Skip to main content
. Author manuscript; available in PMC: 2023 Dec 30.
Published in final edited form as: Stat Med. 2022 Oct 11;41(30):5844–5876. doi: 10.1002/sim.9592

TABLE 3.

Summary of imputation methods for mixed-type longitudinal data

Approach Data format Method Imputation models
FCS Imputation model for binary variables Imputation model for count variables
Wide FCS-Standard (LM) Logistic regression Linear regression
FCS-Standard (PMM) Logistic regression Predictive mean matching
FCS-Standard (Poisson) Logistic regression Poisson regression
Long FCS-LMM-latent Multilevel linear regression on latent variables Multilevel linear regression
FCS-GLMM (Gaussian) Multilevel logistic regression Multilevel linear regression
FCS-GLMM (Poisson) Multilevel logistic regression Multilevel Poisson regression
JM Wide JM-GL General location model
Long JM-MLMM-latent (common) Multivariate multilevel linear model with latent variables and homoscedastic within-subject variance
JM-MLMM-latent (random) Multivariate multilevel linear model with latent variables and heteroscedastic within-subject variance
JM-MGLMM Multivariate multilevel generalized linear model using a logit and log link for binary, count variables