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Abstract

Cell-type specific gene expression patterns and dynamics during development or in disease 

are controlled by cis-regulatory elements (CREs) such as promoters and enhancers. Distinct 

classes of CREs can be characterized by their epigenomic features, including DNA methylation, 

chromatin accessibility, combinations of histone modifications and conformation of local 

chromatin. Tremendous progress has been made in cataloging CREs in the human genome using 

bulk transcriptomic and epigenomic methods. However, single-cell epigenomic and multi-omic 

technologies have the potential to provide deeper insight into cell type-specific gene regulatory 

programs and how they change during development, in response to environmental cues, and 

through disease pathogenesis. Here, we highlight recent advances in single-cell epigenomics 

methods and analytical tools, and discuss their readiness for human tissue profiling.

INTRODUCTION

Spatiotemporal and cell-type specific gene expression patterns are governed by DNA 

sequences known as cis-regulatory elements [G] (CREs)1–3. CREs are broadly classified 

as promoters [G] , enhancers [G] , and insulators [G] 3–5; other types of CREs have also 
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been reported in recent years, including silencer elements [G] 6–9 and tethering elements [G] 
10, but have yet to be extensively characterized. A detailed understanding of each CRE in 

the genome will help to delineate the gene regulatory programs that control development, 

cellular differentiation and adaptation of species to their environment. It is also critical 

for understanding the evolution of traits in different species and interpreting the growing 

number of non-coding risk variants that have been linked to human diseases and complex 

traits.

Efforts to annotate CREs in the human genome began shortly after the genome sequence 

was released, but it soon became clear that sequence information alone is insufficient to 

identify CREs and describe their activity in each cell type and developmental stage11,12. 

Promoters and enhancers direct spatiotemporal patterns of gene expression in a cell-type-

specific manner by interacting with combinations of sequence-specific transcription factors, 

which associate with additional transcription factors, and/or chromatin [G] remodeling 

complexes to facilitate gene transcription. However, these interactions are also regulated 

by epigenetic mechanisms, including chromatin accessibility, which can be profiled using 

methods such as DNase I-hypersensitive site sequencing (DNase-Seq)13,14 and the Assay 

for Transposase-Accessible Chromatin using sequencing (ATAC-seq)15; DNA methylation, 

which can be profiled using whole genome bisulfite sequencing (WGBS)16; and histone 

modifications [G] , which can be profiled using chromatin immunoprecipitation followed 

by sequencing (ChIP-seq)17–20. Moreover, transcriptional regulation by promoters and 

enhancers also depends on their spatial organization within the nucleus (recently reviewed 

in3). The chromatin fibers in the nucleus of eukaryotic cells are folded into topologically 

associating domains (TADs) 3,21. Insulators, which demarcate TAD boundaries and play a 

critical role in their formation, can be profiled using ChIP-seq of CTCF, an insulator binding 

protein22. Through their role in TAD formation, insulators facilitate interactions between 

enhancers and promoters within the same TAD and reduce the contacts between promoters 

and enhancers located in separate TADs. The frequency of these contacts can be used to 

deduce chromatin architecture, and can be measured using high-resolution chromosome 

conformation capture methods such as Hi-C23,24.

Several large-scale studies, including the Roadmap Epigenome Project and those conducted 

by the Encyclopedia of DNA elements (ENCODE) consortium, have profiled the 

epigenomes [G] of hundreds of tissue samples, primary cells, or cell lines to annotate 

millions of candidate CREs (cCREs)4,25–27 in the human genome. The resulting cCREs 

have been classified as promoter-like or enhancer-like elements based on co-occurrence of 

chromatin accessibility, DNA methylation and certain histone modifications (trimethylation 

of lysine 4 of histone H3 (H3K4me3) for poised or active promoters; H3K4me1 for poised, 

primed and active enhancers, or acetylation of H3K27 (H3K27ac) for active enhancers 

and promoters) or as insulator-like based on binding of (Figure 1)4,25–27. Coupled with 

chromatin interaction profiles, these cCRE catalogs provide a valuable resource to study 

gene regulation in distinct tissues and cell types in humans and other species, helping to 

establish a critical role for non-coding DNA variants in the etiology of human diseases 

and complex traits, and providing a framework to interpret such variants28. Despite this 

tremendous progress, existing cCRE catalogs of the human genome have several limitations 
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that could, at least in part, be addressed by unbiased single cell profiling. Many catalogs 

lack cell-type resolution because the datasets were generated from unsorted bulk tissue. 

Moreover, only cell types present in high numbers and with well characterized surface 

markers, such as blood cell types, are amenable to sorting and isolation in sufficient 

quantities for bulk epigenomic profiling – rare or uncharacterized cell types will escape 

profilng29 (Figure 2a). Where cell numbers are limiting in vivo, ex vivo primary cells 

or cancer cell lines have been used instead but these do not fully recapitulate regulatory 

landscapes in vivo, owing to transformation or culturing conditions30. Furthermore, the 

completeness of a catalog is hard to achieve because CREs are often active only in select 

cell types, developmental stages, or physiological states, many of which are difficult to 

investigate using bulk assays.

The development of single-cell epigenomic techniques offers a way to overcome some 

of these limitations by generating more comprehensive catalogs of CREs that enable 

the investigation of relationships between chromatin state changes at CREs and gene 

expression in specific cell types within primary tissues. These methods can overcome 

cellular heterogeneity, reveal cellular states under distinct physiological or pathological 

conditions, allow detection of unknown or rare cell types, and unravel cell-type-specific 

differences and dynamics. For example, cell-type specific profiles can help reveal whether 

a low signal detected in bulk datasets results from high signal in a limited number of cell 

types or low signal across the majority of cells in the sample (Figure 2b). When profiling 

dynamic processes during differentiation, development or disease, single cell epigenomics 

can untangle if changes in bulk profiles are due to changes in CRE activity in a cell type that 

transitions to another cell state, due to activity of this CRE in a new cell type, or simply due 

to changes in cellular composition (Figure 2c).

In this Review, we provide an overview of the general technical principles of single-cell 

profiling and discuss the current state of experimental single-cell platforms for profiling 

different epigenomic features, with a particular focus on methods for CRE annotation. 

We also discuss analytical tools for processing single-cell epigenomic datasets and 

characterizing the cell-type specific activities of CREs.

SINGLE-CELL EPIGENOMIC TECHNOLOGIES

General strategies for single-cell epigenomics.

Single-cell technologies can be generally categorized into three groups. The first group 

involves miniaturized versions of conventional bulk-cell assays, in which individual cells or 

nuclei are sorted or distributed into tubes or micro-wells, or captured in microfluidic reaction 

chambers, that each contain a unique barcode (Figure 3a). The resulting uniquely-tagged 

single-cell libraries are then combined for sequencing. As only one cell is barcoded per tube 

(or well or chamber), the throughput of this approach is limited to a few hundred to a few 

thousand, and the cost per cell is usually high. Thus, this approach is ideal for analyzing 

biological samples with a limited number of cells (such as early embryos) or profiling rare 

cell populations that can be sorted using flow cytometry.
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The second group of methods capitalizes on the rapid flow rates of droplet-based 

microfluidic platforms to achieve a higher throughput of up to ten thousand cells per library. 

In these approaches, barcoding occurs in liquid droplets that each contain a single cell (or 

nucleus) and a single bead coated with unique DNA oligos used to introduce cell-specific 

molecular barcodes. The droplets are usually resolved before library generation (Figure 

3b). The availability of commercial platforms has enabled these methods to be widely 

adopted in laboratories. The high costs of current platforms can in part be compensated by 

introducing a sample-specific barcode prior to droplet-based single-cell barcoding, which 

enables sample multiplexing and profiling of up to a hundred thousand cells (Figure 3b).

The third group of methods use single-cell combinatorial indexing (sci) to achieve a 

throughput similar to, or higher than, droplet-based methods (Figure 3c). In this approach, 

cells are distributed into microtiter plates, with each well containing a group of cells rather 

than a single cell; all cells in the same well are tagged with the same barcode. After each 

round of indexing, cells from all wells are combined and redistributed into a new set of 

microtiter plates for another round of indexing. Sequencing reads are assigned to individual 

cells based on the index combination. (Figure 3c). The probability of two cells sharing 

the same combination of indexes can be limited by ensuring the number of indexes is 

high relative to the number of profiled cells. Thus, this approach can scale extraordinarily 

well by including additional rounds of indexing or by increasing the number of indexes 

in each round and can be adapted for a variety of molecular modalities. Furthermore, it 

enables sample multiplexing by introducing a sample-specific barcode in the first indexing 

round. An advantage of the combinatorial barcoding approach compared to commercial 

droplet-based approaches is its cost effectiveness. However, the experimental workflows 

are often complex. Moreover, several reagents required for some approaches, such as Tn5 

enzymes, can be difficult to procure at cost-effectively or consistently.

All three single cell strategies have been used in recent years to develop methods for 

profiling distinct epigenomic features including DNA methylation, chromatin accessibility, 

histone modifications, and chromatin interactions. Initially developed to assess one modality 

at a time, advancements have been made to enable profiling of multiple epigenomic features 

and/or the transcriptome in parallel from the same cell (Tables 1 and 2).

An ideal single-cell assay would capture all regulatory elements that can be identified by a 

given epigenetic mark (or combination of marks) in each individual cell and enable profiling 

of thousands of cells in parallel. One general challenge of adapting bulk assays to the single 

cell level is that data are often sparse for individual cells, that is only a small fraction of the 

epigenetic feature of interest can be detected in each cell or nucleus. Moreover, data sparsity 

is a bigger problem for single cell epigenomic assays than single cell transcriptomic assays 

for two key reasons. First, whereas a cell can contain several hundred transcripts per gene, 

most cell types have only two copies of DNA for each epigenetic feature in the genome. 

Second, the human genome contains ~63,000 genes31, but millions of potential regulatory 

elements4,25,26. Together these factors lead to considerably lower library complexity (the 

number of unique reads or fragments per cell) and lower coverage (the fraction of peaks 

(or for DNA methylation, the fraction CpG dinucleotides) for each cell or nucleus than 

a corresponding bulk dataset. Data sparsity can be addressed either by increasing the 
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sensitivity of the assay or increasing the cell numbers. Progress has been made in both areas 

in recent years, with a major focus on increasing the throughput of cells assayed for each 

sample, enabled by droplet- and combinatorial barcoding-based approaches. These advances 

are particularly helpful for profiling complex tissues such as the brain. On the other hand, 

maximizing the coverage per cell is critical when total cell numbers are limited such as in 

embryonic development. Another important aspect of a single cell assay is its specificity, 

that is, its ability to deliver a high fraction of reads in regions containing the epigenetic 

feature of interest and low read numbers regions lacking the feature. A potential confounder 

for single cell assays is if more than one cell or nucleus share the same barcode or index 

combination. Rates of such doublets or barcode collision can be assessed for individual 

assays by processing a mixture of samples from different species. Finally, assays initially 

developed using cell lines, single cell suspensions of PBMCs (peripheral blood mononuclear 

cells) or individual tissues frequently require further optimization to be applied to different 

tissues and/or sample storage conditions.

Single-cell profiling of DNA methylation.

5’-methylcytosine (5mC) in the context of CpG dinucleotides is the predominant form of 

DNA methylation in the animal genome32. In mammalian cells, cytosine methylation levels 

are regulated by DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) and the TET 

family of methylcytosine dioxygenases, which have a central role in the demethylation 

process33,34. DNA methylation has long been thought to play a repressive role in gene 

expression. Accordingly, the levels of methyl-CpG at CREs are frequently inversely 

correlated to their usage and activity, leading to the use of low levels or no cytosine DNA 

methylation for identification of active or primed CREs in mammalian genomes (Figure 

1b)32. By contrast, recent studies have identified a more complex relationship between DNA 

methylation and transcription factor binding to the DNA. While cytosine methylation can 

prevent DNA binding by many transcription factors, it may also facilitate DNA binding 

by others35. Furthermore, cytosine methylation in non-CG contexts has been observed in 

embryonic stem cells and many neuronal cell types, in which it seems to mediate local 

transcriptional repression by recruiting repressor proteins such as MeCP236. Therefore, 

genome-wide, base-pair resolution mapping of cytosine methylation is not only important to 

annotate candidate CREs but also to inform about its effects on transcription factor binding 

or gene expression.

