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Abstract

Study Design: Post-hoc analysis

Objective: Advances in machine learning have led to tools offering individualized outcome 

predictions for adult spinal deformity (ASD). Our objective is to examine the properties of these 

ASD models in a cohort of adult symptomatic lumbar scoliosis (ASLS) patients.

Summary of Background Data: Machine-learning algorithms produce patient-specific 

probabilities of outcomes, including major complication, reoperation, and readmission in ASD. 

External validation of these models is needed.
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Methods: 39 predictive factors (12 demographic, 9 radiographic, 4 health-related quality of life, 

14 surgical) were retrieved and entered into web-based prediction models for major complications 

(MC), unplanned reoperation (RO), and hospital readmission (RA). Calculated probabilities were 

compared with actual event rates. Discrimination and calibration were analyzed using receiver 

operative characteristic area under the curve (ROC/AUC where 0.5=chance, 1=perfect) and 

calibration curves (Brier scores, where 0.25=chance, 0=perfect). 95% confidence intervals are 

reported.

Results: 169 of 187 (90%) surgical patients completed 2-year follow up. The observed rate of 

major complications was 41.4% with model predictions ranging from 13%−68% (mean 38.7%). 

Reoperation was 20.7% with model predictions ranging from 9%−54% (mean 30.1%). Hospital 

readmission was 17.2% with model predictions ranging from 13%−50% (mean 28.5%). Model 

classification for all three outcome measures was better than chance for all (AUC = MC 0.6 

(0.5–0.7), RA 0.6 (0.5–0.7), RO 0.6 (0.5–0.7)). Calibration was better than chance for all, though 

best for RA and RO (Brier Score = MC 0.22, RA 0.16, RO 0.17).

Conclusions: ASD prediction models for major complication, readmission, and reoperation 

performed better than chance in a cohort of adult lumbar scoliosis patients, though the 

homogeneity of ASLS affected calibration and accuracy. Optimization of models require samples 

with the breadth of outcomes (0–100%), supporting the need for continued data collection as 

personalized prediction models may improve decision-making for the patient and surgeon alike.
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Introduction:

Adult symptomatic lumbar scoliosis (ASLS) is a subset of adult spinal deformity (ASD) 

with increasing prevalence in our aging population.1–3 Surgery is more effective than 

nonoperative treatment for patients seeking meaningful improvement in health-related 

quality of life (HRQoL).4–7 However, not all patients benefit, and surgery entails significant 

expense and risk for adverse events.8–10 With a growing emphasis on value-driven 

healthcare and an increasing volume of ASD surgeries, accurately predicting which patients 

are most likely to benefit from surgery is critical.11–13

The predictive power of patient centered decision aids is rapidly improving due to advances 

in artificial intelligence (AI), including machine learning (ML).14 ML uses empirical patient 

data such as demographic data, patient reported outcome measures (PROMs), and surgical 

outcomes data to create mathematical models that describe the complex relationships 

between these variables.15 When used with large datasets of patient data, ML-modeling 

predictions can be developed into patient centered tools to help inform surgical counseling. 

Predictive modeling in healthcare is in its infancy and has the potential to revolutionize 

personalized care across our value-driven healthcare economy.15–18

Decision aid use in spine surgery has progressed from general surgical risk calculators to 

spine-specific tools and has the potential to offer patient personalized models.14,19–24 The 
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International Spine Study Group (ISSG) and European Spine Study Group (ESSG) merged 

data to create a voluminous surgical ASD dataset amenable to ML techniques. Models 

to predict major complication (MC), readmission (RA), reoperation (RO), patient-reported 

outcome measures (PROMs), and costs were created.25–27 In each case the model performed 

better than traditional statistical methods in terms of predicting the probability of these 

events. Development of these models required vast amounts of data, however, and manual 

entry in the clinic would be unwieldly. As a result, parsimonious “simple” models were 

created to minimize data requirements with minimal effect on prediction accuracy. This 

study sought to examine validity of the “simple” models to predict MC, RO, and RA at up to 

two years after surgery in a cohort of ASLS patients.

