1 
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mL of supernatants into new 15 mL tubes. 9 mL of ice-cold 1 × Separation Buffer and 

50 µL of anti-TOM22 microbeads were added and incubated for 1 h at 4°C with gentle 

shaking. Microbeads were separated with MACS separator with LS columns. After washing 

step, we flushed out the magnetically labeled mitochondria and washed once with ice-cold 

PBS. Mitochondria pellets were frozen at liquid nitrogen and stored at –80°C. Proteins 

were extracted with 100 mM triethyl ammonium bicarbonate containing 12 mM sodium 

deoxycholate (SDC) and 12 mM sodium lauroyl sarcosinate (SLS), and were reduced using 

10 mM dithiothreitol for 30 min followed by alkylation with 50 mM iodoacetamide for 

30 min. Tryptic digested peptides were labeled with the Tandem Mass Tag reagents and 

combined samples. After removal of SDC and SLS by a phase transfer,51,52 peptides were 

separated by a High pH Reversed-Phase Peptide Fractionation Kit (Thermo Scientific). 

NanoLC-MS/MS were conducted using an Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Scientific) and an Easy nLC-1000 UHPLC (Thermo Scientific) equipped with a 

nanoHPLC capillary column (Nikkyo Technos, Tokyo, Japan). MS data were subjected to a 

search against the Uniprot Human database with MaxQuant version 1.6.17.0.53

Metabolome analysis—Metabolomic profiling was conducted for triplicated DMSO/

dTAG-13 treated leukemia cell extracts via capillary electrophoresis time-of-flight mass 

spectrometry (CE-TOFMS) by using Agilent 7100 CE capillary electrophoresis (Agilent 

Technologies), the Agilent 6230 LC/MSD TOF system (Agilent Technologies), an 

Agilent1100 series binary HPLC pump, and the G1603A Agilent CE-MS adapter- and 

G1607A Agilent CE-ESI-MS sprayer kit.54,55 For anionic metabolite analysis, the original 

Agilent stainless ESI needle was replaced with the Agilent G7100–60041 platinum ESI 

needle. System control and data acquisition were performed by Agilent MassHunter 

Workstation, and data analysis was done by Keio MasterHands software. For cationic 

metabolite analysis, separations were carried out in a fused silica capillary (50 μm i.d. × 

100 cm total length) filled with 1 M formic acid as the electrolyte. Approximately 5 nL of 

sample solution were injected at 50 mbar for 5 s and 30 kV of voltage was applied. The 

capillary temperature was maintained at 20°C and the sample tray was cooled below 5°C. 

Methanol-water (50% v/v) containing 0.01 μM Hexakis(2,2-difluoroethoxy)phosphazene 

was delivered as the sheath liquid at 10 μL/min. Electrospray ionization (ESI)-time-of-flight 

mass spectrometry (TOFMS) was conducted in the positive ion mode and the capillary 

voltage was set at 4,000V. A flow rate of heated dry nitrogen gas (heater temperature 

300°C) was maintained at 7 psig. In TOFMS, the fragmentor-, skimmer-, and Oct RFV 

voltage was set at 75 V, 50 V, and 500V, respectively. Automatic recalibration of each 

acquired spectrum was performed using reference masses of reference standards. The 
13C isotopic ion of a protonated methanol dimer ([2MeOH + H]+, m/z 66.0631) and 

Hexakis(2,2-difluoroethoxy)phosphazene ([M + H]+, m/z 622.0290) provided the lock mass 

for exact mass measurements. For anionic metabolite analysis, a commercially available 

COSMO(+) (chemically coated with cationic polymer) capillary (50 μm i.d. × 105 cm total 

length) (Nacalai Tesque, Kyoto, Japan) was used with a 50 mM ammonium acetate solution 

(pH 8.5) as the electrolyte. Sample solution (30 nL) was injected at 50 mbar for 30 s 

and –30 kV of voltage was applied. Ammonium acetate (5 mM) in 50% methanol-water 

(v/v) containing 0.01 μM Hexakis(2,2-difluoroethoxy)phosphazene was delivered as the 

sheath liquid at 10 μL/min. ESI-TOFMS was conducted in the negative ion mode; the 
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capillary voltage was set at 3,500 V. For TOFMS, the fragmentor-, skimmer-, and Oct 

RFV voltage was set at 100 V, 50 V, and 500 V, respectively. Automatic recalibration of 

each acquired spectrum was performed using reference masses of reference standards, i.e., 
13C isotopic ion of deprotonated acetic acid dimer ([2CH3COOH-H]–, m/z 120.0384), and 

Hexakis + deprotonated acetic acid (m/z 680.03554) provided the lock mass for exact mass 

measurements.