DNA methylation can be probed at single base resolution with whole genome bisulfite 

conversion and sequencing (WGBS) based methods. This approach typically requires tens of 

thousands of cells due to significant loss of DNA in the bisulfite conversion reactions and 

low efficiency of DNA amplification. In contrast with conventional WGBS, in single cell 

protocols bisulfite treatment precedes adapter tagging to limit loss37. Several strategies have 

been developed for single cell WGBS (Table 1). Plate-based single-cell WGBS approaches 

are low-throughput, but can detect up to 50% of CpG dinucleotides per cell38–40. Indeed, 

optimized library preparation strategies in recent protocols have sufficiently improved the 

mapping rates, throughput, and library complexity to enable profiling of complex tissues 

such as the mouse and human brain41,42. The high coverage per cell generated by these 

whole genome approaches enables characterization of DNA methylation states at both 
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promoters and promoter-distal CREs. However, because of the relatively high sequencing 

cost, usually only a fraction of the DNA methylome is profiled per cell or nucleus (~1.5 

million reads or ~6% CpGs covered per cell). Thus, typically DNA methylation profiles 

from 200-300 cells of the same type or lineage are aggregated to detect a complete set 

of cCRE43,44. Plate-based single-cell reduced representation bisulfite sequencing (RRBS) 

is a cost-effective approach that enables genome-wide high coverage profiling of CpG-rich 

regions, such as promoters, and modest to low coverage of regions with lower CpG density, 

such as enhancers45,46. The newest iteration expands coverage at low density regions, but 

still captures less than half of cCREs that could be detected by WGBS46. Single-cell 

combinatorial barcoding WGBS enables scalable generation of single-cell methylomes 

albeit with a sparse coverage of 0.10% to 4.5% CpGs per cell from mouse cortex47. This 

coverage is sufficient to identify cell clusters with similar methylation profiles, but will 

require large cell numbers to study individual CREs.

Of these methods, only plate-based single cell WGBS assays are sufficiently robust and 

mature to map CREs in complex tissues such as the mouse44 and human brain41,48. 

However, because of their high cost and relatively low throughput in the absence of 

automation, these assays have been slow to be broadly adapted.

Single-cell profiling of chromatin accessibility.

Inactive CREs are generally embedded in compact chromatin fibers and are inaccessible to 

transcription factors. Binding of pioneer transcription factors to nucleosomal DNA at CREs 

initiates the recruitment of nucleosome remodeling complexes, leading to displacement 

of local nucleosomes, which enables the binding of additional transcription factors to the 

CREs, assembly of transcription machinery at the promoter, and transcription of genes 

in specific cell lineages49. Displacement of nucleosomes at active CREs also renders the 

underlying DNA susceptible to digestion by endonucleases (such as DNase-I) or to double 

strand breaks generated by transposases (such as Tn5). Hence, treatment of chromatin 

with these enzymes followed by high throughput DNA sequencing, as in DNase-Seq and 

ATAC-seq, has been broadly used to probe chromatin accessibility and identify active CREs 

in specific cell or tissue types13–15 (Figure 1b). Conventional bulk chromatin accessibility 

profiling using DNase-Seq require chromatin from thousands (ATAC-seq) to millions of 

cells (DNase-seq), and thus adapting them for the low input of single cells has been a 

key challenge. Both plate-based50 and combinatorial barcoding-based single-cell DNase-seq 

protocols51 have been developed (Table 1) but have not been broadly adopted, in large 

part due to the complexity of the protocols. By contrast, the ability of Tn5 to insert 

an oligonucleotide adaptor for subsequent PCR amplification makes ATAC-seq readily 

adaptable for single-cell assays (scATAC-seq), and protocols have been developed for 

microwell52–55 or nano-well plate56, microfluidic57, droplet-based58,59 and combinatorial 

barcoding platforms60 (Table 1). Plate-based protocols are particularly helpful for profiling 

rare cell types with low absolute abundance that can be identified using a lineage tracer or 

antibodies and usually capture 104-105 unique fragments52–54,56.

Droplet-based scATAC-seq approaches produce high complexity libraries with 104-105 

unique fragments per nucleus57–59, and the commercial solution from 10x Genomics 
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achieves throughputs of up to 10,000 nuclei per sample58. Higher throughputs of up to 

50,000 nuclei per microfluidics channel can be achieved at reduced cost with dsciATAC-

seq, in which tagmentation [G] with indexed transposomes [G] is performed prior to 

encapsulation on a Bio-Rad system to tag each DNA fragment created by tagmentation 

with a sample-specific barcode to enable sample multiplexing59. SNuBar-ATAC also enables 

sample multiplexing by adding barcoded oligonucleotides to the tagmentation reaction but, 

because tagging occurs at the level of the nucleus, cell throughput is not increased61. 

However, this approach does not require customized Tn5 transposomes, which can present 

a hurdle to adoption of other approaches. Lastly, HyDrop-ATAC is an open-source, 

non-commercial, cost-effective droplet-based solution with excellent signal-to-noise ratios 

but potential obstacles to its wide adoption include the currently lower complexity than 

commercial solutions (~4k fragments/nucleus)62, the need for specially trained personnel 

and the upfront cost to build and operate a custom droplet-based platform.

Single-cell combinatorial indexing ATAC-seq (sci-ATAC-seq) can profile 103-105 individual 

cells or nuclei by implementing two or three rounds of split-and-pool barcoding60,63. 

Variants of this protocol have increased the sequencing library complexity from a few 

thousand unique reads60 to up to 43,532 unique reads/nucleus64. Further, it can be applied 

to fresh60,64, frozen63,65–67 or lightly fixed63,65,68 samples and tissues63–67,69. In sciMAP-

ATAC, tagmentation is performed on small tissue punches to link accessible chromatin 

profiles to spatial localization70, and an ultra-high-throughput version using three rounds 

of indexing was able to profile ~800,000 single nuclei from 59 human fetal tissue 

samples in only three experimental batches, with a median of 6,042 unique fragments/

nucleus63. However, the enrichment of reads at transcriptional start sites, a measure of 

the signal-to-noise ratio, was lower using three-round versus two-round barcoding63. One 

study showed that at a median depth of 5,000 fragments/cell and about 1,000 cells 

are sufficient to comprehensively detect the open chromatin regions in a neuronal cell 

type43. The maximum fragment yield of ATAC-seq is theoretically limited to 50% of 

all tagmentation events because only DNA fragments with a forward and reverse primer 

sequence after tagmentation can be PCR amplified. Thus, approaches have been developed 

to overcome this limitation71,72. One of these methods, symmetrical strand sci-ATAC (s3-

ATAC), dramatically increased the library complexity to ~100,000 unique reads/nucleus 

from mouse brain and human cortex72.

Single cell chromatin accessibility profiling has been widely adopted and it is exciting to see 

both new iterations of combinatorial indexing workflows that offer exceptional throughput 

and library complexity and recent approaches that combine combinatorial barcoding with 

droplet platforms. These methods will contribute to large-scale mapping efforts, such as 

the Human Cell Atlas73, by facilitating cost-effective profiling of millions of cells across 

hundreds of samples in parallel to reveal CREs that are accessible (and presumably active) 

only in very rare cell types and to unravel the dynamics of cCREs during development 

or disease. These techniques would therefore expand upon current single-cell chromatin 

accessibility atlases in both breadth and depth.
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Single-cell profiling of histone modifications and transcription factor binding.

Covalent modifications of histone proteins, including H2A, H2B, H3 and H4 and their 

variants, are integral to transcriptional regulation5,74. Histone modification profiling in 

cultured cells or tissues has shown that promoters are associated with H3K4me3, whereas 

enhancers are associated with H3K4me175. Both classes of CREs are also associated 

with other histone modifications that can further inform about their activation state76,77. 

Consequently, genome-wide profiling of histone modifications helps to both identify 

potential CREs and characterize their activities. Genome-wide profiling of transcription 

factor binding site occupancy can also be used to identify candidate CREs including 

insulators, which are bound by CTCF and the cohesin complex3 (Figure 1b).

ChIP-seq has long been used to profile histone modification and transcription factor binding 

in bulk samples. In such procedures, antibodies that recognize specific histone modifications 

or transcription factors are used to enrich the bound chromatin fragments from nuclear 

extracts via immunoprecipitation before high throughput DNA sequencing. However, the 

efficiency of chromatin immunoprecipitation can be low, making it particularly challenging 

to perform ChIP-seq with individual cells. In single-cell ChIP-seq approaches, chromatin 

from individual cells is first fragmented into individual nucleosomes using MNase 

(micrococcal nuclease, which cuts the linker DNA between nucleosomes)78,79 or Tn580, 

and then indexed in droplets78,79 or wells of a microtiter plate. Indexed nucleosomes from 

different cells are pooled and used as input for chromatin immunoprecipitation. Protocols 

tend to be executed on homebuilt microfluidics devices. The complex workflow78,79 and 

modest throughput80 hamper their ability to be used for tissue profiling.

Methods based on chromatin immunocleavage (ChIC)81 offer an alternative to ChIP-seq. 

In these approaches, the enzyme used to fragment the chromatin (MNase in CUT&RUN82 

or Tn5 in CUT&Tag83) is fused to a primary antibody (specific to the modification or 

protein of interest) or to Protein A (which binds to primary antibodies); this approach 

eliminates the need for fragmentation prior to antibody incubation steps, while increasing 

sensitivity and reducing background. This experimental strategy has been adapted to single 

cells, and MNase fusion protein-based approaches have been used to profile H3K4me3 and 

H3K27me3 in a few hundred white blood cells (scChIC-seq)84 and transcription factors in 

individual mouse embryonic stem cells (uliCUT&RUN)85. A recent iteration using multiple 

rounds of indexing (iscChIC-seq) dramatically increased the throughput to >10,000 white 

blood cells per experiment, which could open the door to tissue profiling86.

Approaches based on ProteinA-Tn5 (pA-Tn5) fusion proteins have been used to profile 

histone modifications in intact unfixed cells83,87,88. Unlike ChIP-seq or CUT&RUN, no 

multi-step library preparation is required83,87,88, which reduces cell loss. However, the 

need to minimize pA-Tn5 bias towards open chromatin using high-salt conditions poses a 

significant challenge for profiling transcription factor binding, which tends to be transient. 

Libraries generated using pA-Tn5 for histone modifications showed improved peak calling 

at lower sequencing depth, with a higher fraction of reads in peaks, compared to both 

CUT&RUN and ChIP-seq83. In protocols adapted to single cells, pA-Tn5 tethering and 

tagmentation is performed in bulk before indexing is performed on individual cells in 

nanowells (scCUT&Tag)83,89 or on the widely available 10x Genomics droplet-based 
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microfluidics system (10x scCUT&Tag)89,90. When 10x scCUT&Tag was applied to 

mouse brain using antibodies targeting four histone modifications (H3K4me3, H3K27me3, 

H3K36me3, H3K27ac) and two DNA binding proteins90, the data were sufficient to cluster 

and annotate major cell types, despite the low library complexity (98 – 453 median unique 

fragments/cell for histone modifications). In another study, the library complexity for 

profiling H3K27me3 in two glioblastoma samples was higher (3,643 and 16,232 median 

reads/cell), but the number of profiled cells per dataset was relatively low for a droplet-based 

system (1,311 and 1,168 cells)89. In pA-Tn5 based protocols following a combinatorial 

indexing strategy, CoBatch88 and iACT-seq87, barcoding is performed at the PCR step and 

with indexed transposons loaded onto pA-Tn5. In CoBatch antibodies are first incubated 

with permeabilized cells, whereas in iACT-seq antibodies are first incubated with indexed 

Tn5. CoBatch yielded ~4-fold more complex libraries than iACT-seq87,88 and similar or 

higher reads per cell than published 10x scCUT&Tag. To profile the cis-regulatory diversity 

of endothelial cell lineages in E16.5 mouse embryos, CoBatch was performed for H3K27ac 

and H3K36me3, yielding libraries with an average of ~7,000-10,000 reads/cell88. Another 

promising combinatorial indexing-based alternative, scTIP-seq, uses tagmentation with T7 

promoter sequences and in vitro transcription prior to index PCR to achieve several fold 

higher reads per cell in two cell lines for both histone modifications and DNA binding 

proteins compared to other pA-Tn5 based approaches91.

It is exciting to see the breadth of new approaches for profiling histone modifications 

and transcription factor binding in single cells. Although a systematic comparison between 

these methods is not yet available due to the use of different sample types and/or profiled 

modifications, 10x scCUT&Tag is poised to become widely adopted owing to the wide 

availability of the commercial 10x Genomics platform and the relative simplicity of the 

protocol. However, a number of current limitations may hamper its broader use, including 

low library complexity coupled with the low number (only a few thousand) of nuclei that 

pass quality control per dataset89,90 and the need to generate Tn5 fusion proteins in-house, 

which can lead to variability between laboratories. MNase-based protocols are currently 

the most promising approach for single-cell profiling of chromatin-bound proteins such as 

CTCF or transcription factors90,91.

Single-cell profiling of chromatin architecture.

