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Abstract

Background: A key goal of precision medicine is to disaggregate common, complex diseases 

into discrete molecular subtypes. Rare coding variants in the low-density lipoprotein receptor gene 

(LDLR) are identified in 1–2% of coronary artery disease (CAD) patients, defining a molecular 

subtype with risk driven by hypercholesterolemia.

Methods: To search for additional subtypes, we compared the frequency of rare, predicted 

loss-of-function and damaging missense variants aggregated within a given gene in 41,081 CAD 

cases versus 217,115 controls.

Results: Rare variants in LDLR were most strongly associated with CAD, present in 1% of 

cases and associated with 4.4-fold increased CAD risk. A second subtype was characterized by 

variants in endothelial nitric oxide synthase gene (NOS3), a key enzyme regulating vascular 

tone, endothelial function, and platelet aggregation. A rare predicted loss-of-function or damaging 

missense variants in NOS3 was present in 0.6% of cases and associated with 2.42-fold increased 

risk of CAD (95%CI 1.80 to 3.26; p= 5.5 × 10−9). These variants were associated with higher 

systolic blood pressure (+ 3.25 mm Hg; 95%CI 1.86 to 4.65; p= 5.0 × 10−6) and increased risk 

of hypertension (adjusted odds ratio 1.31; 95%CI 1.14 to 1.51; p = 0.0002) but not circulating 

cholesterol concentrations, suggesting that – beyond lipid pathways – nitric oxide synthesis is a 

key nonlipid driver of CAD risk.

Conclusions: Beyond LDLR, we identified an additional nonlipid molecular subtype of CAD 

characterized by rare variants in the NOS3 gene.

Keywords

rare variant association study; NOS3; coronary artery disease; precision medicine

Introduction

Careful study of patients with a specific molecular defect can provide generalizable 

insights into disease biology and – in some cases – enable targeted therapies, as recently 

demonstrated for genetically defined subtypes of severe obesity and congestive heart 

failure1,2.

For coronary artery disease, loss-of-function variants in the gene encoding the low-density 

lipoprotein receptor (LDLR) are the prototypical molecular subtype3. This condition – 

known as familial hypercholesterolemia – is characterized by impaired hepatic clearance of 

LDL cholesterol from the circulation. Although patients with rare LDLR variants account 

for only 1–2% of patients with coronary artery disease4–8, recognition of this subtype 
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is nonetheless important. Of particular value is identifying individuals prior to disease 

onset, given recent evidence that early initiation of statin therapy in patients with familial 

hypercholesterolemia can largely offset the natural history of accelerated atherosclerosis9.

Rare variant association studies – recently enabled by large-scale gene sequencing efforts 

– provide an opportunity to identify new subtypes for a given disease. Because any 

individual rare variant is not observed with adequate frequency to test for an association 

with a given trait, variants are grouped into sets with aggregate frequencies compared 

between cases and controls10,11. One principled strategy aggregates putative loss-of-function 

variants in each gene (‘pLoF’), with the potential additional inclusion of very rare missense 

variants predicted to be damaging by computational algorithms (‘pLoF+missense’)4,12–14, as 

described in Online Methods.

For coronary artery disease, rare variants in at least ten genes have been shown to impact 

coronary artery disease risk, all related to lipid pathways15. We set out to test the hypothesis 

that rare variant association analyses might allow for the identification of damaging variants 

in nonlipid genes – feature additional novel molecular subtypes – that impact the risk of 

coronary artery disease. To this end, we aggregated gene sequencing data from 41,081 cases 

and 217,115 controls from four independent datasets.

Methods

To minimize the possibility of unintentionally sharing information that can be used to 

reidentify private information, the human genetic data used in this study are available at the 

database of Genotypes and Phenotypes (dbGaP) and can be accessed through the accession 

number listed for each study in the Data Supplement. The UK Biobank data with the 

full summary statistics generated in this study can be applied through the UK Biobank 

Access Management System. This research was approved by the Mass General Brigham 

institutional review board (protocol 2013P001840) and was performed under UK Biobank 

application #7089. For all the study samples used in this study, written informed consent 

was received from participants prior to inclusion in the study. Full description of methods is 

provided in the Data Supplement.

