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Abstract

Next generation sequencing (NGS) is a valuable tool, but has limitations in sequencing through 

repetitive runs of single nucleotides (homopolymers). Pathogenic germline variants in WRAP53 
encoding telomere cajal body protein 1 (TCAB1) are a known cause of dyskeratosis congenita. 

We identified a significant NGS error in WRAP53, c.1562dup, p.Ala522Glyfs*8 (rs755116516 

G>-/GG/GGG) that did not validate by Sanger sequencing. This error occurs because rs755116516 

G>-/GG/GGG (Chr17:7,606,714) is polymorphic and variants at this site challenge the ability 

of NGS to accurately call the correct number of nucleotides in a homopolymer run. This was 

further complicated by the fact that chr17:7,606,721 (rs769202794) is multiallelic G>A, C, T, 

and that chr17:7,606,722 is immediately adjacent and also multi-allelic (rs7640C>A/G/T and 

rs373064567C>delC). In addition to expert interpretation of potentially clinically actionable 

variants, it recommended that all variants in regions of the genome with homopolymers be 

validated by Sanger sequencing prior to clinical action.
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BRIEF REPORT

WRAP53 encodes telomere Cajal body protein 1 (TCAB1), a protein that interacts with 

telomerase, telomerase RNA component, and small Cajal body RNAs. Biallelic pathogenic 

germline variants in WRAP53 are a known cause of with dyskeratosis congenita (DC), 
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a telomere biology disorder (TBD) associated with high rates of bone marrow failure, 

pulmonary fibrosis, cancer, and other medical problems (Bergstrand et al., 2020; Niewisch et 

al., 2021; Zhong et al., 2011). Heterozygous variants in WRAP53 have not been reported in 

association with human disease. Given the rarity of WRAP53-associated disease, validation 

of variants and careful curation are essential prior to assigning clinical relevance (Richards 

et al., 2008).

Next generation exome sequencing (NGS) was performed on 4,688 individuals as a part 

of several previously reported familial and population-based exome sequencing studies 

(McReynolds et al., 2022; Mirabello et al., 2017; Shi et al., 2014). Briefly, exon-enriched 

libraries generated with NimbleGen v3 or v3+UTR capture kits were sequenced with 

Illumina MiSeq or HiSeq to an average depth of ~55x and minimum coverage of >80% 

at 15x. Reads were aligned to the hg19 reference genome (Novoalign, Picard). GATK 

Version 3.8 UnifiedGenotyper, HaplotypeCaller, and Freebayes were used to call variants 

with variants only used if called by at least two of three callers. Variant calling was limited 

to the intersection of the v3 and v3+UTR capture kits.

We identified 54 unrelated individuals with a WRAP53 c.1562dup, p.Ala522Glyfs*8 

(rs755116516 G>-/GG/GGG) variant by NGS. This finding was not associated with any 

specific cohort. This region was further assessed by Sanger sequencing 29 of these 

individuals and found that the NGS sequencing calls were errors (Figure 1). Notably, 27 

individuals had the GG SNP at rs7640, two had one C and G at rs7640. Four individuals 

had dupG rs755116516 in addition to G at rs7640, but 25 showed no evidence of the 

rs755116516 indel in the Sanger sequencing data. This erroneous call in NGS data 

occurs because when added Gs at rs755116516 or rs7640 occur, a longer run of Gs is 

created, leading to errors in base calling due to the known challenges of accurately calling 

homopolymer runs on next generation sequencing platforms (Foox et al., 2021; Mu, Lu, 

Chen, Li, & Elliott, 2016).

Review of publicly available databases using human genome build GRCh37 show that 

this region of WRAP53 is prone to errors in next generation sequencing due to the 

number of G and C nucleotides (Figure 1). rs755116516 G>-/GG/GGG at Chr17:7,606,714 

is polymorphic and variants at this site will challenge the ability of NGS platforms to 

accurately call the correct number of nucleotides in a homopolymer run. This is further 

complicated by the fact that chr17:7,606,721 (rs769202794) is multiallelic G>A, C, T, and 

that chr17:7,606,722 is immediately adjacent and also multi-allelic (rs7640C>A/G/T and 

rs373064567C>delC).

It is important for clinicians and researchers to understand that NGS is a valuable 

diagnostic tool but has known limitations in generating repetitive runs of single nucleotides 

(homopolymers), throughout the genome (Foox et al., 2021; Mu et al., 2016; Samorodnitsky 

et al., 2015; Slatko, Gardner, & Ausubel, 2018). In addition to expert interpretation of 

potentially clinically actionable variants, it recommended that all variants in regions of the 

genome with homopolymers be validated by Sanger sequencing prior to clinical action.
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Figure 1. Exon 10 of WRAP53 on chromosome 17 includes multi-allelic variants, insertions, 
deletions, and homopolymer runs of guanines making next generation sequencing prone to 
errors.
A. Image from Variation Viewer showing the location of WRAP53 on chromosome 17, 

https://www.ncbi.nlm.nih.gov/variation/view/?assm=GCF_000001405.39

B. Schematic of sequence based on human genome build GRCh37/hg19 illustrating the run 

of guanine nucleotides and locations of single nucleotide polymorphisms (SNPs) leading to 

next generation sequencing errors. rs7640 (chr17:7,606,722 C>G) often causes an indel G 

call at 7,606,722 or at 7,606,714 in next generation sequencing that is false due to the long 

run of Gs created by the SNPs. Of the 29 subjects with an exome sequencing indel call at 

chr17:7,606,715 (rs755116516, c.1562dup,), all had an rs7640 C>A/G/T alternate allele (27 

homozygous G and 2 heterozygous G) by Sanger sequencing.
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C. Reference Sanger sequencing trace with 7 guanines at chr17:7,606,715–7,606,721.

D. Example of Sanger sequencing trace of subject with rs7640 G allele

E. Example of Sanger sequencing trace seen in 4 subjects with an exome indel 

call at chr17:7,606,715, and both the C>G variant at chr17:7,606,722 AND a single 

base G insertion. The insertion could be between chr17:7,606,714/15, or between 

chr17:7,606,723/724 but this cannot be resolved as it is not possible to determine which 

end the G is inserted into.

F. Next generation exome sequencing results from gnomAD 2.2.1 and in house exome 

sequencing.

G. Sanger sequencing results of the same region.
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