Methods:

Study Population

This is a secondary analysis of data collected during the ASLS-1 study.4 The study was 

conducted at nine centers in North America and included randomized and observational 

patient cohorts. All sites obtained IRB approval and the study was registered with 

ClinicalTrials.gov (NCT00854828). Eligible patients were 40–80 years old with ASLS, 

defined as a lumbar curve with a coronal Cobb measurement ≥ 30° and ODI score of ≥ 

20 or SRS-22 score ≤ 4.0 in pain, function, and/or self-image domains. Demographic data 

were obtained by standardized case report forms and all patients were deemed surgical 

candidates by the treating surgeon. Data were reviewed for completeness and accuracy by 

the study coordinators and a monitoring board. Patients with prior spinal fusion or multilevel 

decompression surgery were excluded. Enrollment began in April 2010 and ended July 

2014. This is an as-treated analysis of all patients (randomized and observational) treated 

with surgery during the conduct of the study. Descriptive and surgical data were collected 

and compared with data from the ISSG-ESSG development dataset.27 Unpaired t-tests and 

Chi-square analyses were performed as appropriate. No correction for multiple comparisons 

were made and statistical significance was defined as p<0.05.

Predictive Modeling

The previously created ASD predictive models were accessed and the “simple model” 

option was selected to predict probabilities of major complication, readmission, and 

reoperation for each individual patient.26,27 The “simple model” was created to make 

parsimonious models and reduce data requirements while preserving prediction accuracy. 

Thirty-nine predictive factors were input for each ASLS patient, including: 12 demographic 

factors, 9 radiographic factors, 4 HRQoL factors, and 14 surgical factors. Individual factors 

are summarized in Table 1. HRQoL factors were garnered from patient questionnaires, 

including two questions from the Oswestry Disability Index (ODI) regarding walking and 

homemaking, one Scoliosis Research Society (SRS)-22r question regarding medication 

usage, and one Short Form (SF)-36 health survey question regarding daily activities.29–31 

Required model parameters not included in the ASLS-1 study were American Society 

of Anesthesiologists (ASA) grade, heel walk, toe walk, and leg length discrepancy. ASA 

was estimated from patient comorbidities as suggested by Mannion et al.32 Heel-walk 
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and toe-walk were estimated from a lower extremity motor deficit screening. Leg length 

discrepancies were entered as zero.

Patient specific probabilities for sustaining MC, RA, or RO were generated and recorded. 

MC, RA, and RO were predicted and followed over a 2-year postoperative timeline.

Validation and Statistical Analysis

Model generated predictions were compared to actual events in the surgically treated 

ASLS-1 cohort. Model discrimination was evaluated using Harrell’s C statistic33, a time-

to-event area under the receiver operating characteristic curve (AUC ROC). ROCs graph 

the sensitivity versus specificity for the model against a particular outcome. (Fig. 1) The 

C statistic is a measure of goodness of fit, where 0 is no fit, 0.5 is chance (“flip of a 

coin”) and 1 is perfect fit. 95% confidence intervals were calculated. Prediction calibration 

was assessed using the Brier score, which is a measure of the residual between predictions 

and observations. It is a measure of a model’s prediction accuracy. Lower Brier scores 

indicate better calibration, where 0 is a perfect model, 0.25 is chance (“flip of a coin”) 

and 1 is no predictive capability. Calibration plots were created using a binned risk 

method and plotted against the ideal prediction line where predicted is equal to observed 

(straight line, slope = 1). The models underestimate risk when the calibration plot lies 

above the ideal line (predicted probability less than observed) and overestimate risk when 

the calibration plot lies below the ideal line (observed probability less than predicted). 

Calibration plots included histograms of probability counts and grouped observations. 

Median and interquartile ranges were calculated for quantitative baseline demographics. 

All statistical analyses were performed using R version 4.0.4. TRIPOD reporting guidelines 

were followed, and 95% confidence intervals reported when possible.

Funding

Funding was provided by the National Institutes of Health (R01AR05517601A2) and the 

Scoliosis Research Society.

Results:

Two hundred sixty-eight ASLS patients enrolled, and 187 patients received operative 

treatment. Two-year follow up was completed by 169 (90%) operatively treated patients 

who were included in our analysis. Baseline demographics of included patients are 

summarized in Table 2. The ASLS-1 cohort was comprised primarily of Caucasian women 

undergoing primary lumbar scoliosis surgeries. There were no revision fusions and few 

gross sagittal plane deformities. ASLS-1 patients were older (ASLS: 60.1±9.0 yrs, ISSG-

ESSG: 56.5±17.3, p=0.008) with larger coronal plane deformity (ASLS: 55.5±15.1°, ISSG-

ESSG: 37.7±21.9º, p<0.001) and less sagittal plane deformity (ASLS C7SVA: 35.7±46.1, 