Chromosomes in interphase nuclei are folded into domains (TADs and sub-TADs) and A/B 

compartments21, and this 3D-chromatin organization [G] enables distal enhancers to be 

positioned close to their target gene promoters in space. TADs are formed during early 

embryogenesis and are stably maintained through development. In dividing cells, TADs 

disappear during mitosis and are re-established in early G192,93. It is now generally agreed 

that TADs are the result of dynamic loop-extrusion mediated by the cohesin complex, which 

is stalled at paired convergent CTCF binding sites on the chromatin fiber94. TADs are 

thought to contribute to developmentally regulated gene expression by promoting contacts 

between promoters and enhancers within the same TADs while reducing the chance of 

interactions between promoters and enhancers located in different TADs 3 (Figure 1b). Thus, 

understanding chromatin architecture can help identify target genes of CREs.
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Several methods have been developed to capture higher order chromatin structures using 

one-cell-at-a-time or combinatorial barcoding approaches (Table 1). The most widely-used 

methods are adaptations of the conventional Hi-C protocol, which utilizes proximity ligation 

of DNA regions to profile chromatin architecture24. Chromatin in crosslinked nuclei is 

fragmented and biotinylated, and the biotinylated fragments are then ligated in situe, pulled 

down with streptavidin and finally amplified for sequencing24. This long multiday approach 

typically requires hundreds of thousands of cells because of DNA loss and the relatively 

low efficiency of DNA amplification. In the initial single-cell Hi-C protocol, only 10 T-

helper cells were assayed with 11,159–30,671 contacts (proximity ligated DNA fragments) 

detected in each cell95. This low number of contacts and cells revealed megabase-scale 

chromatin domains but not chromatin loops95, and uncovered a high degree of variability 

in chromatin architecture between individual cells95,96. By contrast, a protocol that omitted 

biotin-related steps achieved a median of 0.34 million long-range chromatin contacts in 

individual oocytes97 and this increase in detected contacts enabled analysis of TADs and 

chromatin loops97. Dip-C achieves even higher library complexity using a transposon-based 

whole-genome amplification method, generating a median of up to 1.04 million contacts/

cell in a lymphoblastoid cell line and 0.84 million in peripheral blood mononuclear 

cells (PBMCs)98. A streamlined protocol version enabled profiling of 3,646 cells in the 

developing mouse cortex and hippocampus to reveal 13 cell clusters based on 3D genome 

structure (annotated with cell type labels after integration with transcriptomes) and detected 

3D reconfiguration after birth99. Lastly, Tn5-based library preparation after cell-sorting and 

automation of several steps enabled profiling of chromatin interaction in 1,992 mouse 

embryonic stem (mES) cells with 0.13 million long range contacts per cell100. Using 

combinatorial barcoding, thousands of nuclei can be profiled per experiment, but these 

data are several magnitudes sparser than other single-cell Hi-C methods101,102. Using a Tn5-

based library strategy increased the contact numbers per cell by ~14.8 fold (~0.1 million 

contacts)72. Very recently, single-cell SPRITE (split-pool recognition of interactions by tag 

extension) was introduced to map compartments, TADs and interchromosomal interactions 

in individual mouse embryonic stem cells103. This method uses several rounds of split-pool 

barcoding to tag fragmented DNA with a nucleus-or cell-specific barcode followed by a 

spatial barcode for the DNA fragments that were in close proximity; it detects several fold 

more pairwise contacts (and multiway contacts) at a lower sequencing depth than single-cell 

HiC103. It will be interesting to see how scSPRITE will perform on tissue samples.

To date, due to high cost, limited throughput, and data sparsity of single-cell Hi-C, 

chromatin conformation profiling in single cells has not been widely adopted for tissue 

profiling. In addition, analysis of single-cell Hi-C data is hampered by the limited 

knowledge of cell type-specific contacts that could serve as markers for cell type annotation 

comparable to marker gene expression or accessible chromatin at marker gene loci.

Single-cell multi-omics assays.

The wide array of single-cell epigenomic technologies for molecular profiling of one 

modality at a time have provided insight into gene regulation in diverse samples and cell 

types. However, single modality datasets can only provide a partial picture of the complex 

interplay between different epigenetic modifications and gene expression. Assays that 
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profile multiple modalities from the same cell could help to improve our understanding of 

the relationships between CRE activity and gene expression or between different epigenetic 

features104 (Table 2). Multimodal assays can help resolve situations in which CRE activity 

and gene expression are not directly correlated. For example, the activity of a CRE or a set 

of CREs may be modulated without changes in gene expression, or the changes in CRE 

activity and gene expression may occur on different time scales during development or early 

disease stages. Furthermore, multiomics data could also help to map different modalities 

to a common reference such as the large single-cell transcriptomics atlases105. Thus, many 

multiomics assays are designed to detect gene expression together with epigenomic marks.

A challenge to advancing from single modality to multimodal assays is that experimental 

conditions in single modality assays are optimized for the modification of interest, and 

might not be ideal for other modalities, such as reverse transcription of RNA for RNA 

sequencing (RNA-seq), tagmentation in Tn5-based approaches, bisulfite conversion to 

profile DNA methylation, or crosslinking in HiC. The order in which experimental steps 

are performed in multimodal assays can also affect the experimental outcome. Despite these 

challenges, single cell multiomics approaches for many combinations of molecular features 

are rapidly emerging (Table 2), making use of strategies such as physically separating DNA 

and RNA components or converting distinct molecules into a unified form that can be 

profiled together. Here, we first discuss assays that profile individual epigenomic marks in 

combination with transcriptomes and/or protein abundance, followed by methods that profile 

multiple epigenomic features in an individual cell.

In early work, plate- or tube-based single cell cytosolic transcriptomes were analyzed in 

parallel with DNA methylation after physical separation of nuclei and cytoplasm. The 

methods were used to profile epigenetic and transcriptional heterogeneity in small sets 

of embryonic stem cells, sensory neurons or hepatocellular carcinoma cells38,106,107 and, 

for example, analysis of both transcriptomes and DNA methylomes for genetic lineages 

of colorectal tumor cells revealed that methylomes differ between genetic lineages but 

are relatively stable within a lineage during metastasis108. However, the required physical 

separation poses a significant challenge for application to frozen tissues that often only allow 

nuclei isolation and simultaneous profiling of DNA methylation and RNA from the same 

nucleus was just recently accomplished48.

Protocols for joint profiling of transcriptomes and accessible chromatin using ATAC-seq 

from the same cell have been developed on multiple technological platforms109–115 and a 

droplet-based version is commercially available from 10x Genomics (Chromium Single Cell 

Multiome ATAC + Gene Expression). Notably, more complex ATAC sequencing libraries 

are achieved by performing tagmentation of the chromatin prior to reverse transcription 

of mRNA109,112. Illustrating the potential of multiomic measurements to improve our 

understanding of developmental gene regulation, combined analysis of accessible chromatin 

and gene expression in mouse skin using SHARE-seq revealed that chromatin accessibility 

increased at regulatory regions prior to activation of gene expression, indicating that 

chromatin changes can prime cells for cell-type specific gene expression during lineage 

commitment112.
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Another group of multiomic assays combine pA-Tn5 based targeting of histone 

modifications83 with nuclear RNA profiling followed by barcoding using split-and-pool 
116,117 or plate-based platforms118. Although these assays measure one histone modification 

at a time, the shared transcriptomic datasets can be used for integration of data from multiple 

histone marks. Paired-Tag uses four rounds of combinatorial indexing to dramatically 

increase the number of cells that can be profiled in one experiment, up to a million cells 

per experiment 116,117. Its utility was demonstrated by analyzing five histone marks, each 

in conjunction with nuclear RNA-seq, in adult mouse frontal cortex and hippocampus. The 

combined profiles of histone modifications and RNA-seq improved clustering resolution 

compared to individual histone marks alone117.

Protein measurements have been previously combined with single-cell transcriptomics for 

analysis and/or pooling (hashing)119, but methods have recently been developed to profile 

the abundance of specific proteins and chromatin accessibility in the same cell120–123. Such 

combinations can be particularly useful for profiling immune cells with well-established 

surface proteins to achieve high resolution clustering and annotation followed by projection 

of sparse epigenomic profiles onto the cell clustering. Two groups independently combined 

protein tagging with the commercial Multiome platform (10x Genomics) to profile protein 

abundance, chromatin accessibility and gene expression in parallel120,121. Lastly, 173 

surface protein measurements and scCUT&Tag for six histone modifications were combined 

for PBMCs. Here, the protein abundances can be used as a shared reference for data 

integration (similar to the transcriptomic modality in the examples above) and inference of 

chromatin states from intersecting histone patterns’ revealed dynamic changes of repressive 

chromatin during CD8 T cell maturation124. Since the activity of CREs is regulated by 

transcription factors and RNA expression levels don’t always correlate with protein levels 

or activity, a recent study improved intranuclear protein detection to measure transcription 

factor protein levels together with chromatin accessibility and gene expression in CD4 

memory T cells125. Indeed for one of five master transcription factors, GATA3, protein 

levels but not RNA expression was correlated with motif enrichment and only cells with 

high GATA3 protein showed allelic imbalance of chromatin accessibility at a CRE that 

contains a genetic variant disrupting a GATA motif125.

Using a shared reference, such as transcriptomes or a set of protein abundances, enables 

data integration from different epigenomic layers, but profiling multiple epigenomic layers 

from the same cell might provide additional insight into their crosstalk. Indeed, both 

DNA methylation and chromatin accessibility can be assessed in the same cell using 

the GpC Methyltransferase M.CviPI which methylates GpC dinucleotides at nucleosome 

free chromatin DNA, prior to bisulfite conversion126–128. Combined with full length 

transcriptomes it enables three modalities to be captured in parallel48,129,130.

Changes in both accessible chromatin and repressive H3K9me3 chromatin domains are 

associated with diseases, including cancer, and these relationships together with genetic 

information from the underlying DNA sequence can be profiled using a combination of 

regular Tn5 and a Tn5 fused to the chromodomain of heterochromatin protein-1α (HP-1α), 

a protein that binds to H3K9me3 domains131. For even more versatile profiling of different 
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chromatin states for analysis of their interplay during gene regulation, approaches such as 

multi-CUT+Tag are emerging that analyze several histone modifications in the same cell 132.

As mentioned above, application of single-cell Hi-C in tissue profiling is in part hampered 

by the difficulty of cell clustering and annotation. To overcome this hurdle, single-

cell Methyl-HiC133 and snm3C-seq134 have been developed to simultaneously profile 

chromosome conformation and DNA methylation. DNA methylation patterns allowed 

clustering and annotation of cell types, while the aggregated chromatin contacts in each 

cell cluster revealed TADs and cell-type specific contacts between enhancers and target 

genes134. Finally, DNA methylation clusters can serve as a common reference to integrate 

snm3C-seq data with other datasets, such as joint DNA methylation, chromatin accessibility 

and transcriptomes profiles and thus enabled insight into the regulatory relationships in 63 

cell types in the human frontal cortex48.

The methods mentioned in this section are poised to improve our understanding of the 

interplay between different molecular layers and how CREs affect gene expression. As 

the majority of these methods are just emerging, further optimization to improve the 

robustness and reproducibility is necessary for them to be broadly adapted. Commercial 

droplet-platforms are now available for combined single cell ATAC-seq and RNA-seq.

SINGLE-CELL EPIGENOMIC DATA ANALYSIS

Single cell epigenomics data presents unique analytical challenges including its high 

dimensionality and sparsity, significant cell-to-cell variability, and frequent batch effects. 

Therefore, methods developed to map and characterize CREs from conventional bulk 

epigenomic assays cannot be directly used, and new analytical strategies are needed. Single-

cell epigenome data analysis can be generally broken down into three primary tasks: data 

processing and clustering; integration with other single-cell modalities; and identification 

and characterization of candidate CREs (cCREs).

Data Processing and Cell Clustering.

In data processing and clustering, raw sequence data from single-cell epigenome assays 

are translated into clusters that correspond to cell-types or lineages (Figure 4a). Initial pre-

processing of raw sequence data uses DNA barcodes to allocate reads to individual cells and 

filter out low quality cells or nuclei based on read depth or measurements of signal-to-noise 

ratios (such as transcriptional start site enrichment (TSSe)). Quality control checks of the 

resulting cells are then performed both in ‘bulk’ as well as per individual cell and depend 

on the specific type of epigenomic data being profiled. Further preprocessing then converts 

read fragments into a read count matrix of cells by features, which depending on the assay 

and analysis strategy can be genomic regions (such as peak calls, sliding windows or gene 

promoters) or sequence k-mers. The resulting matrix is transformed and, optionally, feature 

selection is used to retain only a subset of regions, for example those with strongest signal or 

highest variability.

