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SUMMARY

Ductal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), 

with variable propensity for progression. We perform multiscale, integrated molecular profiling 

of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 

years median follow-up from the Translational Breast Cancer Research Consortium (TBCRC) 

038 study and the Resource of Archival Breast Tissue (RAHBT) cohorts. We identify 812 genes 

associated with ipsilateral recurrence within five years from treatment and develop a classifier 

that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence 

include proliferation, immune response, and metabolism. Distinct stromal expression patterns and 

immune cell compositions are identified. Our multiscale approach employed in situ methods to 

generate a spatially resolved atlas of breast precancers, where complementary modalities can be 

directly compared and correlated with conventional pathology findings, disease states, and clinical 

outcome.
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Strand et al. have performed a large, comprehensive study to generate a spatially resolved breast 

precancer atlas. They present a prognostic classifier that predicts both precancer recurrence and 

invasive progression, which may form the basis for a future clinical test to guide breast precancer 

treatment.

Graphical Abstract

INTRODUCTION

As nonobligate precursors of invasive disease, precancers provide a unique vantage point 

to study molecular pathways and evolutionary dynamics leading to the development of 

life-threatening cancers. Breast ductal carcinoma in situ (DCIS) is one of the most common 

precancers across all tissues, with ~50,000 women diagnosed each year in the U.S.1. Current 

treatment of DCIS involves breast conserving surgery or mastectomy, with the goal of 

preventing invasive cancer. However, DCIS consists of a molecularly heterogeneous group 

of lesions, with highly variable risk of invasive progression. Improved understanding of 

which DCIS is likely to progress could spare a subgroup of women unnecessary treatment.

Identification of factors associated with disease progression has been studied extensively. 

Epidemiologic cancer progression models indicate that clinical features like age at 

diagnosis, tumor grade, and hormone receptor expression may have some prognostic value, 

but have limited ability to identify the biologic conditions that govern DCIS progression 

to invasive breast cancer (IBC). Previous molecular analyses of DCIS have studied either 

1) cohorts of pure DCIS with known outcomes (e.g., disease-free vs recurrent), or 2) cross-
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sectional cohorts of DCIS with or without adjacent IBC2–10. These approaches have tested 

potentially divergent assumptions: recurrence of the DCIS as IBC may arise from neoplastic 

cells left behind when the DCIS was removed, be related to initial field effect, or develop 

independently. Longitudinal cohorts provide a perspective of cancer progression over time. 

Analysis of DCIS adjacent to IBC assumes these preinvasive areas are good models for 

pure DCIS and are ancestors of the invasive cancer cells, with synchronous lesions inferring 

progression. To date, these studies have not produced clear evidence for a common set of 

events associated with invasion.

Moreover, few genomic aberrations have been identified that can differentiate DCIS 

from IBC4,6,7,11–13 and microenvironmental processes, including collagen organization, 

myoepithelial changes, and immune suppression, may contribute to IBC development2,3,5. 

Presently, it remains unknown how these different molecular axes contribute to DCIS 

evolution.

Here, as part of the Human Tumor Atlas Network (HTAN) we present two DCIS cohorts, 

the Translational Breast Cancer Research Consortium (TBCRC) 038 study and the Resource 

of Archival Breast Tissue (RAHBT), for multimodal molecular analyses. We performed 

comprehensive integrated molecular profiling of these complementary, clinically annotated, 

longitudinally sampled cohorts, to understand the spectrum of molecular changes in 

DCIS and to identify both tumor and stromal predictors of subsequent events. We used 

multidimensional and multiparametric approaches to address central conceptual themes 

of cancer progression, ecology, and evolutionary biology. We hypothesize that the breast 

precancer atlas (PCA) presented here will facilitate phylogenetic analysis to reconstruct the 

relationship between DCIS and IBC, the natural history of DCIS, and factors that underlie 

progression to invasive disease.

RESULTS

Study Design and Cohorts

We generated two retrospective case-control cohorts of patients initially diagnosed with 

pure DCIS with or without a subsequent ipsilateral breast event (iBE, either DCIS or IBC) 

after surgical treatment. Identical eligibility criteria were used for outcome analysis in both 

cohorts. The RAHBT cohort used for outcome analysis has 97 cases with median diagnosis 

at age 53, and 40 months median time to recurrence. Over half (66.0%) had lumpectomy 

with radiation, 10.3% had lumpectomy without radiation, and 35% were identified as black. 

The TBCRC cohort included 216 patients with median diagnosis at age 52, and 48 months 

median time to recurrence. More than half (55.5%) had lumpectomy with radiation, 15.3% 

had lumpectomy without radiation, and 30.0% were identified as black (Table 1). Figure 1 

shows an outline of cohorts and analyses in this study. Table 1 summarizes the RAHBT and 

TBCRC cohorts used for outcome analysis, Table S1 summarizes the RAHBT LCM cohort, 

and Table S2 summarizes the assays in this study by cohort.
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Prognostic classifier predicts early recurrence

The TBCRC and RAHBT cohorts were designed to investigate biological determinants of 

recurrence by matching patients with subsequent iBE to patients that did not have any events 

during long-term follow-up.

To identify gene expression patterns correlating with outcome, we analyzed RNA from 

primary DCIS with iBEs within 5 years vs the remaining samples in TBCRC, to avoid 

including non-clonal events that might be more common in later years. We identified 812 

differentially expressed (DE) genes at 0.05 false discovery rate (FDR) (Figure 2A, Table 

S3).

To identify copy number aberrations (CNAs) that correlate with outcome, we performed 

light-pass whole genome sequencing (WGS) on DNA from FFPE samples in both cohorts 

(n=228). We identified 29 recurrent CNAs across both cohorts, none of which were 

predictive of recurrence (Figure S1A). Given the absence of significant CNAs, we trained 

a Random Forest classifier in TBCRC using only the 812 DE genes. The classifier was 

validated in RAHBT, with an ROC AUC of 0.72 (Figure 2B), Precision 0.86, Recall 0.91, 

and F1 score 0.88, indicating that the classifier performed well also in the test cohort. The 

classifier significantly predicted any subsequent iBE in both cohorts (RAHBT P=0.0004, 

Figure 2C). Importantly it was also a significant predictor of invasive iBEs over the full 

follow-up time (TBCRC P<0.0001, RAHBT P=0.0042, Figure 2D–E), demonstrating the 

classifier could specifically identify DCIS that progress to IBC.

Next, we examined whether the 812 gene classifier remained an independent predictor of 

outcome when combined with clinical features. We performed multivariable Cox regression 

analysis including the classifier, treatment, age, clinical ER, and DCIS grade (Figure S1B–

C). While multivariable analysis demonstrated a trend for treatment type and ER status for 

outcome, only the 812 gene classifier was significant in both cohorts (RAHBT HR=3.48, 

(95% CI: 1.14–10.6), P=0.028). Importantly, in multivariable analysis for invasive iBEs 

only, the classifier showed an even stronger prognostic value in both cohorts, with a hazard 

ratio of 7.33 in RAHBT (95% CI: 1.57–34.2, P=0.011, Figure 2F–G). While previous 

studies found association between ER status and DCIS outcome14–16, Kaplan-Meier analysis 

of clinical ER status (IHC-based) demonstrated a trend in RAHBT (P=0.053), but not in 

TBCRC (P=0.2, Figure S1D–E). Moreover, the 812 gene classifier showed no prognostic 

value for progression free disease or overall survival for 1064 IBCs from The Cancer 

Genome Atlas (TCGA17, Figure S1F–I), suggesting that the classifier is specific for the 

DCIS stage. To compare the 812 gene classifier to commercially available prognostic tests 

for DCIS, we calculated the Oncotype DCIS score as previously described18 using TBCRC 

and RAHBT RNA-sequencing data. We found that, in contrast to the 812 gene classifier, the 

DCIS Oncotype score did not differ between the outcome groups in either cohort (Figure 

S1J–K).