Results

To test the hypothesis that rare genetic variants in a given gene might enable identification 

of molecular subtypes of coronary artery disease, we studied gene sequencing data from 

41,081 cases and 217,115 controls from four independent datasets. Across the four cohorts 

analyzed, the mean age at the time of coronary artery disease onset was 53 years and 51.9% 

were male (Table 1 and Supplemental Table I–V). The Myocardial Infarction Genetics 

ExSeq (MIGen ExSeq) study and WGSeq (MIGen WGSeq) included a range of ancestries 

– 40% European, 2% East Asian, 49% South Asian, and 7% African – while the majority 

of participants in the UK Biobank 13K and 200K studies16–18 were of European ancestry 

(Table 1 and Supplemental Figure I).
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ASSOCIATION OF LDLR VARIANTS AND RISK OF CORONARY ARTERY DISEASE

As expected, variants in LDLR – known to cause the familial hypercholesterolemia subtype 

– were most strongly associated with coronary artery disease using either of the two variant 

aggregation strategies (Figure 1 and Figure 2). Aggregated across all four datasets using the 

‘pLoF+missense’ strategy, a rare variant in LDLR was noted in 0.91% of cases versus 0.34% 

of controls, corresponding to an adjusted odds ratio of 4.39 (95%CI 3.44 to 5.60; p = 1.7 × 

10−32). As in previous studies7,8, this association was somewhat stronger among carriers of 

inactivating variants (LOFTEE predicated high confidence variants, adjusted odds ratio 6.58, 

95%CI 3.76 to 11.50, p-value = 4.1 × 10−11) as compared to those previously annotated as 

pathogenic in the ClinVar database (adjusted odds ratio 3.80, p-value = 5.2 × 10–20, p-value 

for heterogeneity = 0.09), or missense variants predicted to be damaging by five prediction 

algorithms (adjusted odds ratio 2.65, p-value = 1.0 × 10−21, p-value for heterogeneity = 

0.003 when compared the the LOFTEE variants).

Consistent with hypercholesterolemia as the driving physiology, estimated untreated LDL 

cholesterol concentrations in UK Biobank 200K participants were significantly higher in 

carriers of LDLR variants identified using the ‘pLoF+missense’ strategy versus noncarriers 

– mean 182 versus 145 mg/dl respectively (adjusted difference +37 mg/dl; 95%CI 34.71 

to 39.79; p= 2.91 × 10−181). Importantly, our estimate of a 4.4-fold increased risk for 

coronary artery disease may have been attenuated by differential treatment of carriers with 

risk-reducing therapies in clinical practice. Taking the UK Biobank datasets as an example, 

for those people without diagnosed coronary artery disease, 40% (247 of 618) of LDLR 
variant carriers reported treatment with lipid-lowering medications as compared to 17% 

(30,023 of 175,993) of non-carriers.

NOS3 VARIANTS, HYPERTENSION, AND RISK OF CORONARY ARTERY DISEASE

Rare variants in the gene encoding endothelial nitric oxide synthase 3 (NOS3) were 

identified as a second driver of coronary artery disease risk (Figure 1 and Figure 3). 

Using the ‘pLoF+missense’ strategy, a NOS3 variant was present in 0.59% of cases versus 

0.41% of controls, corresponding to an adjusted odds ratio of 2.42 (95%CI 1.80 to 3.26; 

p = 5.5 × 10−9). This association was consistently driven by variants identified using the 

‘pLoF’ strategy (adjusted odds ratio 2.30, 95%CI 1.54 to 3.42, p-value = 4.1 × 10−5), as 

well as by the additional missense variants predicted to be damaging by five prediction 

algorithms added using the ‘pLoF+missense’ strategy (adjusted odds ratio 1.51, 95%CI 

1.24 to 1.84, p-value = 4.9 × 10−5). Consistent with a known role of this pathway in the 

regulation of vascular tone, higher systolic blood pressure (+ 3.25 mm Hg; 95%CI 1.86 to 

4.65; p= 5.0 × 10−6) and increased risk of hypertension (adjusted odds ratio 1.31; 95%CI 

1.14 to 1.51; p = 0.0002) were noted among 850 carriers of a NOS3 variant in the UK 

Biobank 200K dataset as compared to 173,697 non-carriers with blood pressure trait data 

available, but without a significant association with LDL cholesterol, HDL cholesterol, total 

cholesterol or triglycerides (Supplemental Table VI, Figure 3B, and Supplemental Table 

VII). A similar result of sensitivity analysis (adjusted odds ratio 2.41, 95%CI 1.78 to 3.25, 

p-value = 9.5 × 10−9) for the NOS3 gene by partitioning the sample by European and 

non-European ancestry reassured the robustness of the association results discovered in this 

study (Supplemental Figure II).
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Nitric oxide produced by NOS3 acts as a signaling molecule to activate soluble guanylyl 

cyclase via a heterodimeric receptor encoded by the GUCY1A3 and GUCY1B3 genes19. 