Glutamine/glutamate assay and ATP assay—To determine the glutamine and 

glutamate level in cells, we used Glutamine/Glutamate-Glo assay kit (Promega). Extracts 

from 20,000 cells were used for each wells. For ATP assay, we used CellTiter-Glo 2.0 

cell viability assay kit (Promega). 10,000 cells were seeded onto white 96-well plate and 

equilibrated at room temperature for 30 min 100 μL of detection reagent were added and 

incubated for 10 min. Luciferase signals from both assays were measured by Synergy LX 

multi-mode microplate reader (BioTek).

Cell cycle and apoptosis assay—Cell cycle was measured with Click-iT EdU Flow 

Cytometry Assay Kit (ThermoFisher). Cells were treated with 10 μM EdU containing 

medium for 2 h and fixed with fixative buffer in the kit. Incorporated EdU was labelled with 

Alexa647-conjugaed azide. Stained cells were counter stained with 7AAD. For Apoptosis 

assay, cells were washed with 1× annexin V binding buffer (abcam), and then incubated 

with Annexin V-APC containing buffer at room temperature for 10 min. Cells were washed 

with 1× annexin V binding buffer and stained with 7AAD. Stained cells were analyzed with 

CytoFLEX flow cytometer (Beckman Coulter).

DRB-release assay—Cells were treated with 100 μM DRB containing medium for 3.5 

h, washed with PBS twice, and then cultured in the normal medium for a given period. 

The samples at 0 min after DRB release were washed with 100 μM DRB containing 

PBS twice to prevent the unintentional RNAP2 re-activation during the washing period. 

The purification of total RNA and cDNA synthesis were performed as described above. 

Pre-mRNA production from released RNAP2 was quantified with SYBR Green Real-time 

PCR with the specific primer for 1st intron of COX15 locus (Table S2) using CFX96 

Real-Time PCR detection system (Bio-rad). Pre-mRNA expression levels were normalized 

with the background expression level in the samples at 0 min after DRB release.

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars in all of the data represent a standard deviation. For statistical comparison, we 

performed a Student’s t-test or one-way ANOVA followed by Tukey’s test. Simple linear 

regression was used to compare the relationship between two quantitative values in Figures 

4C and 4D, 5D, S4D and S4E. We identified 1921 H2H pairs that have overlapped promoter 

(1 kb up from TSS) from the hg19 reference sequence encoding 14433 and 13828 TSS 

regions from plus and minus strand, respectively (Figure 5B). The enrichment of H2H 

locus in DR group were evaluated with Fisher’s exact test. To normalize the difference on 

population size among Refseq, NR and DR, we randomly and repeatedly (5 times) picked 

up 123 regions from Refseq and NR by Select random lines, and then average numbers 

were used. Data with statistical significance (*p < 0.05, **p < 0.01) or no significance (ns; 
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p > 0.05) are shown in figures. Statistical analyses were performed using Prism 9 software 

(GraphPad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• H3K4 methyltransferase SETD1A regulates heme biosynthesis pathway 

genes

• SETD1A is required for mitochondrial respiration in acute myeloid leukemia 

cells

• Loss of SETD1A increases Ser5P RNA polymerase II at the transcription start 

sites

• A non-enzymatic domain of SETD1A modulates transcriptional pause release
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Figure 1. FKBPF36V-tagged SETD1A degradation by dTAG-13 induces apoptosis in leukemia 
cell lines
(A) FKBP12F36V-HA-SETD1A (FKBP-SETD1A) or SETD1A-FKBP12F36V-HA 

(SETD1A-FKBP) fusions were expressed in Setd1aΔ/Δ;CreER MLL-AF9 leukemia cells and 

treated with 500 nM dTAG-13 for 6 h. FKBP-tagged SETD1A protein levels were quantified 

with an anti-HA antibody.

(B) FKBP-SETD1A was expressed in MOLM-13 cell line, and endogenous SETD1A was 

deleted by CRISPR-Cas9. Cells were treated with dTAG-13 for 6 h, and protein levels were 

quantified.

(C) MOLM-13 cells and FKBP-SETD1A-expressing/endogenous SETD1A-deleted 

MOLM-13 (FKBP-SETD1A) cells were treated with different doses of dTAG-13 for 6 days.