The 812 gene classifier likely represents several distinct biologic processes that promote 

recurrence and invasive progression. To further understand the biology and identify 

pathways involved in recurrence, we performed Gene Set Enrichment Analysis (GSEA) 

on DE genes between cases with 5-year recurrence vs the rest in TBCRC. We identified 11 
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Hallmark pathways significantly associated with early recurrence including those associated 

with proliferation, immune response, and metabolism (Figure S1L).

To further examine pathway activation status, we performed Gene Set Variation Analysis 

(GSVA) at the individual tumor level in 5-year outcome groups. Here, MYC and mTORc1 

signaling were increased in cases vs controls and strongly correlated (Figure 3A–C). We 

also observed high correlation between cell cycle linked G2M and E2F pathways. Further, 

Glycolysis and Oxidative Phosphorylation were increased in cases, and the significant 

positive correlation between these two pathways indicated that metabolically active tumors 

use both pathways. Overall, this analysis confirmed the finding from the differential 

abundance and GSEA analysis of 5-year outcome groups.

DCIS RNA clustering defines expression modules that drive outcome

Since proliferation and metabolism were identified as important pathways in recurrence, 

we next examined whether these pathways are driven by major DCIS phenotypes. Previous 

studies suggested that IBC subtypes do not fit well for DCIS 19. We hypothesized that a 

DCIS-specific classification scheme would better address DCIS biology. To investigate the 

biology behind the outcome analysis with emphasis on epithelial pathways, we performed 

unsupervised clustering of RNA-seq data from TBCRC (n=216) as well as an additional 

group of RAHBT cases (n=265, Table S1) where we generated epithelial-enriched samples 

by laser capture microdissection (LCM) to evaluate tumor cell expression patterns without 

contributions from the tumor microenvironment (TME, Figure S2A–F).

We performed non-negative matrix factorization (NMF) on all protein coding genes 

(GENCODE v33) with non-zero variance, evaluated the fit of 2–10 clusters, and selected 

a 3-cluster solution based on silhouette width, cophenetic value, maximizing cluster number, 

and replication in RAHBT (Figure S2G–J). The 3-cluster solution most reproducibly 

captured the biologic subgroups in both cohorts. To ensure the identified clusters were 

not an artifact of the clustering method, we ran consensus clustering in TBCRC, which 

rediscovered three clusters with high concordance with the NMF clusters (85.6%, Figure 

S2K). In both cohorts, cluster 1 had significantly higher ERBB2 and lower ESR1 expression 

compared to clusters 2 and 3 (Figure 4A, B), which both had increased ESR1 expression. 

We termed the three clusters ERlow, quiescent, and ERhigh respectively. To characterize 

these clusters, we conducted differential abundance analysis comparing each cluster 

individually to the other two combined (one-vs-rest). The deregulated pathways in each 

cluster were highly concordant across both cohorts, further supporting three transcriptional 

patterns in DCIS that are driven by the tumor cell compartment (PERlow=2.33×10−2; 

Pquiescent=8.37×10−2; PERhigh=9.20×10−10; hypergeometric test; Figure S2L).

While we observed a differential expression of the estrogen response in the ERhigh cluster 

vs ERlow cluster, the most striking patterns involved pathways associated with DCIS 

recurrence (Figure 4C, Figure S2L). Pathways including MYC, mTOR signaling, and cell 

cycle pathways were enriched in ERlow and significantly depleted in the quiescent cluster. 

Moreover, the Allograft Rejection, p53 and Adipogenesis pathways were high in ERlow and 

low in ERhigh. Finally, ERhigh tumors were depleted for UV Response Down and enriched 

for Oxidative Phosphorylation pathways, both of which were associated with recurrence. 
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None of the recurrence-associated pathways were enriched in the quiescent cluster. The 

presence of the Allograft Rejection pathway in RAHBT LCM epithelial samples, though 

not significant, suggests that immune cells have infiltrated the epithelial compartment 

in the involved samples. Thus, the 3-cluster solution identified pathways associated with 

recurrence.

Genomic and transcriptomic-based classifications of IBC20,21 have characterized the 

spectrum of invasive breast cancer subtypes, but it remains unclear whether these accurately 

describe the spectrum of DCIS. To investigate, we applied the PAM50 classification to 

TBCRC and RAHBT LCM epithelial DCIS samples and evaluated the correlation of each 

sample to the centroid of its assigned subtype. We compared this correlation to IBCs 

from TCGA through repeated downsampling of the TCGA. The median correlation was 

consistently lower in DCIS compared to IBC, with the most pronounced difference in the 

basal-like subtype (Figure S2M), as previously shown19. Significantly decreased correlation 

was also observed for luminal A (P=3.13×10−3) and normal-like subtypes (P=6.21×10−3). 

UMAP projection of the DCIS transcriptome revealed clear deviations from the PAM50 

centroids (Figure S2N–O), and PAM50 failed to predict DCIS recurrence (Figure S2P–Q). 

These data suggest that while established IBC subtypes can be identified in DCIS, they do 

not fit DCIS as robustly as IBC, and are not prognostic in these premalignant lesions.

In support of the 3-cluster solution, we investigated MIBI protein expression for a subset 

of patients (n=71). The frequency of ER+ tumor cells was significantly higher in the 

quiescent and ERhigh subtypes compared to ERlow (log2FC=2.73; P=2.11×10−5; Wilcoxon 

rank sum test) while HER2+ tumor cells were significantly higher in the ERlow subtype 

(log2FC=4.88; P=3.74×10−2; Wilcoxon rank sum test; Figure 4D). Overall, the frequencies 

of ER+ and HER2+ tumor cells were well correlated with RNA abundance of ESR1 and 

ERBB2, respectively (Figure S2R–S). PGR levels were upregulated in quiescent and ERhigh 

compared to ERlow (Figure S2T). Based on MIBI data, quiescent lesions were depleted for 

Ki67 (log2FC=−1.46; P=8.08×10−2; Wilcoxon rank sum test) and GLUT1 (log2FC=−2.64; 

P=8.47×10−3) positive tumor cells, vs ERhigh and ERlow tumors, suggesting quiescent 

lesions are less proliferative and less metabolically active (Figure 4D–E).

In their analysis of DCIS tumors and TME by MIBI, Risom et al. identified myoepithelial 

E-cadherin expression as the most discriminative feature for risk of progression (Figure 

6A-B in22). To investigate this in relation to the identified RNA clusters, we compared the 

distribution of myoepithelial E-cadherin frequency by MIBI in matched RAHBT LCM RNA 

samples. We found that ERhigh lesions had significantly higher myoepithelial E-cadherin 

frequency compared to ERlow and quiescent lesions (P≤0.026, Figure 4F). While most 

recurrence-associated pathways were enriched in ERlow lesions, this points to a feature 

associated with recurrence amongst ER+ DCIS tumors, and highlights that there are multiple 

paths to progression in DCIS.