A critical step in the analysis of single cell epigenomic data is dimension reduction, 

which creates the lower-dimensional space necessary for clustering of cells. The high 
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dimensionality and sparsity of single cell epigenomic profiles creates unique challenges 

for dimension reduction, and therefore requires different approaches than for single cell gene 

expression. A popular approach that has been implemented in numerous tools60,135,136 is 

latent semantic indexing (LSI), a technique frequently used in natural language processing 

where the sparse count matrix is transformed using term frequency-inverse document 

frequency (TF-IDF) and singular value decomposition (SVD) is then used for dimension 

reduction. Another approach137 implements spectral embedding, where the sparse count 

matrix is transformed into a cell-cell similarity matrix which is used for dimension 

reduction. Other approaches include topic modeling138, which defines a set of ‘topics’ 

describing similar features, and variational autoencoders139, which encode features using 

neural networks. After transformation of the count matrix and dimension reduction, 

clustering is then performed using methods such as K-means140, density-based spatial 

clustering with noise (DBSCAN)141, Louvain142, or Leiden algorithms143, and the clusters 

are visualized using t-distributed stochastic neighbor embedding (t-SNE)144 or Uniform 

Manifold Approximation and Projection (UMAP)145. The clusters are further processed to 

remove low-quality and doublet cells146–148 and finally annotated using the relative levels of 

the epigenetic mark at the promoter or gene body of known cell type specific marker genes.

Numerous analysis tools have been developed to perform single cell epigenome data 

processing, dimension reduction, clustering, and cluster annotation, including Signac135, 

SnapATAC137, ArchR136, EpiScanpy149, cisTopic138, chromap150, cellranger-atac58 and 

others59,139,151–154 (Table 3). Due to the wider availability of single-cell assays to profile 

accessible chromatin, most analysis tools have been developed for this modality, although 

these tools could also be co-opted for other epigenomic profiles. Given the many differences 

between these methods, the ‘optimal’ choice of method depends on the specific application, 

taking into account factors such as the technology used, the complexity of the tissue being 

profiled, the biological questions being asked, available computing resources and ease of 

use. For example, methods that use genomic windows (such as SnapATAC137) may be better 

at detecting rare cell types than methods that use ‘bulk’ peak calls (such as Signac135) 

as regions active in rare cell types will be underrepresented by ‘bulk’ peaks. Perhaps the 

biggest difference in performance between methods results from the data transformation 

and dimension reduction steps, even among methods that use the same technique. For 

example, both Signac135 and ArchR136 use LSI, but ArchR uses multiple rounds of LSI to 

iteratively identify and retain only the most variable peak calls in order to reduce noise in 

clustering. Conversely, cisTopic138, which uses topic modeling, has superior performance 

to LSI and other methods when analyzing low coverage data. cisTopic138 also performs 

clustering by cCRE in addition to by cell, which facilitates downstream analyses of cCREs 

and transcriptional regulators. SnapATAC137 uses the spectral embedding approach for data 

transformation followed by dimension reduction, which allows the recovery of clusters that 

take on more complicated manifold structures in feature space155 and performs particularly 

well at resolving closely-related cell clusters137.

One major analytical challenge moving forwards is the increasing number of samples 

and cells being profiled in single-cell epigenome studies. When processing data from the 

same modality across multiple samples or batches together, ‘horizontal’ integration can 

be performed to remove batch effects from the low-dimensional space prior to clustering 
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using tools such as Seurat156, Harmony157, MNN (mutual nearest neighbors)158 and others. 

An alternative to processing data from all cells together is to perform a related form of 

horizontal integration, whereby a reference map representative of all cell types for a tissue 

is first created and then other cells are projected onto this reference in low-dimensional 

space159. This form of horizontal integration can also be performed using data from a 

single study; for example, in SnapATAC137 and ArchR136 the cell matrix is sampled to 

identify highly informative ‘landmark’ cells and create a low-dimensional embedding that 

the remaining cells are then projected into. These methods for horizontal integration can 

reduce the computational burden associated with processing and enable more efficient 

clustering and cell type assignment of large numbers of cells.

Integration with other Single-Cell Modalities.

Single-cell epigenomic profiles can be combined with other molecular modalities, for 

example transcriptome, protein abundance, or other epigenomic data types, to increase 

the resolution of cell type and sub-type identity over that provided by the individual 

single-cell epigenomic data modality alone, and to enable downstream correlative analyses 

comparing profiles across multiple levels of ‘-omic’ data between groups of closely related 

cells. There are two primary forms of cross-modality data integration, ‘vertical’ and 

‘diagonal’, depending on whether the data is generated from the same cells or different cells, 

respectively (reviewed in ref.160). In vertical integration, data are combined from multiple 

assays generated from the same cell (Table 2). For example, in weighted nearest neighbors 

(WNN)161, vertical integration consists of pre-processing, dimension reduction, and k-

nearest neighbors for each modality individually, followed by weighting to combine data 

across modalities. Therefore, modalities with greater resolution will contribute more to the 

resulting nearest neighbor graph. The WNN graph, which is representative of all modalities, 

is then used for downstream clustering and visualization. Several additional vertical 

integration approaches have been developed, such as MOFA+162, scAI163, CiteFuse164 and 

totalVI165.

In ‘late-stage’ and ‘intermediate-stage’ diagonal integration, data from different single-cell 

assays generated from different cells are combined after the data are already processed and 

embedded or prior to embedding, respectively. For example, in Seurat integration156,161, 

late-stage diagonal integration of scATAC-seq and scRNA-seq is performed by converting 

scATAC-seq profiles into a common gene unit, using canonical correlation analysis (CCA) 

of the gene units from both modalities, and then identifying anchor cells between the 

two datasets. Using these anchors, the labels of cells from the scRNA-seq embedding are 

then transferred onto the scATAC-seq cell embedding. Gene expression profiles can be 

further imputed in scATAC-seq cells, which then enables co-embedding of both data types 

together. For intermediate-stage integration in LIGER166, scATAC-seq or other epigenomic 

data are again first converted to a gene-based unit. Gene-based matrices across modalities 

are then normalized and subject to iterative non-negative matrix factorization (iNMF), 

which produces a low-dimensional space containing all cells from which downstream 

clustering can be performed. Another method SingleCellFusion48 performs intermediate-

stage integration by converting modalities to a common unit, identifying nearest neighbors 

using highly correlated features across modalities, and imputing missing modalities 
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using the profiles of nearest neighbors in the target modality. Additional methods for 

diagonal integration of different single-cell modalities include Conos 167, SOMatic 168, and 

MATCHER 169.

Identification and characterization of candidate CREs.

The clusters are next used to define cCREs and gain biological insight into cell type-specific 

gene regulation (Figure 4b). Downstream analyses can be performed using the same 

analysis packages as used for processing and clustering, such as Signac135, ArchR136 and 

SnapATAC137, or using stand-alone tools developed for specific analyses.

In each cell type cluster defined from a single-cell epigenome assay, a typical task is to 

identify regions of the genome, or ‘peaks’, with enriched signal in the cell type. Such peaks 

are considered ‘candidate’ CREs (cCRE), as their molecular function needs to be further 

characterized. The standard for identifying cCREs consists of translating single-cell profiles 

into a ‘pseudo-bulk’ profile per cell type by aggregating reads for that cell type, and then 

applying computational methods developed for conventional bulk assays. For example, a 

peak caller such as MACS2170 can be used to identify cCREs from pseudo-bulk chromatin 

accessibility profiles. The result is a catalog of cCREs in each cell type and their strength 

of activity. Furthermore, the activity of cCREs can be compared across cell types to identify 

cCREs whose signals are stronger in a specific cell type or group of cell types relative to 

others, which can reveal sets of cCREs regulating specialized cellular processes. As with 

conventional bulk data, the pseudo-bulk profiles for each cell type cluster can be converted 

to normalized read depth signal and visualized as a track on a genome browser, such as 

UCSC171, IGV 172, or WashU Epigenome Browser173.

A key step in the analysis of single-cell epigenome assays that identify cCREs is defining 

transcriptional regulators of cCRE activity in each cell type. For example, chromVAR174 

performs sequence motif enrichment in the accessible chromatin profiles of each cell by 

determining the relative accessibility of the cell among peaks containing a given motif 

compared to the average accessibility across cells. Sequence motifs with high variability 

in enrichments across cells indicate motifs preferentially enriched in one or several cell 

types relative to others. Motif enrichments from chromVAR can also be used in integrative 

analyses with single-cell gene expression data to identify transcription factor genes whose 

expression is highly correlated with motif enrichments across cells or cell types. These 

results can reveal transcriptional regulators that act in each cell type, or that regulate specific 

sets of cCREs, as well as transcriptional regulators with enriched activity in individual cells 

which can be used to, for example, identify regulators of heterogeneous sub-populations 

within a cell type.

A major challenge in annotating the genome is determining the target genes of cCRE 

activity. Methods have been developed that leverage single-cell profiles to predict cCRE 

target genes. Single-cell co-accessibility, which measures the correlation in accessibility 

between pairs of cCREs across cells, determined using methods such as Cicero175, can help 

to link cCREs to target gene promoters. Cicero further calculates an ‘activity’ score (the 

composite accessibility of both the promoter and cCREs co-accessible with the promoter) 

for each gene, as well as cis-co-accessibility networks (CCANs) of highly correlated sites. 
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However, co-accessibility methods rely on epigenomic profiles, which are an imperfect 

proxy for gene expression. Single-cell profiles co-embedded across modalities, either from 

multiomic assays or via diagonal integration, can also be used to derive co-activity between 

modalities by linking epigenomic activity to gene expression directly using methods 

implemented in ArchR and SnapATAC136,137,148. A key limitation of co-accessibility and 

co-activity methods is that they rely on correlations which may not always reflect true cis 
regulatory effects. The target genes of cCRE activity can also be predicted using chromatin 

interactions in each cell type derived from single cell Hi-C-based assays. A recent method, 

SnapHiC176, performs chromatin loop calling in cell types by comparing normalized contact 

probabilities of genomic bins to a local background across cells for each cell type. Target 

gene prediction based on physical interactions can therefore provide orthogonal evidence 

to correlation-based methods, although the methods for single cell Hi-C have not yet been 

widely adopted.

Finally, projecting cells onto a pseudo-time trajectory is commonly performed with single 

cell RNA-seq data to study dynamic processes such as cell cycle, development, cellular 

response to external stimuli, or disease progression. Approaches developed for single cell 

RNA-seq data, such as Monocle177,178, Slingshot179 and Destiny180, have been applied to 

single cell epigenomic profiles. As with other analyses described above, many of these 

tools are implemented within analysis packages in addition to stand-alone tools137,148. 

These epigenomic trajectories can infer the dynamic activity cCREs and transcriptional 

regulators. A more recent approach, Chromatin Velocity, leverages similar concepts from 

single cell RNA-seq data analysis to further predict the rate, directionality and future 

fate of cells progressing through a dynamic process by comparing ratios of active and 

closed chromatin131. These results can then be used to identify cCREs and transcriptional 

regulators likely driving state transitions within or between cell types.

CONCLUSIONS AND FUTURE PERSPECTIVES

Single-cell epigenomics approaches promise to greatly improve our knowledge of cis-

regulatory elements in the genome by providing information on the cell-type specificity 

of each annotated element. Recent years have seen rapid development of methods to assay 

different layers of the epigenome in single cells, including DNA methylation, chromatin 

accessibility, histone modifications and chromatin interactions. Protocols for profiling some 

of these features, such as chromatin accessibility and DNA methylation, are relatively 

mature and have been broadly used for human tissue profiling. By contrast, most methods 

for profiling histone modifications or performing multiomics measurements from the same 

cell currently have not progressed far beyond the proof-of-principle stage. However, we 

expect that further optimization and cross validation will soon make these protocols 

robust, reproducible, scalable, and widely applicable. Robust and widely shared protocols 

or affordable commercial solutions will be foundational to gaining a comprehensive 

understanding of the dynamic activity of CREs across developmental or disease stages in 

every cell type in the body.

Single-cell epigenome profiles of both abundant and rare cell types across organs and 

species has improved the characterization of cCREs in these genomes. For example, human 
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datasets have revealed differential cCRE between sub-types and cellular states in major cell 

types in the brain41,44,67,181,182, blood58,183, and other tissues30,63,184–189, and suggested 

candidate transcriptional regulators responsible for the transition of cellular states during 

development185,189,191 and in pathogenesis192–194. Excitingly, the new cell-type-resolved 

catalogs of cCREs further enabled identification of disease relevant cell types and facilitated 

the interpretation of noncoding risk variants in the human genome30,181,187,195–200.