ISSG-ESSG: 59.4±71.1, p<0.001) than the ISSG-ESSG development set. ASLS-1 patients 

underwent longer surgeries (ASLS: 7.0±2.2 hours, ISSG-ESSG: 5.7±2.4, p<0.001) with 

more frequent interbody fusions (ASLS: 67%, ISSG-ESSG: 50.6%, p<0.001) and more 

frequent iliac fixation (ASLS: 91%, ISSG-ESSG: 54%, p<0.001). The ASLS-1 patients 

tended to have less pain/disability at baseline.
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Adverse Events Prediction Models

Model performance statistics and observed rates of MC, RO, and RA are found in Table 3.

Major Complication

Model predictions for MC probabilities ranged from 13%−68% with a mean of 38.7% and a 

C statistic of 0.61 (0.52–0.69). The ROC is found in Fig. 1A. The observed rate of MC was 

41.4%. The model overestimated the probability of MC in most cases, except for those with 

the lowest likelihood (approximately 20%) of sustaining a MC (Fig. 2A). The Brier score 

was 0.22. The histogram of probability distributions shows a concentration of patients with 

predicted probabilities of MC falling from 20–60%.

Repeat Operation

Model predictions for RO ranged from 9–54% with a mean of 30.1% and a C statistic of 

0.59 (0.49–0.70). The observed rate of RO was 20.7%. The ROC curve for RO is found in 

Fig. 1B and calibration curve is shown in Fig. 2B. The model overestimated probabilities 

of RO and had a Brier score of 0.17. The histogram of probability distributions shows a 

concentration of patients with predicted probabilities of RO falling between 20–40%.

Readmission

Model predictions for RA ranged from 13–50% with a mean of 28.5%, overestimating the 

observed rate of 17.2%. ROC curve for RA is shown in Fig. 1C and the calibration curve 

is shown in Fig. 2C. RA had an C statistic of 0.56 (0.46–0.67) and a Brier score of 0.16. 

The histogram of probability distributions shows a concentration of patients with predicted 

probabilities of RA falling between 20–40%.

Discussion:

Prediction models as instruments for personalized informed decision-making may improve 

satisfaction and value-delivery in ASD surgeries but require validation across populations 

and the variety of ASD sub-types. We sought to examine the properties of abbreviated 

ASD prediction models for major complication, readmission, and revision surgery in a 

cohort of symptomatic lumbar scoliosis patients. Each model performed better than chance, 

with AUCs of approximately 0.6 and Brier scores under 0.25. The models overestimated 

the probabilities of readmission (observed = 20.7%, predicted mean = 30.1%) and repeat 

operation (observed 17.2%, predicted mean = 28.5%). Prediction of major complication 

was not as consistent as the models underestimated risk (observed 41.4%, predicted mean 

38.7%) for the whole cohort. The calibration line (Figure 2A) crosses “perfect” and shows 

that the models underestimate risk for low-risk patients and overestimate risk for high-risk 

patients. We believe these data offer proof of concept, while emphasizing the need for 

refinement of these models prior to their adoption in clinical care.

The performances of the calculators were not grossly different from the development and 

validation performance previously reported from a more broadly inclusive ASD cohort.27 

In the ISSG-ESSG validation cohorts, C statistic (goodness of fit) estimates ranged from 

0.5 to 0.76. Calibration (Brier score) was slightly better for the ISSG-ESSG cohort versus 
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the ASLS-1 cohort. This is likely due to the selection bias associated with the ASLS-1 

cohort, which excluded patients with any prior spine surgery of larger magnitude than 

a one-level decompression. Unsupervised clustering of the ISSG-ESSG cohort identified 

three primary patient types: young primary, old primary, and old revision, where the major 

complication rate in the old primary group was approximately 40%.28 The inclusion criteria 

of ASLS-1 tended to select “old primary” where the demographic data, surgical data (Table 

2), complication rates and profiles for these patients are different from a multiply operated 

iatrogenic flatback patient. This poor calibration, due to selection bias, is seen by the tight 

distribution of the probability histograms and grouped observations found in the calibration 

plots where the breadth of probabilities and true events were not observed. The ASLS 

population does not contain patients at the tails of the probability distributions (i.e., those 

certain to have and not have MC/RO/RA). Models are better suited to making predictions 

when strongly predictive variables are heterogenous.33 In the case of ASLS-1, there is 

homogeneity that affects the modeling, though this encourages the continued collection of 

data to refine the models.