Amplifications characteristic of high-risk of relapse IBC occur in DCIS

Next, we investigated how CNAs in DCIS contribute to pathways associated with DCIS 

recurrence. Amongst the 29 recurrent CNAs identified across both cohorts, we found 13 

gains and 16 losses, occurring in 10.1–52.6% of DCIS samples (FDR<0.05; GISTIC2; 
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Figure 5A). The identification of these common CNAs was not biased by depth of 

sequencing, but two were associated with cohort (1p21.3 and 10p15.3 deletions, Table 

S4). The most frequent alterations were gains of chromosomes 1q and 17q, including 

17q12 where the ERBB2 oncogene is located, and loss of chromosome 17p, 16q, and 11q 

(Figure 5A), confirming prior findings5,9,12,23 and notably reflecting the CNA landscape of 

IBC20,24.

Next, we investigated if the distribution of Proportion of the Genome copy number Altered 

(PGA) was biased in the 5-year outcome groups or 812 gene classifier risk groups, but found 

no significant differential distribution (Figure 5B–C). PGA was not correlated to sequencing 

depth, nor predictive of iBEs (Figure S3A–B).

Early patterns of alterations may provide insight into the mechanisms of neoplastic lesion 

development and progression. To identify genomic subtypes in DCIS, we employed 

unsupervised NMF clustering of CNA segments on TBCRC and RAHBT jointly and 

identified eight clusters ranging in size from 2–98 samples (Figure 5D; Figure S3C–

D) which were not biased by depth of sequencing (Figure S3E). CNA cluster 1 was 

characterized by chr20q13.2 amplification (Figure 5E). Three clusters were characterized 

by chr17q amplification (Cluster 2: 17q11, Cluster 3: chr17q23.1, Cluster 4: chr17q12). 

Cluster 5 was had chr8p11.23 amplification, Cluster 6 chr11q13.3 amplification, and Cluster 

7 amplification of MYC on chr8q24. Cluster 8, the largest group (n=98), represented a CNA 

quiet subgroup, characterized by the absence or diminished signal of these CNAs.

Integrative subgroups (ICs) is an IBC classification scheme based on genomic copy number 

and expression profiles20. Intriguingly, despite the eight CNA clusters not being associated 

with recurrence (Figure S3F–G) several of these clusters were attributed to the presence or 

absence of CNAs characteristic of IC subtypes, namely the four high-risk of relapse ER+/

HER2− subgroups (IC1,2,6,9) and the HER2-amplified (IC5) subgroup25 (Figure 5E). Of 

note, these four high-risk integrative subgroups (IC1,2,6,9) account for 25% of ER+/HER2− 

IBC and the majority of distant relapses25. Integrative subtypes are prognostic in IBC and 

improve the prediction of late relapse relative to clinical covariates. Understanding the 

clinical course of DCIS lesions harboring these high-risk invasive features is highly relevant 

in refining clinically meaningful risk associated with DCIS progression.

To identify enriched pathways in the eight CNA clusters, we investigated the differential 

abundance in matched RNA samples (DESeq2 one-vs-rest) and performed GSEA Hallmark 

analysis on the resulting gene lists. Clusters 6 (chr11q13 amplification) and 7 (chr8q24 

(MYC) amplification) were enriched for pathways associated with recurrence (Allograft 

Rejection and Oxidative Phosphorylation, respectively), whereas Cluster 8 (CNA quiet) was 

depleted of recurrence associated pathways (Cell Cycle and mTORc1 signaling), and Cluster 

6 was depleted of MYC targets (Figure 5F, Figure S3H). The remaining CNA clusters 

had no significant pathway enrichments. Thus, we identified a CNA-based cluster solution 

characterized by amplifications seen in high-risk IBC subtypes, including 17q12 (ERBB2) 

and 8q24 (MYC) amplification, some of which were significantly enriched or depleted for 

pathways associated with recurrence.
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The DCIS TME reflects distinct immune and fibroblast states

The Hallmark pathways identified represent a diverse set of biologic events and may 

involve different components of the DCIS ecosystem including the cells within the TME. 

Accumulating evidence has shown that the TME is crucial for cancer development and 

progression26,27. To analyze the DCIS TME, we generated RAHBT LCM stromal samples 

by dissecting stromal tissue from the DCIS edge (Figure S2D–F).

To identify the contribution of epithelial and stromal components to the 812 gene classifier, 

we performed differential abundance analysis between stromal (n=196) and epithelial 

(n=265) samples from the RAHBT LCM cohort. We identified 9748 DE genes (FDR<0.05) 

between epithelium and stroma (5161 epithelial, 4587 stromal). An analysis of the 812 

classifier genes showed that 20% were expressed primarily in stromal/TME cells, and 34% 

in epithelium (Table S3).

The MIBI method provides an orthogonal view of the TME and generates protein expression 

and identity of 16 different cell types including epithelial, fibroblasts, and immune cell 

types22. We used adjacent TMA sections to analyze RNA and MIBI expression on the same 

ducts. We compared MIBI-based cell type distribution across samples with the inferred 

cell type distribution from RNA expression data using CIBERSORTx (CSx, see Methods, 
Figure S4A–B), allowing us to cross-validate findings and extend observations on cell 

composition to DCIS samples without MIBI data, including the TBCRC cohort.

To define discrete TME phenotypes, we performed shared nearest neighborhood clustering 

of stromal RNA data and identified four distinct DCIS-associated stromal clusters (Figure 

6A) and DE genes (DESeq2 each-vs-rest, Figure 6B). Pathway analyses (Figure 6C, S4C), 

MIBI protein expression and cell type distribution (Figure 6D), and CSx-inferred cell type 

distribution (Figure 6E, Figure S4D–G) were used to describe major characteristics of each 

cluster, which were termed Immune dense, Desmoplastic, Collagen-rich, and Normal-like. 

Figure 6F shows representative MIBI images of each cluster, with strong correlation with 

fibroblast states and immune cell density.

The Immune stromal cluster was the most distinct stromal subtype, with enrichment for the 

outcome-associated Allograft Rejection- and other immune activation pathways. MIBI and 

CSx data demonstrated a total abundance of immune cells more than twice that of any other 

cluster, with predominance of lymphoid over myeloid cells. A subgroup within this cluster 

was highly enriched for B cells, whereas another displayed overall balanced immune cell 

type composition. The Immune cluster also showed association with MIBI-identified T-cell 

and B-cell enriched neighborhoods (see22 for details), myoepithelial- and myeloid-enriched 

neighborhoods (Figure S5A), and was enriched for the ERlow subtype (Figure S5B).

The normal-like cluster was enriched for Gene Ontology pathways involved with ECM 

organization, Complement and Coagulation Cascades, Focal Adhesion, and PI3K-AKT 

signaling. The collagen-rich cluster was characterized by Collagen Metabolism, TGFb 

signaling, and Proteoglycans in Cancer, and Cell-Substrate and Focal Adhesion. This 

cluster had the highest fibroblast abundance and total myeloid cells, mostly associated 

with macrophages and myeloid dendritic cells (mDC). According to MIBI, this cluster 
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was enriched in collagen and fibroblast associated protein positive (FAP+, VIM+, SMA+) 

myofibroblasts. The desmoplastic cluster was characterized by mammary gland development 

and fatty acid metabolism, high presence of VIM+, SMA+ myofibroblasts by MIBI, and 

higher levels of CD8+ T cells assessed by CSx vs the normal-like and collagen-rich clusters 

(Figure S5C).

These analyses indicate that the immune response is present in a discrete subset of cases. 