Application of single-cell epigenomics to biomedical research and precision medicine 

still faces several important hurdles. First, the vast majority of clinical biospecimens are 

embedded in paraffin after fixation (FFPE; Formalin-fixed, paraffin-embedded), a condition 

that is incompatible with most single cell epigenomics assays, which typically require 

freshly collected or flash frozen tissue samples as input. To make the best use of the 

clinical information associated with archival biospecimens, robust single-cell epigenomics 

techniques compatible with FFPE or other common storage conditions need to be developed. 

Second, current single-cell epigenomics approaches typically involve the dissociation of 

cells or nuclei and loss of tissue context information. To enable capture of epigenomic 

profiles as well as tissue context information, spatial epigenomics techniques need to 

be developed. Such techniques could complement the growing spatial transcriptomics 

technologies to delineate the role of the epigenome in homeostasis or disease pathogenesis 

in specific tissue and cell type niches. To this end, it is exciting that spatial single 

cell CUT&Tag has recently been reported201. Third, existing single-cell epigenomic 

technologies only capture a fraction of the epigenome per cell and in only a fraction of 

the input cell population. Improvements in the efficiency of capture and completeness of 

information would be highly desirable for profiling clinical samples with limited quantity 

or cell types that are very rare. Overcoming these hurdles will bring further leaps in the 

annotation of the human genome and understanding of disease mechanisms.
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GLOSSARY

Epigenome
The processes that enable stable propagation of different gene expression patterns out of 

the same genome sequence. These include methylation of DNA at cytosine bases (mC), 

chemical modification of the histone proteins, the chromatin accessibility and higher order 

chromatin structures

Chromatin
a complex of DNA and histone proteins. The basic unit of chromatin is the nucleosome

Cis-regulatory element (CRE)
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Non-coding DNA sequences that regulate transcription of genes located on the same 

chromosome. They include enhancers, promoters, insulators, silencing elements and 

tethering elements. Different classes of CREs can be identified using a combination of 

molecular markers including chromatin accessibility and epigenetic modifications

Promoter
A CRE located at the transcriptional start site of a gene

Enhancer
A CRE that can activate target gene expression from a large genomic distance, ranging 

from several kilobases to even millions of basepairs. It can be found either upstream or 

downstream from the target gene promoter

Insulator
A CRE that prevents an enhancer from activating a target gene when it is placed between the 

enhancer and gene promoter, but not placed outside. An insulator also refers to a boundary 

element that can prevent the spreading of heterochromatin into euchromatic regions

Silencing element
A CRE that can be located close or distal to the transcriptional start site of the target gene. 

Silencers are bound by repressive transcription factors to inactivate gene expression

Tethering element
A CRE that can bring together promoter and enhancers for gene activation

Histone modifications
Covalent modifications to histone proteins such as methylation, acetylation, 

phosphorylation, ubiquitylation, sumoylation that take place at lysine, serine, threonine, 

arginine and other residues. Histone modifications are catalyzed by a diverse panel of 

enzymes referred to as writers, removed by a different set of proteins known as erasers, and 

recognized by chromatin binding proteins known as readers. Activity of CREs is directly 

linked to distinct histone modifications due to the activities of writers, erasers, and readers

Tagmentation
The process by which double-stranded DNA is cleaved by the transposase Tn5, creating 

short DNA fragments that are simultaneously tagged with PCR adapters. Tagmentation 

using Tn5 preferentially occurs at accessible or open chromatin and this property is used in 

ATAC-seq and other related assays

3D chromatin organization
Folding of the chromatin fibers inside the nucleus governs the spatial proximity between 

genes and CREs. While complex and variable between cells, the chromatin organization 

exhibits certain common features including A/B compartments, topologically associating 

domains (TADs) and loops
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Key points

1. The human genome harbors millions of cis-regulatory elements (CRE) 

responsible for spatiotemporal gene expression patterns.

2. A diverse array of single cell epigenomics assays have been used to determine 

the status of DNA methylation, chromatin accessibility, histone modifications 

or chromatin architecture, genome wide in individual cells at scale.

3. A suite of analytical tools for single cell epigenomic datasets enable mapping 

and characterization of candidate CREs in the genome across divers cell types 

and developmental stages.

4. Single cell epigenomic profiling of diverse tissues are providing deeper 

insight into mammalian development, disease pathogenesis, and mechanisms 

of noncoding disease risk variants.
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Figure 1: Epigenomic marks at cis regulatory elements and their association with gene 
expression.
a Activity of cis-regulatory elements (CREs) and gene regions can be identified using 

distinct chromatin modifications. Promoters of expressed genes show high levels of 

chromatin accessibility, low DNA methylation levels and high levels of histone H3 

trimethylated at lysine 4 (H3K4me3) and acetylated at other lysine residues, such as 

H3K27ac. The histone modification H3K36me3 is found at gene bodies of expressed 

genes. Gene expression can be modulated by enhancers, distal cis-regulatory elements that 
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can be brought in close proximity to the promoter of target genes through the folding 

of chromatin. Active enhancers are characterized by high chromatin accessibility, low 

DNA methylation levels and high H3K4me1 and H3K27ac levels. Transcription factors 

bind to enhancers and promoters, and recruit chromatin remodelers and transcription 

machinery to regulate gene expression. Repressed genes or heterochromatic regions show 

high levels of DNA methylation and histone marks such as H3K9me3 and H3K27me3. 

Insulators, characterized by open chromatin and binding of CTCF, can prevent enhancer-

dependent gene activation when placed between the promoter and enhancer or the spread 

of heterochromatin to euchromatin. Pol II: RNA Polymerase II, TF: Transcription factor. b 
Schematic representation of epigenetic features associated with different classes of CREs 

viewed on a genome browser. CREs are characterized by accessible chromatin and low DNA 

methylation levels. Active promoters (Genes 1,4) have a strong signal for H3K4me3 and 

H3K27ac and active enhancers have a strong signal for H3K4me1 and H3K27ac. Poised 

promoters have a strong signal for H3K4me3 (Gene 3) and inactive promoters are devoid of 

H3K4me3 (Gene 2). Poised or primed enhancers are marked by H3K4me1. Enhancer and 

promoter contacts are constrained by TADs, which are separated by boundaries bound by 

CTCF. The DNA sequence in the peak region of the chromatin accessibility track or the 

valley of the DNA methylation track can be used to infer binding motifs of transcription 

factors. Enhancers do not always act on the closest genes (Genes 2 and 3) and are brought 

into proximity of their target genes by chromatin loops, which can increase gene expression 

(Gene 4). DNA me: DNA methylation, Enh: Enhancer, Prom: Promoter, Ins: Insulator, TAD: 

Topologically associated domain, TF: Transcription factor
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Figure 2: Single-cell epigenomic profiling enables insight into cell-type-specific CRE annotation 
and activity.
a Schematic of different ways to profile epigenomes from tissue samples. Traditionally, 

bulk assays are used that result in one average dataset for the tissue (left). Cell types 

with established surface or intracellular markers that can be identified using antibodies, 

transgenic expression or lineage tracers can be sorted prior to epigenomic profiling to enable 

insight into distinct cell types. Cell types without known epitope or validated antibody 

and unknown cell types could be missed or under-represented in this approach (middle). 

Single-cell profiling captures known and unknown cell types. By combining reads from 

individual cells, it also provides a pseudobulk dataset for each cell type (right). b Single-

cell epigenomic datasets can be used to group cells with similar profiles into clusters 

corresponding to cell types or cell states and to infer tissue composition (left). Single-cell 

epigenomic profiles can be used to deconvolute activities of CREs (1-4 and 6) in each cell 

type making up the heterogeneous sample and enable annotation of an additional CRE (5) 

only active in the rare cell type (green) that was not detected in the bulk dataset. Lower 

signal strength in bulk as compared to the maximum signal (CRE 1) can be due to full 

activity in only one cell type (CRE 2,4,6) or lower activity of the CRE in several cell 

types (CRE 3). Activity of distal and proximal CREs can also be used to predict putative 

enhancer-promoter pairs (CRE 2 and 6). Height of peaks indicates signal strength. Arc 

indicates linkage between enhancer and promoter. The bold line beneath the tracks indicates 

peak calls. c Cell type resolution is critical to studying dynamic activities of CREs in 

development and disease. Clustering analysis shows that a tissue at Stage B contains an 

additional cell type compared to Stage A and two of the cell types transitioned to a new 

state (indicated by arrows) (top). Multiple different scenarios could explain the changes seen 

in the bulk profile. An increase in signal between stages can result from an increase in the 

activity of a single CRE (Scenario 1); from activation of a CRE in a cell type already present 
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in Stage B (Scenario 2); from activity of a CRE in the Stage B-specific cell type (Scenario 

3); or a combination of these mechanisms (Scenario 4). A CRE with lower signal strength in 

bulk data can be caused by changes solely in the cellular composition, for example if a CRE 

is not active in the stage B specific cell type which leads to a lower fraction of cell types in 

which the CRE is active (Scenario 5, see ‘cluster proportion’ graph on the top right). A CRE 

with unaltered signal strength can result from changes in multiple cell types that compensate 

each other (Scenario 6). Height of peaks indicates signal strength.
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Figure 3: Overview of technologies for barcoding single cells
a In plate, tube, microfluidicsor nanowell chip-based assays, single cells are dispensed into 

individual wells or tubes or captured in reaction chambers where library preparation and 

molecular barcoding are carried out. These approaches usually have low throughput but 

can yield high coverage libraries. Plate and tube-based assays are well suited for rare cell 

types or assays that require high coverage such as DNA methylation and single-cell Hi-C. 

Throughput for plate-based assays can be increased using liquid handling robotics. IFC: 

Integrated fluidic circuit b Droplet-based assays allow ten thousand cells or nuclei to be 

profiled in parallel (left). An initial sample indexing step allows sample multiplexing prior 

to loading. If samples are indexed at the fragment level, channels can be superloaded to 

enable profiling of large numbers of cells for one sample or multiplexing of many samples. 

If a droplet contains more than one nucleus, sequencing reads can be assigned to individual 

samples or sublibraries with the initial sample index sequence.(right). Both sample and cell 

barcodes are used to assign reads to specific cells or nuclei. c Single-cell combinatorial 

indexing (sci-) or split-pool barcoding assays provide very high scalability and enables 

sample multiplexing by introducing a sample barcode in the first indexing round. After each 

indexing step nuclei are pooled and distributed to another set of plates for a total of 2 or 

more rounds. The cell barcode is composed of the combination of indexes from each round. 

With automation this approach delivers high data quality and reproducibility. RT: reverse 

transcription.
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Figure 4: General workflow for analysis of single-cell epigenomics datasets
a After preprocessing and mapping, high quality nuclei or cells are detected using quality 

control criteria such as transcriptional start site enrichment (TSSe) for scATAC-seq, fraction 

of reads in peaks (FRiP) or the number of fragments/reads per nucleus. Next, a normalized 

cell-feature matrix is generated followed by dimension reduction and visualization in 2D 

space. Datasets from different modalities can be integrated to increase cell-type resolution 

and, if processing datasets from multiple experimental batches, batch correction might 

be necessary. b The nuclei are first grouped into clusters, then cell clusters with low 

quality or representing likely doublets are removed from downstream analysis. High 

quality clusters are annotated using, for example, high chromatin accessibility or low 

DNA methylation levels at marker gene loci. c Downstream analysis is exemplified for 

chromatin accessibility datasets. Reads from all nuclei from a cluster are combined to a 
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cell-type-specific pseudobulk dataset to call peaks (triangles indicate signal pile-up and bold 

lines underneath tracks indicate peak regions) from scATAC-seq. Distal elements can be 

linked to target genes by assessing if two sites are accessible in the same cell (co-accessible 

sites are indicated by black arcs). If datasets were integrated with scRNA-seq data or 

data were generated using joint profiling of RNA and chromatin accessibility, accessibility 

of distal elements can be associated to putative target gene expression levels. To further 

characterize gene regulatory networks, cCREs are identified as peaks in each cell cluster 

followed by analysis of transcription factor motifs or footprints within the cCREs. Single-

cell epigenomics data can also be used to generate pseudotime trajectories for analysis of 

developmental or cell state transitions. Here, computational integration or joint profiling of 

RNA and chromatin from the same cell can provide insight into the crosstalk and differences 

in timing between chromatin dynamics and gene expression changes.
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Table 1:

Overview of single modality single-cell epigenomics methods.

Method Single cell principle Description

DNA methylation (5mC)

scBS-seq39 tube-based, single 
cell dispension

Individual cells are distributed, lysed and treated with bisulfite. Fragments are captured by 
several rounds of random priming. Primed fragments are amplified by index PCR.

scWGBS40 plate-based, single 
cell dispension

Individual cells are added to wells, lysed and treated with bisulfite. Single stranded bisulfite-
converted DNA is transcribed using tagged random hexamers and subsequently 3’ ends are 

also tagged. Tagged fragments are amplified by PCR to introduce sequencing adapters.

snmCseq41 and 
snmC-seq242

plate-based, single 
cell dispension

Single nuclei are sorted into plates. Bisulfite conversion is carried out prior to indexing 
by random priming and extension. Libraries are generated using an adapter, compatible 

with single-stranded, bisulfite-converted DNA. SnmC-seq2 increases data quality by using 
a different random primer and inactivation of nucleotide triphosphates after extension. 