In an exploratory analysis across all four datasets using the ‘pLoF+missense’ strategy, 

we observe nominally significant associations for these two additional genes with risk of 

coronary artery disease, adjusted odds ratios 1.75 (95%CI 1.16 to 2.64; p = 0.007) and 

2.31 (95%CI 1.29 to 4.12; p = 0.005) respectively, Supplemental Figure III. As noted for 

NOS3, carriers of variants in either GUCY1A3 or GUCY1B3 also had increased risk of 

hypertension, adjusted odds ratios of 1.39 (95%CI 1.14 to 1.69; p = 0.001) and 1.53 (95%CI 

1.15 to 2.03; p = 0.004) respectively. A post hoc pathway analysis that aggregated variants 

in any of three genes – NOS3, GUCY1A3, and GUCY1B3 – using the ‘pLoF+missense’ 

strategy noted a variant in 1.05% of cases versus 0.80% of controls, corresponding to an 

adjusted odds ratio of 2.19 for CAD disease risk; 95% CI 1.76 to 2.74; p = 4.5 × 10−12, 

Supplemental Table VII.

Discussion

By comparing the frequency of rare DNA variants within the coding sequence of a given 

gene in 41,081 coronary artery disease cases versus 217,115 controls, we identify one more 

subtype distinct from LDL cholesterol pathways. 0.6% of patients with coronary artery 

disease inherit an abnormality in nitric oxide production – associated with increased risk of 

hypertension.

Our identification of rare LDLR variants as the most strongly associated with coronary 

artery disease – present in 1% of affected individuals – confirms prior results and provides 

a useful positive control for the overall analytic framework. Previous studies have similarly 

noted an LDLR variant prevalence of 1–2% among patients afflicted by coronary artery 

disease, corresponding to a three- to five-fold increased risk4–8. Importantly, individuals 

have increased risk of coronary artery disease even when compared to those with similarly 

elevated LDL cholesterol levels – likely reflecting increased lifelong exposure – but remain 

underdiagnosed and undertreated within current practice8,20.

The second molecular subtype relates to perturbation of the nitric oxide pathway, present 

in 0.6% of coronary artery disease cases and associated with 2.42-fold increased risk 

of coronary artery disease. This is consistent with impairment of endothelial function 

and nitric oxide production as the earliest derangement in coronary atherosclerosis21,22. 

Two additional lines of genetic support for the involvement of this pathway include prior 

association of a rare, loss-of-function variant in GUCY1A3 with coronary artery disease 

in a large family, and common variant association studies that linked noncoding regulatory 

variants near NOS3 and GUCY1A3 with increases in risk of coronary disease23–25. Beyond 

an impact on vascular tone, previous studies have additionally linked deficiency of platelet-

derived nitric oxide with arterial thrombosis26,27. Whether individuals who inherit a defect 

in nitric oxide signaling might derive selective benefit in treatment or prevention of coronary 

artery disease from pharmacologic upregulation of the pathway – already possible using 

several existing classes of medication – remains uncertain28,29.
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Despite our careful analysis of over 40,000 coronary artery disease cases, our analysis likely 

remained underpowered. To that end, we agree with recent recommendations that analysis of 

at least 250,000 afflicted individuals will be required to adequately test the hypothesis of a 

gene-disease relationship for the majority of genes30. Importantly, these sample sizes have 

become increasingly tractable in recent years with the advent of sequencing of large and 

ancestrally-diverse populations12,31–33. We anticipate that these future analyses will confirm 

that a subset of the most strongly associated – but subthreshold – genes are drivers of risk for 

coronary artery disease. As an example, carriers of variants in the ZNF687 gene tended to 

have increased risk of coronary artery disease using both the ‘pLoF’ and ‘pLoF+missense’ 

strategies, ranking 2nd and 14th among the studied genes respectively (Figure 1A and 

Supplemental Table VIII). Interesting, rare variants in this gene have previously been linked 

with Paget disease of bone, with preliminary evidence of accelerated cardiovascular disease 

in several familial and sporadic cases34,35. The fourth most strongly associated gene using 

the ‘pLoF+missense’ strategy (LPIN2) plays a role in lipid metabolism, and the loss of 

function of this gene leads to lipodystrophy and increased susceptibility to atherosclerosis in 

a mouse model36,37. The eleventh gene (PANX1) has been reported to have a role in cardiac 

response to ischemia and regulation of regulate blood pressure38 (Supplemental Table VIII).

We note that, we used the weight of 0.75 for variants identified by the SpliceAI algorithm 

suggested by the developers of this tool39. However, the results for the NOS3 variants 

associated with coronary artery disease were largely unaffected by this choice of weighting, 

with odds ratios ranging from 2.26 to 2.55 for weight ranging from 0.5 to 1 using the 

‘pLoF+missense’ strategy. In each case the strength of statistical association was below the 

Bonferroni-corrected p-value of 1.25 × 10−6, Supplemental Table IX.