However, outcome analysis by stromal subtype demonstrated a modest outcome difference, 

without major contribution from the Immune subcluster (P=0.12, log-rank test, Figure 

S6A). We hypothesized that the outcome differences could be attributed to a subset of 

immune cells rather than the entire immune response, and analyzed CSx-inferred cell type 

distribution in 5-year outcome groups in TBCRC and RAHBT combined. We identified 

significantly higher levels of CD4+ T cells, myeloid- and plasmacytoid dendritic cells 

(pDC), monocytes, macrophages, and overall immune cells in cases vs. controls (Figure 

6G). Furthermore, we found that several cell types, including CD4 T-cells, mDCs, and 

pDCs, were significant predictors of any iBE 5 years after treatment (univariable Cox 

regression analysis, Table S5). These differences in outcome groups were overall mirrored 

by CSx-inferred cell type distributions in the high- and low risk classifier groups (Figure 

S6B). Finally, we investigated the distribution of CSx-based cell types in 5-year outcome 

groups stratified by iBE type. The results overall reflected the analysis in cases vs. controls, 

with the largest differences observed between invasive iBEs and controls (Figure S6C).

Taken together, these results support the contributions of individual immune cells with 

high-risk outcomes. However, non-immune cell phenotypes are not well defined by this CSx 

approach but can still be identified as a biologic response. The desmoplastic cluster had the 

clearest and most favorable outcome (HR=0.23, P=0.06, Figure S6B), despite being enriched 

for several recurrence-associated pathways, including proliferative signals (MYC and G2M 

checkpoint) associated with poor outcome in the epithelial compartment. This highlights the 

complexity and differential contribution from the stromal and epithelial compartments.

DISCUSSION

The aims of the HTAN Breast Pre-Cancer Atlas are to 1) develop a resource of multi-modal 

spatially resolved data from breast pre-invasive samples that will facilitate discoveries by the 

scientific community regarding the natural history of DCIS and predictors of progression 

to life-threatening IBC; and 2) populate that platform with data from retrospective cohorts 

of patients with DCIS and demonstrate its use to construct an atlas to test novel biologic 

insights. Here, we examined two well-annotated, retrospective, longitudinal patient cohorts 

with or without a subsequent iBE. The two cohorts have important and distinct differences. 

They comprise subjects from diverse geographical sites, race/ethnicities, median years of 

diagnosis, and time to recurrence. There were no significant differences in age at diagnosis 

or treatment across cohorts. Together, these cohorts comprise a large series of matched 

case-control samples allowing great statistical power to perform the comprehensive studies 

reported here. A particular strength of the study is the complementary nature of the two 

cohorts, allowing for validation of our findings, as well as the capability to separately study 

the epithelial and stromal components in RAHBT LCM samples. Future observations on 
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a DCIS cohort undergoing watchful waiting would provide outcome results that may be 

more aligned with emerging personalized treatment strategies of DCIS, that could include 

non-surgical options.

DCIS is a heterogeneous disease with variable prognosis but has defied attempts to identify 

molecular factors associated with future progression. Previous studies have evaluated the 

prognostic value of biomarkers associated with outcomes, with conflicting conclusions for 

virtually all markers tested, including ER, HER2, immune markers such as tumor infiltrating 

lymphocytes, and stromal characteristics. Many promising leads have not been reproducible 

due to multiple factors, including lack of endpoint standardization, differences between 

cohorts, small sample size, and limited datasets for validation with long-term outcomes.

Herein, we have developed and validated an 812 gene classifier which independently 

predicted risk of both overall recurrence and invasive progression. This classifier was highly 

associated with outcome in a multivariable model which included treatment, age, grade, and 

clinical ER status; the classifier had a HR of 22.5 (95% CI 8.5– 59.4) in the training set and 

7.3 (95% CI 1.6– 34.2) in the validation set, over four-fold higher than has been previously 

reported for other prognostic markers for DCIS14.

Importantly, we found that this classifier was a stronger predictor of 5-year recurrence or 

progression than previously described clinical factors, including age at diagnosis, tumor 

grade, ER status, or treatment. The large dataset, with a high number of events, permitted 

an agnostic analysis of all genome-wide features and was thus less opportunistic than other, 

more limited studies. Further, since no a priori assumptions were made regarding whether to 

incorporate the molecular features of invasive cancer, we were able to construct a less biased 

predictor.

Our classifier is characterized by several Hallmark pathways including some related to cell 

cycle progression and growth factor signaling (E2F targets, G2M checkpoint, MYC targets, 

mTORc1 signaling) and metabolism (Glycolysis, Oxidative Phosphorylation). Examination 

of pathway activation status at the individual tumor level revealed the underlying complexity 

of the classifier. High correlation between cell cycle linked E2F and G2M pathways are 

consistent with a proliferation related signature. However, the strongest features of the 

classifier (distinguishing cases from controls) were MYC and MTORC1 signaling which 

are strongly correlated with each other but less so with the canonical proliferation pathways 

indicating that proliferation alone is not the central predictor. Interestingly, both Glycolysis 

and Oxidative Phosphorylation were increased in cases suggesting that heightened metabolic 

activity is associated with risk of progression regardless of whether it is anaerobic. Finally, 

Allograft Rejection, a broad immune pathway, was elevated in cases and in general appeared 

to be an independent component of the classifier. Overall, there are multiple components to 

this classifier that are elevated in different subsets of the tumors lending additional evidence 

that simplified predictors fail to capture the heterogeneity of the disease.

IBC has been genomically profiled with several approaches, including the PAM50 and 

IC classification schemes. While DCIS and IBC are part of the same neoplastic process, 

there are differences in the TME, evolutionary age, and inter-observer variability in 
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diagnostic labeling at different stages of progression. This suggests that a DCIS-specific 

classification scheme would correlate better with biologic and clinical features of DCIS. Our 

analysis indicated the PAM50 subtypes are not apt for DCIS characterization, as previously 

described19,28. Instead, we identified three transcriptomic DCIS subgroups, characterized 

by ER signaling, proliferation and metabolism. These subtypes more accurately capture 

the spectrum of DCIS biology than IBC-derived subtypes, and represent the fundamental 

genomic organization at this early stage of breast neoplasia. They may represent the 

earliest variation in neoplasia transcriptome, potentially applicable to earlier stages such 

as hyperplasias.

There are several possible reasons why traditional IBC classifiers do not perform well 

on DCIS. HER2 expression is more common at the DCIS stage than at the IBC stage29, 

which may lead to a different transcriptomic distribution in DCIS vs IBC. Many ER− DCIS 

express HER2 without amplification, in contrast to IBC, where the HER2-amplified subtype 

is clearer. Moreover, DCIS cells are confined to the epithelial compartment and interact 

with myoepithelial cells and the basement membrane, thus presumably restricted by rules of 

differentiation that govern normal epithelial cells, which could constrain the transcriptomic 

variability of neoplastic cells and in turn possible subtypes. Finally, the evolutionary age of 

the neoplasm may influence classification differences in DCIS vs IBC. By comparing WGS 

data from DCIS and IBCs, we found that the same constellation of copy number changes 

was present in both, consistent with previous studies30–32. While DCIS had fewer genomic 

alterations than IBC, and a larger group of DCIS was classified as genomically quiescent, 

recurrent genomic events that drive the IBC-based IC scheme were evident at the DCIS 

stage.

A unique aspect of our study is the separate profiling of stromal and epithelial components 

through CSx analysis of LCM-derived RNA coupled with in situ MIBI protein expression. 