Automation of snmC-seq2 allows processing of 3,072 (eight 384 well plates) per experiment.

scRRBS45 tube-based, single 
cell dispension

Cells are picked and transferred to a tube. DNA is digested by methylation insensitive Mspl 
to enrich for CG rich regions (for example, CpG islands) of the genome. After end repair and 
adapter ligation, DNA is bisulfite converted, PCR amplified, and size selected for sequencing.

scXRBS46 plate-based, single 
cell dispension

Cells are sorted into individual wells. DNA is digested with Mspl and ligated to an indexed 
biotinylated adapter. After ligation wells are pooled and bisulfite conversion is performed on 

the pool. The second adapter is introduced using random hexamer extension prior to PCR 
amplification. Random hexamers help to rescue degraded fragments and enable measuring of 

regions with an isolated Mspl site.

sci-MET47 split-pool (2 rounds)

Nuclei from crosslinked cells are distributed into wells and tagmentation is performed with 
indexed Tn5 without cytosines. After tagmentation nuclei are pooled, redistributed and 

bisulfite converted. After random priming and linear amplification, the second barcode is 
introduced by index PCR.

Chromatin accessibility

scDNAse-seq50 plate-based, single 
cell dispension

Individual cells are sorted, and chromatin is digested with DNase I. Circular carrier DNA is 
added before end repair and adaptor ligation to minimize loss of digested fragments. Cells are 

indexed by PCR.

iscDNase-seq51 split-pool (3 rounds)
DNase I digestion in bulk cells. Indexed P7 adaptor ligated in 96-well plates in bulk. After 

pooling and redistributing another index is introduced using PCR and finally the whole 
sample is marked by a third index introduced by PCR.

scATAC-seq52,53 plate-based, single 
cell dispension

Nuclei are isolated and tagmented in bulk. Nuclei are sorted, lysed, and released DNA 
fragments are PCR amplified using indexed primers.

scATAC-seq54,55 Strip-tubes/plates, 
single cell dispension

Individual nuclei are sorted into wells prior to tagmentation. Tagmentation is stopped with a 
Proteinase K solution. Tagmented DNA is bead purified and PCR amplified.

scATAC-seq56

nanowell (SMARTer 
ICELL8, Takara 
Bio), single cell 

dispension

Cells are dispensed into wells of a 5,184 nanowell chip prior to tagmentation. Wells 
containing one living cell are selected for tagmentation and library preparation.

scATAC-seq57 microfluidics 
chamber (Fluidigm)

Individual nuclei are tagmented and released DNA is PCR amplified in the integrated fluidic 
circuit (IFC). Amplified DNA is transferred to a 96-well plate for index PCR.

10x scATAC-seq58 droplet, 10x 
Genomics

Tagmentation without indexes. Tagmented DNA binds to barcoded beads in droplets. Initial 
amplification using linear amplification in droplets. Libraries are generated after pooling by 

PCR.

dsc/(dsci)ATAC-
seq45

(Indexing +) droplet 
(Bio-Rad)

Tagmentation with barcoded Tn5 to index at the molecular level. Tagmented nuclei are 
combined and encapsulated in droplets. Tagmented DNA binds to barcoded beads in droplets. 

The experiment can also be performed without indexing during tagmentation (dscATAC).

SNuBar-ATAC61 indexing + droplet 
(10x Genomics)

Tagmentation with unindexed Tn5. The index at the nuclei level is introduced using an 
oligonucleotide adapter during tagmentation that is complementary to the universal part of 
the transposon and contains a PCR handle and sample. Tagmented nuclei are combined and 

encapsulated in droplets.

HyDrop-ATAC62 droplet, custom Tagmentation is performed in bulk without indexes before loading onto a custom, open-
source droplet-based platform. Hydrogel beads dissolve in droplets and release indexed 
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Method Single cell principle Description

primers that anneal to DNA fragments. Initial amplification using linear amplification. 
Libraries are generated after pooling by PCR.

sciATAC-seq60 split-pool (2 rounds)

Nuclei are isolated and distributed into 96-well plates. Bulk nuclei in each well are tagmented 
using indexed Tn5. After pooling and dispensing/sorting of 15-25 nuclei-well into new plates 
a second barcode is introduced using indexed PCR primers. Custom sequencing recipe and 

primers.

snATAC-seq67 split-pool (2 rounds)

Based on the original sciATAC strategy60. Here, Tn5 is loaded with a different set of 
transposons (universal T5; indexed T7) to omit custom sequencing recipes. Liquid handling 
robotics is used for pipetting steps in 96-well plates. After tagmentation, nuclei are pooled 

and 20 nuclei/well are sorted into new plates to introduce second barcode using indexed PCR 
primers (universal i7; indexed i5). Custom sequencing primers.

sci-ATAC-seq363 split-pool (3 rounds)
Tagmentation without indexes. Barcoding is performed through ligation (two rounds) 

followed by index PCR. Additional round of indexing increases scale. Custom sequencing 
recipe and primers.

sciATAC-seq68 split-pool (2 rounds)

Based on the original sciATAC strategy60. Fixed cells are distributed to 96-well plates and 
permeabilized. Indexed Tn5 is added to the wells for tagmentation. After tagmentation, wells 
are pooled, centrifuged, resuspended and distributed across a new set of 96-well plates. Each 

well is reverse crosslinked with a proteinase K buffer prior to PCR with indexed primers.

sciMAP-ATAC70 split-pool (2 rounds) Small biopsies are added to wells as starting material for indexed tagmentation. Custom 
sequencing recipe and primers.

scTHS-seq71 split-pool (2 rounds)
In ATAC-seq only 50% of molecules have forward and reverse adapter and can be amplified 
by PCR. Here, tagmentation with T7 promoter sequence and in vitro transcription are used to 

overcome this limitation.

S3-ATAC72 split-pool (2 rounds)

In ATAC-seq only 50% of molecules have forward and reverse adapter and can be amplified 
by PCR. Here, single indexed adapter Tn5 and adapter switching are used to overcome this 
limitation. Tagmentation is performed using Tn5 with a single indexed adapter containing a 

uracil in the transposon sequence. Nuclei are pooled after tagmentation and redistributed into 
new plates. A uracil intolerant polymerase is used for gap fill in. An oligo containing a 3’ 

lock nuclei acid (LNA) is annealed to the unindexed fragment end. Fragments are extended to 
copy the oliqo sequence and are finally amplified by PCR using indexed primers.

Histone modifications and/or DNA binding proteins

scChIP-seq78 droplet, custom

Cells are encapsulated with micrococcal nuclease (MNase). These droplets are merged 
with droplets containing barcoded oligonucleotides and the adaptors are ligated to the 

nucleosomes. Indexed chromatin fragments from 100 cells are used as input for ChIP. Profiled 
modification: H3K4me3

scChIP-seq79 droplet, custom

MNase digestion is followed by single cell barcoding of nucleosomes and pull down of 
pooled nucleosomes. For barcoding, nucleosome-containing droplets are fused with droplets 

containing hydrogel beads carrying barcoded DNA adapters. Subsequently the barcoded DNA 
adapters are cleaved off the beads with UV light and ligated to the nucleosomes. Profiled 

modification: H3K27me3

itChIP-seq80 split-pool (1 round)
Fixed individual cells are sorted into 96-well plates and incubated with SDS to open 

the chromatin. The genomic DNA is fragmented with barcoded Tn5 and indexed soluble 
chromatin is used as input for ChIP-seq library preparation. Profiled modification: H3K27ac

scChIC-seq84 plate-based, single 
cell dispension

Cells are incubated with MNase-Protein A and antibody or MNase-Antibody complexes. 
After incubation, single cells are sorted and MNase is activated. Profiled modifications: 

H3K4me3, H3K27me3

uliCUT&RUN85 tube/plate-based, 
single cell dispension

Cells are sorted prior to incubation with primary antibody followed by incubation with 
MNase-Protein A. Profiled factors: SOX2/NANOG

iscChIC-seq86 split-pool (2 rounds)

Fixed cells are incubated with MNase-Protein A and antibody complexes. MNase is activated 
and cells distributed to 96-well plate where barcoded adapters are ligated. Wells are 

pooled and redistributed into new set of plates where PCR indexing is performed. Profiled 
modifications: H3K4me3, H3K27me3

scCUT&Tag83
nanowell (SMARTer 

ICELL8, Takara), 
single cell dispension

Cells are permeabilized to isolate nuclei. Nuclei are incubated with primary antibodies and 
washed several times. Nuclei are incubated with pA-Tn5 in high-salt buffer, washed and 
tagmented. After tagmentation in bulk, nuclei are dispensed on the SMARTer ICELL8 

single-cell system and cells are indexed during PCR amplification. Profiled modifications: 
H3K4me2, H3K27me3
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Method Single cell principle Description

scCUT&Tag89 droplet, 10x 
Genomics

Adaptation of CUT&Tag83. After tagmentation in bulk, nuclei suspensions are encapsulated 
into gel emulsions on a Chromium controller and libraries are prepared following the 10x 

scATAC-seq protocol. Profiled modification: H3K27me3

scCUT&Tag90 droplet, 10x 
Genomics

Adaptation of CUT&Tag83. After tagmentation in bulk, nuclei suspensions are encapsulated 
into gel emulsions on a Chromium controller and libraries are prepared following the 

10x scATAC-seq protocol. Profiled modifications/factors: H3K4me3, H3K27ac, H3K36me3, 
H3K27me3, RAD21, OLIG2

CoBATCH88 split-pool (2 rounds)

Permeabilized fixed or non-fixed cells are first incubated with antibodies. Cells are sorted into 
wells containing protein A (pA)-Tn5 with unique combinations of T5 and T7 barcodes. After 
tagmentation, cells are combined and redistributed into another set of 96-well plate for PCR 

barcoding. Profiled modification: H3K27ac

iACT-seq87 split-pool (2 rounds)

Antibodies are first incubated with barcoded protein A (pA)-Tn5. These complexes are then 
added to permeabilized cells and incubated to bind to chromatin. Cells are combined, sorted 

into a 96-well plate and tagmentation is started. After tagmentation, DNA in each well is 
purified using phenol-chloroform extraction and transferred to new tubes for PCR barcoding. 

Profiled modification: H3K4me3

sciTIP-seq91 split-pool (2 rounds

Adaptation of CUT&Tag83, but using indexed transposons with T7 promoter sequence similar 
to scTHS-seq71 to overcome the limitation that only 50% of tagmented fragments can be PCR 

amplified. Cells are tagged with primary and secondary antibodies in bulk, then distributed 
to 96-well plates for indexed pA-Tn5 binding and tagmentation. After tagmentation, cells are 
pooled and redistributed to another plate for in vitro transcription followed by index PCR in 

the same well. Profiled modification/factors: H3K27me3, H3K27ac, H3K9me3, CTCF, RNA 
Pol II

Chromatin architecture

scHi-C95 plate-based, single 
cell dispension

Crosslinking, restriction enzyme digestion, biotin fill-in and ligation are performed in bulk 
nuclei. Nuclei are selected under a microscope and libraries generated

scHi-C96 plate-based, single 
cell dispension

This protocol combines imaging and scHiC. Cells are crosslinked in bulk. Nuclei are 
extracted and sorted into wells. Nuclei are imaged, overlaid with agarose and permeabilized. 

Restriction enzyme digestion, biotin fill-in and ligation are performed in individual wells. 
Libraries are generated either by adapter ligation or tagmentation.

snHi-C97 plate-based, single 
cell dispension

Crosslinking, restriction enzyme digestion and ligation are performed in bulk or in individual 
nuclei. Biotin steps are omitted to increase fragment numbers. After ligation, whole genome 

amplification is performed prior to library preparation.