Understanding patient preferences is paramount to shared decision making. Substantial 

work has discussed the importance of understanding a patient’s “preference phenotype” 

where their decision making is based upon both risk-tolerance and desired outcomes.34 

It is important to ensure that the experience of surgery and outcomes align with a 

patient’s expectations. Machine-learning algorithms will facilitate communication between 

the physician and patient to understand how the risks and expected outcomes of various 

treatment approaches align with their preference. Conjoint analysis, a method frequently 

used in marketing strategies, can be used to identify risk-benefit tradeoffs for patients. In 

conjoint analyses, patients are offered different options and expectations of outcomes and 

use these data to choose a treatment pathway.35 The models created by the ISSG-ESSG 

offer personalized probability predictions to further optimize this advancement of the shared 

decision-making process.

Personalized prediction models are a natural progression given the advancement of machine-

learning techniques and data availability. Data presented to patients is often in the form 

of a population average or some level of risk increase relative to patients with a particular 

attribute. For example, a patient with diabetes mellitus may have a 20% increased risk of 

deep wound infection, though this requires understanding the context of baseline risk and 

other confounding variables. While we believe these are good data and “talking points” 

with patients, we often fail to realize that “the median isn’t the message.”36 The use of 

medians, means, and odds ratios fail to acknowledge the complexity of any single patient’s 

presenting problem or a surgeon’s individual experience with a procedure. Non-linear, 

machine-learning techniques allow us to combine patient and surgical data to offer the 

probabilities for outcomes such as major complication, readmission, and reoperation.

Prediction of patient-reported outcomes measures (PROM) is required if we are to 

optimize value in a shared decision-making process. Not only must we understand a 

patient’s dissatisfaction with their current state and tolerance for complication, but we 

must understand their desired PROM result. The ISSG-ESSG models have been used to 

predict responses to the components of the Scoliosis Research Society-22 questionnaire.25 
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This will further refine the decision-making process to ensure the patient understands both 

the likelihood of complication and the likelihood of improving in domains important to 

them. This may increase the number of patients achieving the “minimum worthwhile effort” 

thereby improving value in adult spinal deformity surgery. Broad use of the minimum 

clinically important difference fails to acknowledge the risks and expectations of patients; a 

refined decision-making process might help determine those patients most likely to achieve 

the outcomes they desire.

This study is limited by the selection bias in the ASLS-1 cohort. By selecting “old primary” 

patients, we do not have a breadth of patient and surgery types to predict across the 

range of outcomes. The predictive properties of the models were modest at best in this 

validation study, with AUC closer to 0.5 than 1 and Brier scores closer to 0.25 than 0. 

However, in general, the models performed better than chance and we believe our results 

show proof-of-concept, encouraging further work in this field and refinement of the models. 

Selection bias also exists because surgeons operated on patients they deemed eligible for 

surgery and likely avoided those at the highest risk for poor outcomes. For example, active 

nicotine use and poorly controlled diabetes are often contraindications to complex, elective 

ASD reconstructions. As a result, there were few patients with these conditions in the 

development and validation cohorts. The omission of diabetes should not be interpreted to 

mean that blood sugar control is irrelevant, but rather it should be interpreted in the context 

of surgeons avoiding those patients felt to be the highest risk. It is unlikely that any model 

will ever include these patients. Prediction of outcomes in biological systems is complex, 

with bias and noise affecting estimates, but that a computer could perform better than a 

coin flip is evidence of potential. A “complete” counseling tool requires patient-reported 

outcomes measures, which we do not have here. Machine-learning models are often limited 

by a “black box” phenomenon where no simple regression equation can be offered for 

general use. We hope to make these calculators broadly available after further refinement. 

Finally, clinical studies of deployed models are required to show that patient satisfaction and 

value are improved. Given the results in other areas of musculoskeletal disease, we believe 

this will be the case in ASD as well.

Conclusions:

The abbreviated ISSG-ESSG prediction models performed better than chance for major 

complication, unplanned reoperation, and readmission after surgery for patients with adult 

symptomatic lumbar scoliosis. Calibration of the models was imperfect due to the patient 

cohort selected by the ASLS-1 study, which was comprised of mostly older patients 

undergoing primary fusion surgeries. These results emphasize the need for continued 

refinement and training of models if they are to be broadly applicable to ASD patients 

and reconstructions.
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FIG. 1. 
Receiver operating characteristic curves for major complication (A), reintervention (B), 

unintended hospital readmission (C)
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FIG. 2. 
Calibration curves for major complication (A), reintervention (B), unintended hospital 

readmission (C). Hatch marks form a histogram of events. Triangles represent grouped 

observation bins.
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TABLE 1.