We identified four stromal subtypes characterized by distinct pathways, stromal-, and 

immune cell composition. Specific stromal patterns were correlated with epithelial 

expression patterns, and particularly HER2+/ER− DCIS were associated with a stronger 

immune response, potentially associated with co-amplification of ERBB2 (HER2) and 

chemokine encoding genes on the 17q12 chromosomal region3. A limitation of this study is 

that our CSx approach did not facilitate identification of non-immune stromal cell types.

Generating a DCIS atlas is similar to the effort of TCGA for IBC, but there are 

important differences. Working with DCIS samples is considerably more challenging; 

while IBC tumors are evident by gross exam, and can be easily obtained as fresh, 

fresh frozen, or archival material, this is not the case for pre-invasive lesions. DCIS can 

sometimes be recognized radiographically but is only precisely detailed by pathologic 

examination, making prospective tissue collection a challenge. Moreover, the transition 

from intraepithelial to invasive neoplasia is definitional for IBC. For DCIS, such a clear-cut 

definition does not exist. DCIS is broadly defined by cytologic and architectural changes 

compared to normal breast tissue by a growth of neoplastic cells in the inter-epithelial 

compartment.
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One issue that should be noted is the genetic relationship between the primary DCIS and 

the subsequent ipsilateral cancer. Recent work33 on a large cohort indicates that 18% of 

ipsilateral invasive events may be unrelated to the primary DCIS based on mutations and 

CNAs. Non-clonal recurrences were more likely to be in a different breast quadrant and have 

discordant ER expression whereas time to recurrence and patient age were not significantly 

associated with clonality. While we did not examine the recurrences in the current study to 

determine clonality, it is likely that a similar fraction would be identified as “unrelated”. 

We anticipate that further refinement and validation of our classifier will be strengthened by 

eliminating non-clonal iBEs.

In conclusion, we have developed a genomic classifier that predicts both recurrence and 

invasive progression, using large, comprehensively annotated case-control data sets of 

primary DCIS. The classifier is comprised of both epithelial and stromal features. Our 

findings support that progression is a process that requires both invasive propensity among 

the DCIS cells and stromal permissiveness in the TME. We propose this classifier as the 

basis for a future clinical test to assess outcomes in patients with primary DCIS to guide 

a more individualized therapy, based on biologic risk. Future work will include further 

validation of the classifier and translation to clinical implementation. The Breast Pre-Cancer 

Atlas presented here provides a foundational advancement in the study of precancerous 

lesions and will be a valuable resource for years to come, with data available to the research 

community through the HTAN portal.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Robert West (rbwest@stanford.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—RNA and DNA sequencing data, metadata, and MIBI and 

H&E imaging data, have been deposited at the HTAN portal and are publicly available 

as of the date of publication (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs002371.v1.p1). For further information see the key resources table.

All original code has been deposited at Mendeley Data and is publicly available as of the 

date of publication (https://data.mendeley.com/datasets/tbzv5hpvw5/1).

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort collection and sample acquisition

RAHBT Cohort: The Resource of Archival Breast Tissue (RAHBT) is a data/tissue 

resource established by Drs. Allred and Colditz in 2008 focused on premalignant or benign 

breast disease. Uniform coding of premalignant lesions assures greater consistency and 
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use of research. Follow-up through hospital record linkages documents subsequent breast 

lesions including IBC. The entire study population includes women ages 18 and older with 

documented cases of premalignant breast disease (including carcinoma in situ). The study 

was approved by the Washington University in St. Louis Institutional Review Board (IRB ID 

#: 201707090).

Women were identified as eligible through seven primary sources: Washington University 

School of Medicine Departmental databases (Surgery, Radiation Oncology, Pathology, and 

Radiology), and the Siteman Oncology Services Database (local tumor registry), the St. 

Louis Breast Tissue Repository, and the Women’s Health Repository. We reviewed all 

records, excluded women with cancer prior to qualifying premalignant lesions and identified 

1831 unique women with DCIS or DCIS and subsequent recurrence. A common data set 

with pathologic details, risk factor data, treatment, and unique identifiers was created and 

used to follow these women for subsequent breast lesions. Centralized pathology review 

confirmed 174 cases of DCIS with recurrent lesions. For each case (with subsequent 

ipsilateral or contralateral breast events) we matched two controls who remained free from 

subsequent breast events based on race, year of diagnosis (+/− 5 years), age at diagnosis 

(+/− 5 years), and type of definitive surgery (mastectomy or lumpectomy). For each DCIS 

diagnosis we retrieved slides and blocks for pathology review, secured a whole slide image 

of each sample, marked for TMA cores, and prepared for laboratory processing. A total of 

172 cases and 338 controls were cored for TMAs. Breast pathology review was completed 

by Drs. Allred, Warrick, DeSchryver, and Veis.

To define an external validation data set that used identical eligibility criteria to TBCR 

038 including year of initial DCIS diagnosis, we identified an additional set of cases from 

RAHBT and used comparable laboratory procedures for RNA-seq.

For RAHBT, 97 patients were analyzed by RNA-seq (Table 1). The median age at diagnosis 

was 53, and median year of diagnosis 2006. Time to recurrence with ipsilateral IBC was 36 

months, and to diagnosis of ipsilateral DCIS 46.9 months. For women in the cohort with 

no iBEs, median follow-up extended to 141 months. The total number of deaths by any 

cause was six. Treatment of initial DCIS ranged from lumpectomy with radiation (66.0%), 

and no radiation (10.3%) and mastectomy (23.7%). This subset of the RAHBT cohort was 

composed of 35.1% African American women.

For RAHBT LCM, 265 patients were analyzed by RNA-seq (Table S1). The median age at 

diagnosis was 53, and median year of diagnosis 2002. Time to recurrence with ipsilateral 

IBC was 80 months, and to diagnosis of ipsilateral DCIS 50 months. For women in the 

cohort with no iBEs, median follow-up extended to 111 months. Treatment of initial DCIS 

ranged from lumpectomy with radiation (52%), and no radiation (18%) and mastectomy 

(28%). This subset of the RAHBT cohort was composed of 25% African American women.

TBCRC 038 Cohort: TBCRC 038 is a retrospective multi-center study activated at 12 

participating TBCRC (Translational Breast Cancer Consortium) sites, which identified 

women treated for ductal carcinoma in situ (DCIS) at one of the enrolling institutions 

between 01/01/1998 and 02/29/2016. The TBCRC and the Department of Defense (DOD) 
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approved this study for the collection of archival tissues. Duke served as the initiating and 

central site for all data, samples, assays, and analysis. The study was approved by the 

Duke Health Institutional Review Board (Protocol ID: Pro00068646) as well as the IRB at 

each participating institution. Individual sites reviewed medical records to identify patients 

eligible for the study.

Study eligibility criteria included: Women aged 40–75 years at diagnosis of DCIS without 

invasion; no prior treatment for breast cancer; and definitive surgical excision with no ink 

on tumor margins and treated with mastectomy, lumpectomy with radiation, or lumpectomy. 

Cases (patients with subsequent iBEs) were matched 1:1 to controls with at least 5 years of 

follow-up without subsequent iBEs. Matching was based on year of diagnosis (+/−5 years), 

age at diagnosis (+/− 5 years), and DCIS nuclear grade (high grade vs. non-high grade). 