Dip-C98,99 plate-based, single 
cell dispension

Crosslinking, restriction enzyme digestion and ligation are performed in bulk. Biotin-related 
steps are omitted, and an efficient transposon based whole-genome amplification with 

multiplex end-tagging amplification is performed.

scHi-C100 plate-based, single 
cell dispension

Crosslinking, restriction enzyme digestion and ligation are performed in bulk. Nuclei are 
dispensed in a 96-well plate, tagmented with Tn5 and biotinylated fragments are bound to 

beads. Fragments are amplified from the beads with PCR using indexed primers.

sciHi-C101,102 split-pool (2 rounds)
Crosslinked nuclei are distributed into 96-well plates after restriction enzyme digestion. 
The first barcode is introduced during biotinylated adapter ligation. After pooling and 
redistribution another barcode is introduced using another round of adapter ligation.

s3-GCC72 split-pool (2 rounds)
Crosslinked nuclei are distributed into 96-well plates after restriction enzyme digestion and 

ligation. Biotin-related steps are omitted. Libraries are prepared using single indexed adapter 
Tn5 and adapter switching as in s3-ATAC-seq72.

scSPRITE103

split-pool (3 rounds 
for nuclei, 3 

rounds for chromatin 
clusters)

Crosslinking, restriction enzyme digestion is performed in bulk. Nuclei are distributed across 
a 96-well plate and fragmented DNA in each nucleus is tagged by ligation with a unique cell 
barcode through three rounds of split-pooling. A small subset of nuclei is sonicated to shear 
the chromatin. Crosslinked chromatin is bound to magnetic N-hydroxysuccinimide beads. 

Bead-bound chromatin complexes are barcoded for another three rounds to generate unique 
label for clusters in close spatial proximity. Detects multiway contacts.

scBS-seq, single-cell bisulfite sequencing; scWGBS, single-cell whole genome bisulfite sequencing, snmC-seq, single nucleus methylcytosine 
sequencing; scRRBS, single-cell reduced representation bisulfite sequencing; XRBS, single-cell extended-representation bisulfite sequencing, sci-
MET, single-cell combinatorial indexing for methylation analysis; scDNAse-seq, single-cell DNase sequencing; iscDNase-seq, indexing single-cell 
DNase sequencing; scATAC-seq, single-cell assay for transposase-accessible chromatin with high-throughput sequencing; dscATAC-seq, droplet 
single-cell assay for ATAC-seq; dsciATAC-seq, droplet-based single-cell combinatorial indexing for ATAC-seq; SNuBar-ATAC, single nucleus 
barcoding approach for ATAC-seq; HyDrop-ATAC, hydrogel-based droplet microfluidics for scATAC-seq; sciATAC-seq, single-cell combinatorial 
indexing ATAC-seq; snATAC-seq, single-nucleus ATAC-seq; sciMAP-ATAC, single-cell combinatorial indexing on microbiopsies assigned to 
positions for ATAC-seq; scTHS-seq, single-cell transposome hypersensitive sites sequencing; s3-ATAC, Drop-ChIP, Droplet-based single-cell 
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chromatin immunoprecipitation sequencing, scChIP-seq, single-cell chromatin immunoprecipitation followed by sequencing; sc-itChIP-seq, 
single-cell indexing and tagmentation-based ChIP-seq; scChIC-seq, single-cell chromatin immunocleavage sequencing; uliCUT&RUN, ultra-low 
input cleavage under targets and release using nuclease; iscChIC-seq, indexing single-cell immunocleavage sequencing; scCUT&Tag, single-cell 
cleavage under targets and tagmentation; CoBATCH, combinatorial barcoding and targeted chromatin release; iACT-seq, indexing antibody-guided 
chromatin tagmentation sequencing; scTIP-seq, single-cell targeted insertion of promoters sequencing; scHi-C, single-cell HiC; Dip-C, diploid 
chromatin conformation capture; snHi-C, single-nucleus Hi-C, single-cell combinatorial indexing Hi-C; s3-GCC, symmetrical strand single-cell 
combinatorial indexing genome conformation capture; scSPRITE, single-cell split-pool recognition of interactions by tag extension;
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Table 2:

Overview of multi-modality single-cell epigenomics methods.

Method Single cell principle Description

DNA methylation + RNA

scM&T-seq38 plate-based, single 
cell dispension

Individual cells are sorted. After lysis, polyadenylated mRNA is captured using 
biotinylated oligo dT primers and separated from the DNA using strepatavidin-coupled 
magnetic beads. Single-cell full length transcriptome libraries and single cell bisulfite 

libraries are generated.

scMT-seq106 tube-based, single cell 
dispension

Individual cells are picked and incubated in a drop of cell lysis buffer in a tube. After cell 
lysis, nuclei are transferred with a micro pipette to another tube. Single-cell full length 

transcriptome libraries for cytosolic RNA and scRRBS libraries are generated.

scTrio-seq107 and 
scTrio-seq108

tube-based, single cell 
dispension

Individual cells are mouth pipetted into tubes and lysed. After cell lysis, nuclei are 
pelleted, and the supernatant is transferred to another tube. Single-cell transcriptome 

libraries for cytosolic RNA and scRRBS libraries are generated. Copy number variation 
(CNV) detection as third modality.

Chromatin accessibility + RNA

sciCAR109 split-pool (2 rounds)

RNA is reverse transcribed with an indexed oligo(dT) primer followed by tagmentation 
with indexed Tn5. After one round of split-pooling and second strand synthesis, nuclei 
are lysed and separated for RNA and ATAC library preparation. The second index is 

introduced by PCR during library preparation.

SNARE-seq110 droplet, custom
Nuclei are tagmented using Tn5 without index. Nuclei are encapsulated in droplets and a 

splint oligonucleotide is added to link tagmented DNA to oligo(dT) barcoded beads. After 
reverse transcription, separate libraries for cDNA and tagmented DNA are generated.

SNARE-seq2115 split-pool (4 rounds) Adaptation of SNARE-seq to combinatorial indexing.

Paired-Seq111 split-pool (5 rounds)

Tagmentation precedes reverse transcription with sample specific indexes for both DNA 
and RNA. Barcodes are introduced through 3 rounds of ligation. After preamplification, 

product is split for DNA and RNA library preparation. DNA and RNA products are 
distinguished by molecule specific restriction enzyme sites.

SHARE-seq112 split-pool (3 rounds)

Fixed nuclei are first tagmented and then reverse transcribed with a biotinylated indexed 
primer. Barcodes are introduced through 3 rounds of hybridization. After reverse 

crosslinking, cDNA is bound to streptavidin beads and separated from the supernatant 
containing tagmented DNA for library preparation.

ASTAR-seq113 microfluidics chamber 
(Fluidigm)

Nuclei are first tagmented in the integrated fluidic circuit (IFC) and after quenching of the 
transposition RNA is reverse transcribed and cDNA amplified using biotinylated primers. 

Products are removed from the IFC and cDNA and tagmented DNA separated using 
streptavidin beads.

scCAT-seq114 plate-based, single 
cell dispension

Cells are lysed, and the nucleus is separated from the cytoplasm by centrifugation. 
Separate libraries for chromatin accessibility and full-length transcriptomes are generated.

Chromium Single Cell 
Multiome ATAC + 
Gene Expression

droplet, 10x 
Genomics

Nuclei are tagmented using Tn5 without index. Nuclei are encapsulated into droplets with 
beads containing indexed adapters for both tagmented DNA and RNA. After breaking of 
the emulsion, tagmented DNA and cDNA are amplified by PCR and separated for library 

construction.

SNuBar-ARC61 indexing + droplet 
(10x Genomics)

Tagmentation with Tn5. The index at the nuclei level is introduced using an 
oligonucleotide adapter during tagmentation that is complementary to the universal part 

of the transposon and contains a PCR handle, sample barcode and a polyA tail.

Histone modifications + RNA

Paired-Tag117 split-pool (4 rounds)

This assay is a combination of CUT&Tag83 and Paired-Seq111. Histone modifications are 
targeted by antibody and indexed pA-Tn5 followed by indexed reverse transcription. After 
reverse transcription, nuclei are pooled and redistributed into new plates. After two more 

rounds of indexing by ligation, nuclei are pooled, preamplified and then split for RNA 
and DNA library preparation. DNA and RNA products are distinguished by molecule 

specific restriction enzyme sites. Profiled modifications: H3K4me1, H3K4me3, H3K27ac, 
H3K9me3, H3K27me3

CoTECH116 split-pool (2 rounds)

A modification of CoBATCH56 to enable simultaneous measurement of RNA. Histone 
modifications are targeted by antibody and indexed Protein-Tn5 followed by indexed 

reverse transcription. After reverse transcription, nuclei are pooled, redistributed into new 
plates and preamplified. After preamplification, products are split into two plates and a 
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Method Single cell principle Description

second set of indexes is introduced using indexed primers for DNA and RNA component, 
respectively. Profiled modifications: H3K4me3, H3K27ac, H3K27me3

scSET-seq118 plate-based, single 
cell dispension

Single cells are transferred to wells of a 96-well plate. Cells are lysed, and nuclei bound 
by Concanavalin A coated magnetic beads. The supernatant with RNA is transferred 
to another plate. Histone modifications are targeted by antibody and indexed pA-Tn5. 

Cytoplasmic RNA is reverse transcribed and mRNA/cDNA hybrids are tagmented with 
indexed Tn5. Profiled modifications: H3K4me3, H3K27me3

Chromatin accessibility + protein

ASAP-seq120 droplet, 10x 
Genomics

Cells are incubated with antibody-oligonucleotide conjugates against cell surface proteins. 
After fixation and permeabilization without lysis, cells are used as input for 10x scATAC 
with the addition of a bridge oligo that enables binding of the antibody-oligonucleotide 

conjugates to the index coated beads.

Pi-ATAC122 plate-based, single 
cell dispension

Cells or tissues are fixed and permeabilized. Cells are incubated with an antibody and 
transposition is performed in bulk. Tagmentation is quenched and single cells are sorted 

into wells using index sorting to record antibody signal. Libraries are generated with 
indexed PCR primers after reverse crosslinking.

PHAGE-ATAC123 droplet, 10x 
Genomics

Cells are incubated with nanobody-displaying phages to recognize and bind surface 
antigens. Cells are fixed, lysed and used as input for 10x scATAC. Phages express 
a PHAGE-ATAC tag (PAC-tag) that contains an Illumina Read1 sequence and a 

hypervariable genetic barcode that binds to the oligo coated beads in the droplets. 
Workflow is compatibe with ASAP-seq

Chromatin accessibility + RNA + protein

DOGMA-seq120 droplet, 10x 
Genomics

Based on ASAP-seq but combined with 10x scMultiome instead of 10x scATAC. No need 
for bridge oligo.

TEA-seq121 droplet, 10x 
Genomics

Cells are incubated with antibody-oligonucleotide conjugates against cell surface proteins. 
After permeabilization without lysis, cells are used as input for 10x scMultiome.

NEAT-seq125 droplet, 10x 
Genomics

Cells are fixed, lysed and nuclei permeabilized. Nuclei are preincubated with ssDNA 
oligos and antibody oligo conjugates are preincubated with single stranded DNA from E 
coli (EcoSSB). Nuclei are incubated with antibodies against nuclear pore complex with 

hash tag oligos (HTO) and against transcription factors with antibody-derived tags (ADT). 
HTO and ADT contain a poly-A sequence. After incubation, nuclei are used as input for 

10x scMultiome.

Histone modifications + Protein

scCUT&Tag-pro124 droplet (10x 
Genomics)

Based on ASAP-seq120. Cells are incubated with oligonucleotide-conjugated antibodies 
against cell surface proteins. Cells are fixed and permeabilized without lysis. Cells are 

incubated with primary antibodies against a histone modification, followed by secondary 
antibodies and pA-Tn5. After tagmentation, cells are loaded onto the Chromium controller 

and libraries generated following the 10x scATAC-seq protocol. Profiled modifications: 
H3K4me1, H3K4me2, H3K4me3, H3K9me3, H3K27ac, H3K27me3

DNA methylation + Chromatin accessibility

scNOMe-seq127 plate-based, single 
cell dispension

Nuclei are isolated and treated in bulk with M.CviPI which methylates GpC dinucleotides 
at nucleosome free chromatin. Individual nuclei are sorted, lysed, bisulfite converted, and 

sequencing libraries are prepared.

scCOOL-seq126 and 
iscCOOL-seq128

plate-based, single 
cell dispension

Nuclei are isolated and treated in bulk with M.CviPI which methylates GpC dinucleotides 
at nucleosome free chromatin. Individual nuclei are sorted, lysed, bisulfite converted, and 
sequencing libraries are prepared. In iscCOOL-seq a tailing- and ligation-free method for 

library prep is used to increase the mapping rates

DNA methylation + Chromatin accessibility + RNA

scNMT-seq129 plate-based, single 
cell dispension

Nuclei are treated with M.CviPI which methylates GpC dinucleotides at nucleosome free 
chromatin. Libraries are generated following the scM&T-seq strateqy.

snmCAT-seq48 plate-based, single 
cell dispension

Nuclei or cells are treated with M.CviPI to methylate GpC dinucleotides at nucleosome 
free chromatin. No physical separation of RNA and DNA. 5’-methyl-CTP is added 

during reverse transcription for full length transcriptomes. Bisulfite conversion and library 
preparation as in snmC-seq2. 5’-methyl-CTP in cDNA are not converted to uracil during 

bisulfite conversion, whereas a fraction of DNA cytosines is unmethylated and converted to 
uracil. Sequencing reads are assigned to RNA and DNA libraries based on the original mC 

density.
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Method Single cell principle Description

scNOMeRe-seq130 tube-based, single cell 
dispension

Single cells are transferred to tubes by mouth pipetting. Cells are lysed and nuclei are 
bound to magnetic beads. Supernatant with RNA is transferred to another tube for library 
preparation using multiple annealing and dC-tailing-based quantitative single-cell RNA-

seq (MATQ-seq) strategy. Nuclei are treated with M.CviPI to methylate GpC dinucleotides 
and lysed followed by bisulfite conversion and library preparation.