(D) FKBP-SETD1A cells were treated with dTAG-13 for indicated times, and proteins were 

quantified by western blot analysis.
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(E and F) Cell cycling of FKBP-SETD1A cells was measured at 24 or 48 h post-dTAG-13 

treatment. EdU-incorporated cell frequency was measured by flow cytometer (E). Ratio of 

each cell-cycle stage is shown (F).

(G) Annexin V+ DAPI− population in DMSO- or dTAG-13-treated FKBP-SETD1A cells 

was analyzed at 24 h intervals after treatment. Representative data from 3 independent 

experiments with 3 biological replicates are shown.

(H) FKBP-SETD1A was expressed in the MV4–11 cell line, and endogenous SETD1A was 

deleted by CRISPR-Cas9. Cells were treated with dTAG-13 for 24 h, and protein levels were 

quantified.

(I) FKBP-SETD1A-expressing MV4–11 cells were cultured and counted every 3 days 

following dTAG-13 treatment. Representative data from 2 independent experiments with 

3 biological replicates are shown. Data are represented as mean ± SD.

See also Figure S1.
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Figure 2. SETD1A degradation immediately decreases the expression of heme biosynthesis genes
(A) Chromatin distribution of endogenous SETD1A or exogenous HA-tagged FKBP-

SETD1A was analyzed from MOLM-13 cells or FKBP-SETD1A cells, respectively. 

Genome browser view at human chromosome 10 (chr10) is shown (top). The distribution of 

overlapped peaks around the TSS was analyzed with GREAT tool (bottom).

(B) The overlap between endogenous SETD1A ChIP-seq peaks and exogenous FKBP-

SETD1A ChIP-seq peaks is shown. The overlapped region is labeled as SETD1A ChIP 

peaks, and 11,013 genes were annotated by GREAT tool.

(C) The overlap among SETD1A ChIP-annotated genes and the downregulated genes (log2 

fold change < −0.5, adjusted p value < 0.05) at 1 and 4 days post-dTAG-13 treatment in 

FKBP-SETD1A cells was analyzed. 123 commonly downregulated (DR) targets and 10,734 

non-regulated (NR) targets of SETD1A were identified.
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(D) GO analysis of DR genes was performed, and the biological network Gene Ontology 

map was created by Cytoscape. Heme biosynthetic process is high-lighted, and associated 

genes are shown in the box.

(E) Motifs within the SETD1A peaks in DR genes were analyzed by Trawler. Position 

weight matrices (PWM), Z scores of discovered motifs, and the number of motifs in 

representative DR TSSs are shown.

(F) Association of SETD1A peak score and log2 fold change (log2FC) from RNA-seq at 

1 day post-dTAG-13 treatment is shown. Heme biosynthesis genes (COX15, HMBS, and 

UROS) are shown in red dots.

(G) MOLM-13 cells and FKBP-SETD1A cells were treated with DMSO or dTAG-13 for 24 

h, and RNA levels of heme biosynthesis genes were quantified by qRT-PCR.

(H) Time course semi-quantification analysis for HMBS and COX15 expression after 

SETD1A degradation. RNA was extracted at the indicated time points from FKBP-SETD1A 

cells treated with dTAG-13. Two independent experiments with 3 biological replicates are 

performed. Data are represented as mean ± SD.

See also Figure S2.
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Figure 3. Genes of the heme biosynthesis pathway are essential for the mitochondrial respiration 
and glutamine metabolism in leukemia cells
(A) sgRNAs for SETD1A target candidates were transfected into iCas9-expressing 

MOLM-13 leukemia cells. Four independent sgRNAs against each candidate were tested. 

For each sgRNA, data are shown from 0 to 18 days, left to right. Representative data from 2 

independent experiments with 3 biological replicates are shown.

(B) Mitochondrial proteomics were performed with purified mitochondria from dTAG-13-

treated FKBP-SETD1A cells at 24 h. GO term analysis with identified proteins were shown 

on the top. Reduced proteins (log2FC < −1) are shown in black dots. COX15 is shown as a 

red dot.

(C) OCR in COX15- or HMBS-knockout cells were evaluated by flux analyzer at 7 days 

post-doxycycline (dox) treatment. Two independent experiments with 5 biological replicates 

are performed.
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(D) OCR in MOLM-13 and FKBP-SETD1A cells were evaluated by flux analyzer at 72 

h post-dTAG-13 treatment. Two independent experiments with 5 biological replicates are 

performed.