All cases consisted of initial diagnosis of pure DCIS, with ipsilateral recurrence occurring 

no less than 12 months from date of primary diagnosis. Clinical data, including treatment 

data, were collected at each site, and standardized data points were entered into a web-based 

portal. Tumor tissue was collected from FFPE blocks and cut into 5um sections. All slides 

were scanned and reviewed centrally by a breast pathologist (AH) to confirm the diagnosis. 

Tumor tissue marked by the pathologist was macrodissected for bulk analysis assays.

The 216 patients from the TBCRC cohort analyzed by RNA-seq (Table 1) includes 95 

women without iBE after 5 or more years, 66 with DCIS iBEs, and 55 with IBC iBEs. 

Median time to IBC iBE for this subset was 58 months and 40 months to DCIS iBE. The 

total number of deaths by any cause was 12. 30% of this subset were African American.

METHOD DETAILS

TMA construction—Qualified DCIS or subsequent lesion slides were assembled for 

pathology review. The research breast pathologist marked the slides for best area to core 

(1mm) for the carcinoma in situ and later event. The TMAs were designed such that cases/

controls were assigned randomly on the map. The Beecher Tissue Arrayer was used to take 

a core from the patient donor block and place it in the designated area of the recipient TMA 

block. Slides were then cut for research purposes, and stained H&E and unstained slides 

were prepared. The TMAs were stored in the St. Louis Breast Tissue Registry Lab at room 

temperature.

Slide cutting—A TMA cutting breakdown was established to include slides for laser 

capture microdissection (LCM PEN membrane glass slides) sequencing, multiplex protein 

(MIBI high-purity gold-coated slides) staining and charged glass slides for FISH analysis of 

the RAHBT TMAs. The order of the slides for the different assays was as follows:

Slide 1–3: FISH/routine IHC – 4 um slices on charged slides

Slide 4–6: RNA/DNA sequencing – 7 um slices on LCM membrane glass slides

Slide 7: MIBI analysis – 4 um slices on gold coated slides

Slide 8–10: FISH/routine IHC – 4 um slices on charged slides
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Slide 11–13: RNA/DNA sequencing – 7 um slices on LCM membrane slides

Slide 14: MIBI analysis – 4 um slices on gold coated slides

Slide 15–17: FISH/routine IHC – 4 um slices on charged slides

Slide 18 H&E stained.

Digital H&E generation (scanners)—At Washington University School of Medicine, 

the H&E original slide and TMA slide for RAHBT was imaged (20x) by Aperio AT2 

(Leica). ImageScope provides the software for viewing the slides. Images are stored on 

secure servers in the Dept of Pathology, Washington University School of Medicine.

Pathologic analysis and masking—For the TBCRC cohort, whole slide images of the 

H&E slide made from the block sourced for DNA and RNA was reviewed and scored for 

grade, presence of necrosis and architecture by a breast pathologist (AH). For the RAHBT 

LCM cohort, H&E images from the TMAs were used to score for grade, presence of 

necrosis and architecture by four breast pathologists (DJV, AH, SS, RBW). Areas of DCIS 

and normal tissue from the RAHBT TMAs were annotated and masked for LCM by two 

breast pathologists (SS and RBW).

Laser Capture microdissection—Consecutive sections of tissue microarray blocks 

were cut and mounted on PEN membrane slides. Slides were dissected immediately after 

staining on an Arcturus XT LCM System based on the masked areas. Epithelial and stromal 

sections were dissected separately (Figure S1). Each sample adhere to a CapSure HS LCM 

Cap (Thermo Fisher #LCM0215). After LCM, the cap was sealed in an 0.5 mL tube 

(Thermo Fisher #N8010611) and stored at −80°C until library preparation. The matching 

epithelial regions in consecutive slides were dissected for corresponding DNA libraries.

RNA-sequencing (smart-3seq)—Sequencing libraries were prepared according to the 

Smart-3SEQ method35 starting from dissected FFPE tissue on an Arcturus LCM HS Cap, 

except for the unique P5 index and universal P7 primers. Three control samples were 

added to each library preparation batch and sequence batch to allow batch effect analysis. 

Libraries were pooled together according to qPCR measurements and prepared according 

to the manufacturer’s instructions with a 1% spike-in of the PhiX control library (Illumina 

#FC-110–3002) and sequenced on an Illumina NextSeq 500 instrument with a High Output 

v2.5 reagent kit (Illumina # 20024906).

ER, HER2 status—Clinical ER status (by IHC) was available for 83.3% (180 of 216) of 

the TBCRC cohort, 83.5% (81 of 97) of the RAHBT cohort, and 46.8% (124 of 265) of the 

RAHBT LCM cohort.

Additionally, we called ER and HER2 positivity based on mRNA abundance levels of ESR1 
and ERBB2, respectively. We applied a Gaussian mixture model with two components using 

the mclust R package (v5.4.7).
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PAM50 and IC10—PAM50 subtypes were called using the genefu36 v2.22.1 R package. 

We compared the PAM50 subtypes called by genefu against subtypes called adjusting for 

the expected proportion of ER+ samples, as implemented in19. We found both methods to 

be highly concordant (>96% concordance). We compared the correlation of DCIS and IBC 

samples to the PAM50 centroids within the genefu R package using Spearman’s correlation. 

We also compared the silhouette widths based on Euclidean distances of the PAM50 

subtypes to the de novo DCIS subtypes using the cluster R package (v2.1.1). IC10 subtypes 

were called using the iC10 (v1.5) R package. PAM50 subtypes were called in TBCRC 

and RAHBT separately, using the same protocols, given the differences in measurement 

techniques used in the two cohorts.

To compare PAM50 centroids in DCIS to TCGA: The TCGA cohort was downsampled 

to match the size of the DCIS cohort. The downsampling was repeated 1,000 times, and 

the median correlation for each of the 1,000 iterations was compared to the median DCIS 

correlations.

Differential abundance analyses—Differential abundance analysis was performed 

using the R package DESeq2 v1.30.137 with default options. P-values were adjusted 

for multiple testing using the Benjamini-Hochberg method. FDR<0.05 was considered 

significant for all DESeq2 analyses. Reads matrices were VST normalized for downstream 

analyses.

Unsupervised clustering: non-negative matrix factorization—We identified RNA 

and CNA based clusters by non-negative matrix factorization using the NMF R 

package v0.23.038. Each NMF rank was run 30 times to evaluate cluster stability. We 

comprehensively evaluated 2–10 clusters for each data type and evaluated cluster fit by 

cophenetic and silhouette values. RNA clusters were first discovered in TBCRC and 

replicated in RAHBT. We evaluated replication by quantifying the concordance of de novo 

clusters identified in RAHBT vs clusters determined from centroids identified in TBCRC.

CNA clusters were discovered in TBCRC and RAHBT jointly and compared against clusters 

identified in TBCRC and RAHBT individually to ensure robustness.