Patient factors utilized by predictive models

Demographic (12) Radiographic (9) and HRQoL (4) Surgical (14)

Age Major curve location Number of stages

Gender Major curve cobb angle Antifibrinolytics

Prior spine surgery Coronal balance Levels fused

Height Leg length discrepancy Upper instrumented vertebra

Weight L1-S1 angle Lower instrumented vertebra

Smoking status Pelvic tilt Implant density (implants/level)

Heel walk Sacral slope Posterior rod material

Toe walk Sagittal balance Posterior rod diameter

Leg weakness Global alignment Multiple rods

ASA grade ODI, walking Posterior interbody fusions

NRS back pain ODI, homemaking Anterior interbody fusions

NRS leg pain SRS-22r, medication usage Levels decompressed

SF-36v2, daily activities Three column osteotomies

Two column osteotomies

HRQoL = Health related quality of life; ASA= American Society of Anesthesiologists; NRS=Numeric Rating Scale; ODI= Oswestry Disability 
Index; SRS= Scoliosis Research Society; SF= Short Form
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TABLE 2.

Baseline characteristics of ASLS and ISSG-ESSG Cohorts

Baseline Predictor ASLS Cohort N=169 ISSG-ESSG Validation Cohort N=1289 p-value

Demographic Data

Age (years) 60.1±9.0 56.5±17.3 0.008

Gender (Female) 151(89%) 1000(78%) <0.001

Height (cm) 160.6±8.6 163±11.0 0.006

Weight (kg) 69.9±15.6 71.5±17.7 0.26

Any Prior Spine Surgery (Y) 19(11%) 544(42%) <0.001

Major Coronal Cobb 55.5±15.1° 37.7±21.9º <0.001

Pelvic Incidence 55.6±11.1° 55.5±13.0° 0.98

Pelvic Incidence-Lumbar Lordosis 19.0±18.3° 21.4±20.9° 0.16

Pelvic Tilt 24.2±8.9° 23.2±11.0° 0.26

C7 Sagittal Vertical Axis (mm) 35.7±46.1 59.4±71.1 <0.001

Surgical Data

Estimated Blood Loss (mL) 2206±1676 1496±1315 <0.001

Surgical Time (hours) 7.0±2.2 5.7±2.4 <0.001

Number of Levels Fused 11.0±3.7 10.4±4.4 0.09

Number of Patients with Any Interbody Fusion 113(67%) 652(50.6%) <0.001

Pelvic fixation performed (Y) 153(91%) 700(54%) <0.001

Any Osteotomy Performed (Y) 106(63%) 769(59.7%) 0.44

Health Related Quality of Life

Baseline Oswestry Disability Index 38.4±15.5 42.8±19.4 0.005

Baseline Mental Component Summary 49.6±11.5 43.8±12.9 <0.001

Baseline Physical Component Summary 33.2±9.8 33.4±9.9 0.80

SRS -22r Function 3.1±0.7 2.9±0.9 0.006

SRS-22r Pain 2.8±0.8 2.5±0.9 <0.001

SRS-22r Subscore 3.0±0.6 2.8±0.7 <0.001

SRS=Scoliosis Research Society
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TABLE 3.

Discrimination and calibration statistics

Discrimination Calibration

Outcome Predicted 
Probability (%)

Occurrence in 
ASLS (%)

C Statistic Brier 
Score

y-intercept slope

Major 
Complication

38.7 (13, 68) 41.4 60.6% [52%, 69%] 21.8% −0.50 (−0.95, 
−0.05)

0.62 (−0.09, 
1.32)

Reoperation 30.1 (9, 54) 20.7 59.4% [49%, 70%] 17.3% −0.74 (−1.51, 
0.03)

0.72 (−0.13, 
1.56)

Readmission 28.5 (13, 50) 17.2 56.4% [46%, 67%] 15.7% −1.09 (−2.17, 
−0.02)

0.52 (−0.59, 
1.63)

Adverse events are categorical and evaluated with c statistic. Predicted probability is reported as mean (range). Parentheses indicate 95% 
confidence intervals.
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