(E) Metabolomics was performed at 24 and 48 h post-dTAG-13 treatment in FKBP-

SETD1A cells. Concentrations of glutamine per cell are shown. Samples from 3 independent 

experiments are analyzed.

(F) Intracellular glutamine levels were measured by glutamine (Gln)-Glu Glo assay at 48 h 

post-dTAG-13 treatment in FKBP-SETD1A cells. Representative data from 2 independent 

experiments with 3 biological replicates are shown.

(G) Schematic of Gln metabolism and heme biosynthesis pathway are shown.

(H) Intracellular Gln levels were measured by Gln-Glu Glo assay at 7 days post-dox 

treatment in COX15- or HMBS-knockout cells. Relative Gln levels against empty sgRNA-

expressing control are shown. Data are represented as mean ± SD.

See also Figure S3.
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Figure 4. SETD1A degradation induces hyper-phosphorylation of RNAPII Ser5
(A) Average ChIP-seq signals of HA-SETD1A, H3K4me1/3, H3K27Ac, H3K79me2, 

ATAC, Tyr1P, Ser7P, RNAPII, H3K36me3, Ser5P, and Ser2P along DR genes and flanking 

regions from DMSO-(black) or dTAG-13-treated (red) cells are shown.

(B) Average ChIP-seq signals of RNAPII, H3K36me3, Ser5P, and Ser2P along NR genes 

and flanking regions from DMSO-(black) or dTAG-13-treated (blue) cells are shown.

(C and D) Correlation of ChIP-seq signal intensities between HA-SETD1A at the TSS 

in DMSO-treated cells and Ser5P at the TSS (C) or H3K36me3 at the gene body (D) in 

DMSO- or dTAG-13-treated cells are shown. Correlation coefficient (r) and p values of 

Spearman correlation in DMSO- or dTAG-13-treated cells are shown. The simple linear 

regression equations and the difference between two groups were also calculated.
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(E) Log2FC of normalized ChIP-seq signals of each RNAPII phosphorylation (Tyr1P, Ser2P, 

Ser5P, and Ser7P) by total RNAPII at the TSS −1 kb of NR or DR genes in DMSO- or 

dTAG-13-treated samples are shown.

(F) ChIP-seq signals of each RNAPII phosphorylation normalized to total RNAPII along DR 

genes and flanking regions from DMSO-(black) or dTAG-13-treated (red) cells are shown.

(G and H) Average ChIP-seq signals of Ser5P, total RNAPII, and the ratio of Ser5P/RNAPII 

at TSS ±1 kb of DR (H) or NR (I) genes in 1 h dTAG-13-treated cells are shown.

See also Figure S4.
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Figure 5. SETD1A degradation causes a pause release defect in H2H genes
(A) Nascent RNA was enriched by EU labeling and quantified by RNA-seq. One and 24 

h DMSO- or dTAG-13-treated cells were additionally labeled with EU for 0.5 h (total 1.5 

and 24.5 h dTAG-13 treatment). Violin plot for the log2FC between DMSO- and dTAG-13-

treated groups in NR and DR genes is shown.

(B) H2H loci in Refseq, NR or DR genes are identified and their percentages in each gene 

list are shown. We identified 1,921 H2H loci from RefSeq by measuring the overlap of the 

1 kb upstream region from the TSS. 53 and 1,421 H2H loci were annotated from 123 DR 

genes and 11,013 NR genes, respectively. By using the randomly selected 123 regions from 

Refseq and NR genes, we normalized the population size and performed Fisher’s exact test.

(C and D) Log2FC values of RNA-seq from DR genes and their H2H pair genes at 53 DR 

H2H loci in DMSO- or dTAG-13-treated cells are shown in a heatmap for the expression 
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level (C) or a scatter plot for the relationship (D). The Spearman correlation coefficient and 

p value between DR H2H pairs is shown in (D).

(E) The Pearson correlation coefficients of top 100 SETD1A co-dependent genes from 

DepMap database are shown. PAF1 and SPT5 are positively correlated.

(F) Average ChIP-seq signal of PAF1, SPT5, and NELFe along DR (top panels) or NR 

(bottom panels) genes and flanking regions from DMSO-(black) or dTAG-13-treated (red or 

blue) FKBP-SETD1A cells at 24 h post-treatment are shown.