CIBERSORTx—Using single-cell RNA-seq datasets, a breast specific signature matrix 

was built to resolve proportions of tumor, fibroblasts, endothelial and immune cells from 

bulk RNA-seq data39. scRNAseq data was downloaded from Gene Expression Omnibus 

database (GEO data repository accession numbers GSE114727, GSE114725). Normalized 

counts were obtained using Seurat R package (v3.2.0), and used as single cell matrix 

input alongside with their cell type identities (code available: https://cibersortx.stanford.edu/, 

default parameters for “Create Signature Matrix/ scRNAseq input data”)40. The resultant 

signature matrix contained 3484 genes and allowed to resolve different immune cell types, 

including B, CD8 T, CD4 T, NKT, NK, mast cells, neutrophils, monocytes, macrophages 

and dendritic cells (code available https://cibersortx.stanford.edu/, “Impute Cell Fractions/

Enable batch correction S-mode”, and default parameters). The signature matrix was first 

in-silico validated. In order to test the accuracy of the signature matrix, a set of samples 

(1/10 of each type) from the same scRNAseq dataset was reserved to build a synthetic 
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matrix of bulk RNA-seq data. By mixing different proportions of single cell transcripts, the 

synthetic bulk was used to predict cell type proportions and subsequently correlated with 

the true proportions used to build the synthetic mix. Pearson’s coefficient was >0.75 in all 

the cases, and most >0.9. The aforementioned matrix was used to deconvolve the LCM 

RNA-seq samples and to compare CSx-estimated cell abundance with MIBI-identified cell 

types. Cell abundance between groups was compared by Wilcoxon rank sum test followed 

by Benjamini-Hochberg correction for multiple testing.

Shared Nearest Neighbor clustering—LCM stromal samples from RAHBT were 

classified using the Shared Nearest Neighbor clustering method implemented in the Seurat 

R package (v3.2.0). Data was normalized by negative binomial regression (sctransform R 

package, v0.3.2, variable.feature.n = “all.genes”). The first 15 principal components were 

used to identify the clusters and 16 different resolutions were compared, selecting resolution 

0.75 and four clusters as the final solution. Positive markers were selected at a minimum 

fraction of 0.25 and the resultant gene list was used to further characterize each cluster 

by gene ontology and KEGG pathway analysis, implemented in clusterProfiler R package 

(version 3.18.1).

Pathway & Gene Set Enrichment Analyses—Gene set enrichment analyses were 

performed using fgsea R package (v1.12.0) based on the MSigDB Hallmark pathways v7.4, 
41. All genes from differential abundance analyses were included and were ranked by their 

signed adjusted P-values. Pathways were considered enriched if adjusted P-values<0.05. We 

evaluated pathway concordance across the DCIS subtypes using a hypergeometric test.

Single sample gene set variation analysis was performed using the GSVA R package42 

(v1.38.2) using default parameters.

Outcome analysis—Associations with time to event were quantified using Cox 

Proportional Hazard model correcting for treatment as indicated in the text. To standardize 

follow-up across TBCRC and RAHBT, we censored the follow-up time at 250 months, the 

maximum follow-up time in TBCRC. Kaplan-Meier plots as implemented in the R packages 

survival (v3.2.10) and survminer (v0.4.9) were used to visualize outcome differences.

The 812 gene classifier was built using the cforest implementation of Random Forest in 

the Caret (v6.0–91) R package using default parameters. The TBRCR cohort was used as 

the training cohort and the model was tested on the RAHBT cohort. Hyperparameters were 

tuned on the training cohort using four-fold cross validation. The mtry parameters 5, 20, 50, 

100, 200, 500, and 800 were tested and the optimal mtry selected was 5. Accuracy of the 

classifier was assessed using ROC curve, Precision, Recall, and F1 score.

Breast cancer data (BRCA) from TCGA was downloaded from https://www.cancer.gov/tcga. 

A total of 1064 samples with available follow-up information was used to test the 812 

gene classifier towards progression-free survival and overall survival as defined in the 

TCGA-BRCA metadata.
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RNA for the TCGA samples was normalized using the same protocols as the DCIS RNA-

sequencing (TBCRC and RAHBT cohorts, above). The accuracy of the classifier in the 

TCGA cohort was assessed using ROC curve, Precision, Recall, and F1 score.

DNA-sequencing—Genomic DNA was isolated from LCM FFPE cells using PicoPure 

DNA Extraction kit (Thermo Fisher Scientific # KIT0103). 50ul lysis buffer with Proteinase 

K were added to each sample and incubated at 65°C overnight. After inactivating proteinase 

K, the genomic DNA was cleaned up with AMPure XP beads at 3:1 ratio (Beckman 

Coulter# A63880) and eluted in the 10mM Tris-HCl (pH8.0).

DNA Libraries were constructed with KAPA HyperPlus Kit (Kapa Biosystems 

#07962428001). Barcode adapters were used for multiplexed sequencing of libraries with 

SeqCap Adapter Kit A (Kapa Biosystems #7141530001). DNA libraries were amplified by 

19 PCR cycles. AMPure XP beads were used for the size selection and cleaning up. DNA 

libraries were eluted in the 30 μL 10mM Tris-HCl (pH8.0).

Library size distribution was assessed on an Agilent 2100 Bioanalyzer using the DNA 1000 

assay and the concentration was measured by Qubit® dsDNA HS Assay Kit (Thermo Fisher 

Scientific # Q32851). For each lane, 12 samples were pooled and sequenced by Novogene 

(Sacramento, CA, US) on the Illumina HiSeq Platform, collecting 110G per 275M reads 

output of paired-end reads of 150 bp length.

Identification of recurrent CNAs (GISTIC)—Recurrent CNAs were identified from 

purity-adjusted segment CNA calls from QDNASeq for 228 DCIS samples using GISTIC2 

v2.0.2343 run with the following parameters: -ta 0.3 -td 0.3 -qvt 0.05 -brlen 0.98 -conf 0.95 

-armpeel 1 -res 0.01 -rx 0. To ensure CNAs were not biased by sequencing depth, recurrent 

CNAs significantly associated (FDR<0.05) with the number of uniquely mapped reads were 

filtered out. Associations were quantified by Mann-Whitney test. The number of uniquely 

mapped reads was determined from samtools flagstat (v1.9).

MIBI—We used a MIBI panel consisting of 37 metal-conjugated antibodies that capture 16 

different cell types including epithelial, fibroblasts, and immune cell types. We took tissue 

sections from adjacent sections to those used for RNA-seq to spatially align the same ducts 

for both MIBI and RNA. For full details of the MIBI methods, see the companion paper22. 

Briefly, antibodies were conjugated to isotopic metal reporters. Tissues were sectioned (5μm 

section thickness) from tissue blocks on gold and tantalum-sputtered microscope slides. 

Imaging was performed using a MIBI-TOF instrument with a Hyperion ion source.

Multiplexed image sets were extracted, slide background-subtracted, denoised, and 

aggregate filtered. Nuclear segmentation was performed using an adapted version of the 

DeepCell CNN architecture. Single cell data was extracted for all cell objects and area 

normalized. The FlowSOM R package v1.22.044 was used to assign each cell to one of five 

major cell lineages (tumor, myoepithelial, fibroblast, endothelial, immune). Immune cells 

were subclustered to delineate B cells, CD4+ T cells, CD8+ T cells, monocytes, MonoDC 

cells, DC cells, macrophages, neutrophils, mast cells, double-negative CD4−CD8− T cells, 

and HLADR+ APC cells. Tumor and fibroblast cells were similarly sub clustered to reveal 
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phenotypic subsets. A total of 16 cell populations were quantified and analyzed. For full 

details of the MIBI methods, see the companion paper22.