This study also has several limitations which may guide our future improvements. First, 

although we were able to gather a large number of CAD cases and controls, the power for 

studying rare variant association is still not sufficient, with our results consistent with other 

recent large-scale sequencing studies12,40. Second, computational predictions of a given 

variant’s impact on protein function remain imperfect as compared to functional assays, 

which may have resulted in reduced statistical power41,42. Third, additional work is needed 

to build a rare variant analysis framework that additionally considers impact on related traits, 

such as circulation lipids or blood pressure to improve statistical power43,44.

In conclusion, we analyze gene sequencing data from 258,196 individuals and identify two 

molecular subtypes of coronary artery disease based on rare DNA variants in the LDLR and 

NOS3 genes that confer significantly increased risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

CAD coronary artery disease

CI confidence interval

LOFTEE Loss-Of-Function Transcript Effect Estimator

MIGen ExSeq Myocardial Infarction Genetics exome sequencing study

MIGen WGSeq Myocardial Infarction Genetics whole genome sequencing 

study

pLoF predicted to be loss-of-function
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Figure 1. 
Association of predicted loss-of-function variants and risk of coronary artery disease. Rare 

DNA variants predicted to lead to loss-of-function, disrupt mRNA splicing, or annotated 

as pathogenic or likely pathogenic within the ClinVar database were aggregated within 

each gene (‘pLoF’ strategy). Panel A) is a quantile-quantile plot of observed versus 

expected p-value distributions observed using this strategy. A second variant annotation 

strategy (‘pLoF+missense’) additionally included ultra-rare missense variants predicted to 

be damaging by each of five computational prediction algorithms within each gene. Panel 

B) is a quantile-quantile plot of observed versus expected p-value distributions of this mask. 

The horizontal line represents the Bonferroni-corrected p-value threshold of 1.25 × 10−6, 

assuming 20,000 genes tested and two rare variant grouping masks used. λ refers to the 

genomic inflation factor, with values significantly higher than 1 suggestive of inadequate 

control for population stratification.

LDLR – low-density lipoprotein receptor; NOS3 – endothelial nitric oxide synthase (NOS3).
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Figure 2. Association of rare variants in the LDLR gene and risk of coronary artery disease.
Forest plots including carrier count across cases and controls within four studies for the 

gene encoding the low-density lipoprotein receptor (LDLR). Panel A) are the results for the 

counts of variants predicted to lead to loss-of-function, disrupt mRNA splicing, or annotated 

as pathogenic or likely pathogenic within the ClinVar database. Panel B) is the results 

from a second variant annotation strategy that additionally included ultra-rare missense 

variants predicted to be damaging by each of five computational prediction algorithms. The 

meta-analysis was performed by a fixed-effects meta-analysis model based on the effect size 

estimated from a Firth logistic regression analysis in each of the four studies. The bar in both 

plots presents 95% confidence interval.
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Figure 3. Association of rare variants in the NOS3 gene and risk of coronary artery disease and 
hypertension.
Panel A) is a forest plot including carrier counts across cases and controls within 

four studies for the gene encoding endothelial nitric oxide synthase (NOS3). Variants 

included those predicted to lead to loss-of-function, disrupt mRNA splicing, or annotated 

as pathogenic or likely pathogenic within the ClinVar database, and ultra-rare missense 

variants predicted to be damaging by each of five computational prediction algorithms 

(‘pLoF+missense). The meta-analysis was performed by a fixed-effects meta-analysis model 

based on the effect size estimated from a Firth logistic regression analysis in each of the four 

studies. The bar in the plot presents 95% confidence interval. Panel B) is the proportion of 

individuals from the UK Biobank 200K dataset who had been diagnosed with hypertension 

in carriers versus noncarriers of NOS3 rare variants. The error bar in the bar plot represents 

the standard error.
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Table 1.

Coronary artery disease cases versus control datasets

MIGen ExSeq MIGen WGSeq UK Biobank 13K UK Biobank 200K

N Cases | N Controls 24,097 | 30,354 2,369 | 4,218 6,446 | 5,932 8,169 | 176,611

Age of cases, years, mean (SD) 50.9 (10.4) 48.3 (6.4) 50.5 (7.9) 62.3 (7.6)

Sex, Male, n (%) 38,850 (73%) 2,944 (45%) 8,099 (65%) 83,612 (45%)

Ancestry, n (%)

 African 3087 (6%) 1,298 (20%) 128 (1%) 3,061 (1.7%)

 East Asian 5 (0%) 1,289 (20%) 23 (0.2%) 622 (0.3%)

 European 21,413 (39%) 3,081 (47%) 11,698 (94.5%) 173,060 (93.7%)

 Other 81 (0.1%) 919 (14%) 214 (1.7%) 3,995 (2.2%)

 South Asian 29,865 (55%) 0 (0%) 315 (2.5%) 4,042 (2.2%)

SD, standard deviation.
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