(G–I) The ChIP-seq intensities (RPM) of NELFe (G) at the TSS ±1kb and PAF1 (H) and 

SPT5 (I) at the TES ±1 kb of DR genes in DMSO- or dTAG-13-treated FKBP-SETD1A 

cells at 24 h post-treatment are shown.

(J) NELFe/PAF1 ratio at indicated gene loci in DMSO- or dTAG-13-treated cells at 24 h 

post-treatment are evaluated by ChIP-qPCR. Each ratio was calculated from the percentage 

of input of individual factors (see Figures S5F–S5H). Data are represented as mean ± SD.

See also Figure S5.
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Figure 6. The non-enzymatic role of SETD1A via cyclin K is essential for the heme biosynthesis 
pathway and mitochondrial respiration in leukemia cells
(A) Schematic model of SETD1A-dependent Ser5P regulation. FLOS, NSET (N), and 

SET (S) domains on SETD1A and their binding partners are shown. WDR82 binds Ser5P 

phosphatase SSU72, and cyclin K binds Ser5P kinases. The direct regulation of Ser5P via 

the SETD1A-cyclin K axis is unclear.

(B) sgRNAs for WDR82 and SSU72 were transfected into iCas9-expressing MOLM-13 

leukemia cells. Representative data from 2 independent experiments with 3 biological 

replicates are shown.

(C) qRT-PCR analysis of COX15 in the indicated sgRNA-expressing leukemia cells was 

performed at 4 days post-dox. Data from 3 independent experiments with 3 biological 

replicates are shown.

(D) Human SETD1A deletion mutant-expressing FKBP-SETD1A cells were treated with 

DMSO or dTAG-13, and cell counts were performed at 6 days post-treatment.
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(E)COX15 transcriptional level in SETD1A deletion mutant expressing FKBP-SETD1A 

cells was monitored by qRT-PCR at 24 h post-dTAG-13 treatment.

(F) Relative Gln levels in dTAG-13-treated, SETD1A-rescued FKBP-SETD1A cells were 

analyzed at 24 h post-dTAG-13 treatment.

(G) H3K36me3 levels at DR gene loci in SETD1A deletion mutant-expressing FKBP-

SETD1A cells was quantified by ChIP-seq.

(H) Average ChIP-seq signals of H3K36me3 level at DR and NR gene loci in cyclin K 

(CCNK)-knockout cells were evaluated at 4 days post-dox treatment

(I) OCR in cyclin K/CDK9/12/13-knockout cells was evaluated by flux analyzer at 3 

days post-dox treatment. Three to 4 independent sgRNAs were used for each molecule. 

Representative data from 2 independent experiments with 5 biological replicates are shown.

(J) ChIP was performed with Ser5P antibody in cyclin K-knockout cells, and 

immunoprecipitated DNA was quantified by qPCR with specific primers for indicated target 

loci.

(K) ChIP was performed with Ser5P antibody in dTAG-13/CR8/THZ1-treated FKBP-

SETD1A cells at 24 h post-treatment, and immunoprecipitated DNA was quantified by 

qPCR with specific primers for COX15 locus. Data from 3 biological replicates are shown.

(L) DRB-release assay was performed in dTAG-13-or CR8-treated FKBP-SETD1A cells at 

24 h post-treatment. Representative data from 2 independent experiments with 5 biological 

replicates are shown. Data are represented as mean ± SD.

See also Figure S6.
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Figure 7. A model for the mechanism by which the non-enzymatic role of SETD1A promotes the 
transcriptional elongation and heme biosynthesis
Transcriptional pause release is an important effector of non-enzymatic SETD1A function 

through cyclin K. In proliferating cells, SETD1A is required as a molecular switch to 

convert cyclin K functions from transcriptional initiation to productive elongation (top). The 

SETD1A-cyclin K complex with CDKs (CDK9/12/13) may promote substitution of NELF 

to PAF1 in the RNAPII complex, activation of Ser5P phosphatase (PTase), and elongation 

via Ser2 phosphorylation. The disruption of SETD1A stabilizes the Ser5 phosphorylated 

RNAPII and NELF complex, leading to pausing of transcriptional elongation at the TSS of 

genes associated with DNA repair and heme biosynthesis pathways at H2H loci (bottom). 