Heterochromatin + Chromatin accessibility

scGET-seq131 droplet, 10x 
Genomics

Tn5 fused to chromodomain of HP-1α to target H3K9me3 regions (TnH). Nuclei are 
tagmented using Tn5 without index to target open chromatin followed by incubation 

with TnH to target H3K9me3 regions. Libraries are generated with 10x ATAC. Profiled 
modifications: H3K9me3

Multiple histone modifications from the same cell

scMulti-CUT&Tag132 Droplet, 10x 
Genomics

Adaptation of CUT&Tag83. Antibodies against distinct histone modifications are incubated 
with indexed pA-Tn5. Antibody-pA-Tn5 conjugates are purified and antibodies against 

two histone modifications are mixed. Samples are incubated with antibody-pA-Tn5 
mixtures. After tagmentation, nuclei are encapsulated into gel emulsions on a Chromium 
controller and libraries are prepared following the 10x scATAC-seq protocol with slight 

modification. Profiled modifications: H3K27ac, H3K27me3

DNA methylation + chromatin architecture

scmethylHiC133 plate-based, single 
cell dispension

Crosslinking, restriction enyzme digestion and ligation are performed in bulk. Individual 
nuclei are sorted into wells (96--well plate). After bisulfite conversion libraries are 

generated.

snm3C-seq134 plate-based, single 
cell dispension

Crosslinking, restriction enyzme digestion and ligation are performed in bulk. Single 
nuclei are sorted into wells (384-well plate). DNA is reverse crosslinked, and bisulfite 

converted. Libraries are generated using snmC-seq224.

scM&T-seq, single-cell genome-wide methylome and transcriptome sequencing; scMT-seq, single-cell methylome and transcriptome sequencing; 
scTrio-seq, single-cell triple omics sequencing; sciCAR, single-cell combinatorial indexing chromatin accessibility and mRNA; SNARE-seq, 
single-nucleus chromatin accessibility and mRNA expression sequencing; Paired-Seq, parallel analysis of individual cells for RNA expression 
and DNA accessibility by sequencing; SHARE-seq, simultaneous high-throughput ATAC and RNA expression with sequencing; ASTAR-seq, 
assay for single-cell transcriptome and accessibility regions; scCAT-seq, single-cell chromatin accessibility and transcriptome sequencing; 
SNuBar-ARC, single nucleus barcoding approach for chromatin accessibility and RNA expression co-profiling; Paired-Tag, parallel analysis 
of individual cells for RNA expression and DNA from targeted tagmentation by sequencing; CoTECH, combined assay of transcriptome and 
enriched chromatin binding; scSET-seq, same cell epigenome and transcriptome sequencing in single cells; ASAP-seq, ATAC with select antigen 
profiling by sequencing, Pi-ATAC, protein-indexed assay of transposase accessible chromatin with sequencing; TEA-seq, transcription, epitopes, 
and accessibility with sequencing; NEAT-seq, sequencing of nuclear protein epitope abundance, chromatin accessibility and the transcriptome in 
single cells; scCUT&Tag-pro, single-cell cleavage under targets and tagmentation with cell surface proteins; scNOMe-seq, single- cell nucleosome 
occupancy and methylome-sequencing; scCOOL-seq, single-cell chromatin overall omic-scale landscape sequencing; iscCOOL-seq, improved 
single-cell chromatin overall omic-scale landscape sequencing; scNMT-seq, single-cell nucleosome, methylation and transcription sequencing; 
snmCAT-seq, single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing; scNOMeRe-seq, single-cell nucleosome 
occupancy, methylome and RNA expression sequencing; scGET-seq, single-cell genome and epigenome by transposases sequencing; scMethyl-
HiC, single-cell DNA methylation with HiC, snm3C-seq, single-nucleus methyl-3C sequencing
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Table 3:

Overview of key analytical tools for single-cell epigenomic data

Method Description Exemplary studies with application in human tissues

Data processing and clustering

ArchR136
Iterative latent semantic indexing using read 

counts in genomic windows followed by 
cluster-specific peak calls

Clustering of 70k nuclei from 10x scATAC-seq of isocortex, 
striatum, hippocampus, and substantia nigra181.

Signac156 Latent semantic indexing using read counts in 
peak calls

Clustering of 27k nuclei from kidney 10x scATAC-seq184, 81k 
nuclei from motor cortex SNARE-seq2182, 44k nuclei from 

pituitary gland 10x scATAC-seq186.

Cusanovich et al60
Latent semantic indexing using read counts 

in genomic windows and cluster-specific peak 
calls

Clustering of 1.6k nuclei from pancreatic islet sciATAC-seq187, 
35k nuclei from bone marrow and blood 10x scATAC-seq194, 
63.8k nuclei from bone marrow and blood 10x scATAC-seq58, 

791k nuclei from sciATAC-seq3 of fetal tissue63, 31k nuclei from 
fetal cortex 10x scATAC-seq191.

SnapATAC137 Spectral embedding using Jaccard similarity 
of read counts in genomic windows

Clustering of 79.5k nuclei from heart snATAC-seq195, 616k 
nuclei from snATAC-seq of 30 tissues30, 12.7k nuclei from 

kidney 10x scATAC-seq198, 12.5k nuclei from frontal cortex 
snATAC-seq48

Scanpy202/
EpiScanpy149

Principle components analysis of read counts 
in genomic windows, peak calls, or other 

features

Clustering of 91k nuclei from lung snATAC-seq188, 15k nuclei 
from pancreatic islet snATAC-seq199, 131.5k nuclei from islet and 

PBMCs snATAC-seq and 10x scATAC-seq196.

cisTopic138 Latent Dirichlet allocation of read counts in 
peak calls -

SCALE139 Variational autoencoder of read counts in peak 
calls -

BROCKMAN151 Principle components analysis of sequence k-
mer counts -

Scasat153 Multidimensional scaling using Jaccard 
similarity of read counts in peak calls -

Cell Ranger ATAC58 Latent semantic analysis of read counts in 
peak calls

Clustering of 10x scATAC-seq of 7k nuclei from atherosclerotic 
lesions197.

AllCools
Consensus clustering using Leiden algorithm 
on principle components of DNA methylation 

levels in genomic windows.

Data integration

Seurat integration 
(v3)156

Diagonal and horizontal integration using 
canonical correlation analysis

Diagonal integration of 130k nuclei from prefrontal cortex 
snATAC-seq with snRNA-seq192, 7k nuclei of 10x scATAC-seq 

from atherosclerotic lesions with snRNA-seq197, 31k nuclei from 
fetal cortex 10x scATAC-seq with snRNA-seq191, 81k nuclei from 
motor cortex SNARE-seq2182, 79.5k nuclei from heart snATAC-
seq with snRNA-seq195, skeletal muscle 10x scATAC-seq, 10x 
scMultiome with snRNA-seq200, bone marrow and blood 10x 

scATAC-seq with snRNA-seq194.

Liger166 Diagonal and horizontal integration using 
integrative non-negative matrix factorization

Diagonal integration of skeletal muscle 10x scATAC-seq, 10x 
scMultiome with snRNA-seq200

SingleCellFusion48 Diagonal and horizontal integration using 
mutual nearest neighbors

Diagonal integration of frontal cortex snmCAT-seq and snATAC-
seq48.

SnapATAC137 Horizonal integration using landmark 
diffusion maps

Horizontal integration of 79.5k nuclei from heart snATAC-seq195, 
616k nuclei from sci-ATAC-seq of 30 tissues30.

EpiScanpy149 Horizonal integration using batch-corrected k-
nearest neighbors -
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Method Description Exemplary studies with application in human tissues

ArchR136 Horizontal integration using estimated latent 
semantic indexing -

MNN158 Horizontal integration using mutual nearest 
neighbors

Horizontal integration for batch correction of prefrontal cortex 
10x scATAC-seq192, snATAC-seq of 30 tissues30, heart snATAC-

seq195.

Harmony157 Horizontal integration using linear mixed 
model correction

Horizontal integration for batch correction of pancreatic 
islet snATAC-seq199, pancreas and PBMCs 10x scATAC-seq 

and snATAC-seq196, lung snATAC-seq188, isocortex, striatum, 
hippocampus and substantia nigra 10x scATAC-seq181, sci-ATAC-

seq3 of 15 fetal tissues63, kidney 10x scATAC-seq184.

Symphony159 Horizontal integration for reference mapping 
using linear mixed model correction -

Seurat WNN (v4)161 Vertical integration using weighted nearest 
neighbors

Vertical integration of 15k nuclei from 10x scMultiome in 
pituitary gland186.

MOFA+162 Vertical integration using stochastic 
variational inference -

Downstream analysis

Cicero175
Co-accessibility between peak calls and cis-

co-accessibility networks using graphical 
LASSO

Analysis of co-accessible sites in pancreatic islet snATAC-
seq199, pancreas and PBMCs 10x scATAC-seq and snATAC-
seq196, lung snATAC-seq188, heart snATAC-seq195, skeletal 

muscle 10x scATAC-seq200, prefrontal cortex 10x scATAC-seq192, 
atherosclerotic lesion 10x scATAC-seq197, 10x scATAC-seq of 

isocortex, striatum, hippocampus, and substantia nigra181, kidney 
snATAC-seq184, bone marrow and peripheral blood snATAC-

seq58.

ChromVAR174 Sequence motif enrichment using bias-
corrected deviations

Sequence motif enrichments of cells in pancreatic islet snATAC-
seq199, pancreas and PBMCs 10x scATAC-seq and snATAC-
seq196, atherosclerotic lesion 10x scATAC-seq197, kidney 10x 
scATAC-seq184, prefrontal cortex 10x scATAC-seq192, heart 

snATAC-seq195, fetal cortex 10x scATAC-seq191, bone marrow 
and peripheral blood 10x scATAC-seq58.

Monocle (v2)177 Pseudo-time trajectory ordering using reverse 
graph embedding

Pseudo-time ordering of cells in 10x scATAC-seq of 
atherosclerotic lesions197.

Monocle (v3)178 Pseudo-time trajectory ordering using 
partitioned approximate graph abstraction

Pseudo-time ordering of cells sites in pancreatic islet snATAC-
seq199, prefrontal cortex 10x scATAC-seq191,192, sci-ATAC-seq3 

of 15 fetal tissues63, kidney 10x scATAC-seq184.

Slingshot179 Pseudo-time trajectory ordering using 
simultaneous principal curves -

Destiny180 Pseudo-time trajectory ordering using 
diffusion maps -

Signac135

Multiple methods including peak calling, 
cluster-specific differential peaks, peak-
to-gene links, and transcription factor 

footprinting

Cluster-specific differential peaks in 10x scATAC-seq of 
atherosclerotic lesions197, kidney 10x scATAC-seq184, Peak-to-

gene links in skeletal muscle 10x scMultiome200.

ArchR136

Multiple methods including peak calling, 
cluster-specific differential peaks, gene 

activity, peak-to-gene links, transcription 
factor footprinting, and pseudotime trajectory 

ordering

Cluster-specific analyses of isocortex, striatum, hippocampus, 
and substantia nigra 10x scATAC-seq181, transcription factor 
footprinting and peak-based analysis in prefrontal cortex 10x 

scATAC-seq192.

SnapATAC137
Multiple methods including peak calling, 

cluster-specific differential peaks, and peak-
to-gene links

Cluster-specific differential peaks in kidney 10x scATAC-seq198.

AllCools Differential methylated regions and genes

ArchR, single-cell analysis of regulatory chromatin in R, SnapATAC, single nucleus analysis pipeline for ATAC-seq, Scanpy, single cell analysis 
in python; EpiScanpy, epigenomics single cell analysis in python; cisTopic, cis-regulatory topic modeling on single-cell ATAC-seq data; SCALE, 
single-cell ATAC-seq analysis via latent feature extraction; BROCKMAN, Brockman representation of chromatin by K-mers in mark-associated 
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nucleotides; Scasat, single cell ATAC-seq analysis tool; LIGER, linked Inference of genomic experimental relationships; MNN, mutual nearest 
neighbour, WNN, weighted nearest neighbor, MOFA+, multi-omics factor analysis
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