The elongation of genes on the opposite strand of the H2H pair or NR genes could be 

maintained by SETD1A-free elongation regulators. The genomic structure or transcription 

of the paired gene may also contribute to pausing stabilization of SETD1A downstream 

genes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-HA Cell Signaling Cat#3724, RRID: AB_1549585

Rabbit monoclonal anti-SETD1A Cell Signaling Cat#61702, RRID: AB_2799614

Rabbit monoclonal anti-GAPDH Cell Signaling Cat#2118, RRID: AB_561053

Rabbit monoclonal anti-H3K4me1 Cell Signaling Cat#5326, RRID: AB_10695148

Rabbit monoclonal anti-H3K4me3 Active Motif Cat#39159, RRID: AB_2615077

Rabbit monoclonal anti-H3K27Ac Active Motif Cat#91193, RRID: AB_2793797

Rabbit monoclonal anti-H3K36me3 Abcam Cat#9050, RRID: AB_306966

Rabbit monoclonal anti-H3K79me2 Abcam Cat#3594, RRID: AB_303937

Rat monoclonal anti-phospho-Rpb1 CTD (Tyr1) Active Motif Cat#61383, RRID: AB_2793613 Rabbit 
monoclonal anti-phospho-Rpb1 CTD (Ser2)

Rabbit polyclonal anti-PAF1 Abcam Cat#ab20662, RRID: AB_2159769

Rat monoclonal anti-SPT5 Active Motif Cat#65689

Rabbit monoclonal anti-NELFe Abcam Cat#ab170104, RRID: AB_2827280

Rat monoclonal anti-phospho-Rpb1 CTD (Tyr1) Active Motif Cat#61383, RRID: AB_2793613 Rabbit 
monoclonal anti-phospho-Rpb1 CTD (Ser2)

Rabbit polyclonal anti-PAF1 Abcam Cat#ab20662, RRID: AB_2159769

Rat monoclonal anti-SPT5 Active Motif Cat#65689

Rabbit monoclonal anti-NELFe Abcam Cat#ab170104, RRID: AB_2827280

Chemicals, peptides, and recombinant proteins

dTAG-13 Tocris Bioscience Cat#6605

Doxycycline Merck Cat#D9891

Deposited Data

Raw and analyzed data of RNA-seq and ChIP-seq This paper GEO: GSE189894

Raw data of Mass spectrometry analysis This paper ProteomeXchange:

Analyzed data of metabolome analysis This paper Metabolomics Workbench: PR001489

Experimental models: Cell lines

Human: 293T cells ATCC CRL-3216

Human: Plat-A cells Morita et al. 200043 N/A

Human: MV4–11 cells ATCC CRL-9591

Human: U937 cells ATCC CRL-1593.2

Human: K562 cells ATCC CCL-243

Human: A673 cells ATCC CRL-1598

Human: SJCRH30 (RH30) cells ATCC CRL-2061

Human: MOLM-13 cells DSMZ ACC-554

Mouse: Setd1aflox/flox;CreERT2;MLL-AF9 leukemia cells Hoshii et al. 20187 N/A

Oligonucleotides
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REAGENT or RESOURCE SOURCE IDENTIFIER

sgRNA (see Table S1) This paper N/A

PCR Primers (see Table S2) This paper N/A

Recombinant DNA

Plasmid: pLKO5.sgRNA.EFS.GFP Heckl et al. 201444 Addgene #57822

Plasmid: pLKO5.sgRNA.EFS.tRFP657 Heckl et al. 201444 Addgene #57824

Plasmid: pMD2.G Laboratory of Didier Trono Addgene #12259

Plasmid: psPAX2 Laboratory of Didier Trono Addgene #12260

Plasmid: pCMV6-hSETD1A(NM_014712)-Myc-DDK Origene Cat#RC214996

Plasmid: pMXs-3XHA-EGFP-OMP25 Chen et al. 201645 Addgene #83356

Software and algorithms

Prism 9 GraphPad software N/A

EaSeq Lerdrup et al. 201646 http://easeq.net

Analysis of RNA-seq data Basepair software https://www.basepairtech.com

HISAT2 (2.1.0) Kim et al. 201947 http://daehwankimlab.github.io/hisat2/

Cufflinks (2.2.1) Trapnell et al. 201048 http://cole-trapnell-lab.github.io/cufflinks/

Bowtie2 (2.3.3.1) Langmead and Salzberg, 
201249

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Picard (2.18.2) Broad Institute https://broadinstitute.github.io/picard/

HOMER (4.10) Heinz et al. 201050 http://homer.ucsd.edu/homer/
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