Data visualization—Boxplots, heatmaps, scatterplots and barplots were generated using 

the BoutrosLab.plotting.general R package v6.0.3 45, or the R packages ggplot2 (v3.3.3, 

boxplots), corrplot (v0.84, scatterplots), and ComplexHeatmap (v.2.6.2, heatmaps). UMAPs 

were generated using the umap (v0.2.7.0) R package with the number of genes indicated in 

the text. Mosaic plots were generated using the vcd (v1.4.8) R package.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq processing—RNA sequencing data was processed with 3SEQtools (https://

github.com/jwfoley/3SEQtools). Single-end Illumina FASTQ files were generated from 

NextSeq BCL files with bcl2fastq (v2.20.0.422) and then aligned to reference hg38 with 

STAR aligner (v2.7.3a). Samples that did not meet a minimum threshold of uniquely aligned 

reads were filtered out. The samples in this study averaged 1.11 million uniquely aligned 

reads. Gene expression matrices of raw and normalized read counts were produced from 

BAM files with featureCounts (v1.6.4) of the Subread package (v2.4.2) and GENCODE 

Release 33.

Read counts were normalized using the variance stabilizing transformation (VST) 

implemented in the R package, DESeq2 (v1.30.1)37. The VST normalization procedure 

normalizes for library size and returns a matrix that is approximately homoscedastic. The 

same normalization method was used for both the TBCRC and RAHBT cohorts individually.

DNA-seq processing—Low-pass WGS data were preprocessed using the Nextflow-

base pipeline Sarek46 v2.6.1 with BWA v0.7.17 for sequence alignment to the reference 

genome GRCh38/hg38 and GATK47 v4.1.7.0 to mark duplicates and calibration. The 

recalibrated reads were further processed and filtered for mappability, GC content using 

the R/Bioconductor quantitative DNA-sequencing (QDNAseq) v1.22.0 with R v3.6.0. 

For QDNAseq, 50-kb bins were generated from (http://doi.org/10.5281/zenodo.4274556). 

We kept only autosomal sequences after filtering due to low-depth mappability and GC 

correction. We used the QDNAseq corrected output and segmented for CN analysis 

using the circular binary segmentation (CBS) algorithm from DNAcopy R/Bioconductor 

package v1.60.0. Copy number aberrations were called using CGHcall v2.48.048. The R/

Bioconductor package ACE v1.4.049 was used to estimate purity and ploidy. Proportion of 

the genome copy number altered (PGA) was calculated based on CNAs with |log2 ratio| > 

0.3 based on the following:

PGA = number of bases in CNA
total unmber of bases profiled

Statistical analyses—We used Mann-Whitney U test to compare continuous distributions 

between two groups, as specified in the text. We used the Kruskal-Wallis test to compare 

continuous values between three groups. All statistical analyses were implemented in the 

R statistical language (v3.6.1). P-values were corrected for multiple hypothesis testing via 
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Bonferroni (when <10 independent tests) or Benjamini & Hochberg (when >10 independent 

tests).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Development of a new classifier for DCIS recurrence or progression

• Outcome associated pathways identified across multiple data types and 

compartments

• Four stroma-specific signatures identified

• CNAs characterize DCIS subgroups associated with high-risk invasive 

cancers
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Figure 1. Cohorts and methods outline
Two retrospective study cohorts were generated, consisting of ductal carcinoma in situ 

(DCIS) patients with either a subsequent ipsilateral breast event (iBE) or no later events 

after surgical treatment. TBCRC samples were macrodissected for downstream RNA and 

DNA analyses. RAHBT samples were 1) macrodissected like TBCRC, or 2) organized into a 

tissue microarray (TMA) from which serial sections were made for RNA, DNA, and protein 

(MIBI) analysis (RAHBT LCM cohort). TMA cores were laser capture microdissected to 

ensure pure epithelial and stromal components. See also Tables S1 and S2.
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Figure 2. Identification, training, and validation of 812 gene classifier
A) Heatmap of 812 differentially expressed (DE) genes from cases vs controls analysis 

(5-year outcome) in TBCRC. Covariates show ER and HER2 status, DCIS grade, treatment, 

and type of iBE/no iBE. B) ROC curve of the 812 gene classifier in RAHBT. C) Kaplan-

Meier plot of time to iBE (5-year outcome) stratified by classifier risk groups in RAHBT. D-
E) Kaplan-Meier plot of time to invasive progression (full follow-up) stratified by classifier 

risk groups in TBCRC (D) and RAHBT (E). C-E) P-values from log-rank tests. F-G) Forest 

plot of multivariable Cox regression analysis including classifier risk groups, treatment, age, 

Strand et al. Page 28

Cancer Cell. Author manuscript; available in PMC 2023 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DCIS grade, and ER status for invasive iBEs (full follow-up) in TBCRC (F) and RAHBT 

(G). See also Figure S1 and Table S3.
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Figure 3. Outcome-associated pathways in individual samples
A) Heatmap of single-sample Gene Set Variation Analysis of 11 Hallmark pathways 

associated with recurrence. B) Percentage of samples in 5-year outcome groups enriched 

for each pathway in A). C) Plot of Pearson’s correlations between pathways in A). Blue: 

Positive. Red: Negative. White: P>0.05. Color intensity and circle size are proportional to 

correlation coefficients.

Strand et al. Page 30

Cancer Cell. Author manuscript; available in PMC 2023 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Transcriptomic DCIS subtypes correlate with outcome pathways
A) Heatmap of 90 informative genes, contributing to the three subtypes in TBCRC samples. 

Covariates indicate PAM50 and IC subtypes and ERBB2 and ESR1 mRNA abundance 

for each sample. B) Heatmap of DCIS subtypes in RAHBT. C) Gene Set Enrichment 

Analysis with Hallmark gene sets of each cluster vs rest for TBCRC and RAHBT LCM 

(outcome-associated pathways only). Dot size and color indicate magnitude and direction of 

pathway deregulation. Background shading indicates false discovery rate (FDR). Covariates 

indicate DCIS subtype and cohort. Effect size and FDR from GSEA algorithm. D) Box 
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plots of HER2, ER, Ki67, and GLUT1 expression by MIBI in DCIS subtypes. Dot 

color indicates ERBB2 genomic amplification level. E) Representative MIBI images of 

the three subtypes. White=Nuc; Blue=PanKRT; Yellow=SMA; Pink=GLUT1; Cyan=HER2; 

Green=ER; Red=Ki67. F) Boxplot of myoepithelial ECAD frequency by MIBI in the three 

subtypes. P-values from Wilcoxon rank sum test. D, F): Boxplot represents median, 0.25 

and 0.75 quantiles with whiskers at 1.5x interquartile range. See also Figure S2.
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Figure 5. Characteristic IBC CNAs are present in DCIS
A) Heatmap (log2 copy number) of 29 recurrently altered copy number alterations (CNAs) 

in each sample grouped by 5-year outcome groups (top bar). Red = gain. Blue = loss. 

Middle barplot: Proportion of samples with each CNA. Right barplot: FDR from Kruskal-

Wallis test of each CNA with outcome groups. B-C) Boxplot showing Proportion of the 

Genome copy number Altered (PGA) by 5-year outcome groups (B) and classifier risk 

groups (C). P-values from Kruskal-Wallis test. Boxplot represents median, 0.25 and 0.75 

quantiles with whiskers at 1.5x interquartile range. D) Unsupervised clustering of CNA 
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landscape identified eight clusters. Heatmap of genomic segments (log2 copy number) in 

TBCRC and RAHBT samples. Covariates indicate ER and HER2 status (RNA-derived) 

and chromosomes for each segment. E) Boxplots of log2 copy numbers across the eight 

clusters, representing median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile 

range. F) GSEA Hallmark analysis of DE genes in matched RNA samples by DNA cluster 

for TBCRC and RAHBT, outcome-associated pathways only. Dot size and color represents 

the magnitude and direction of pathway deregulation. Background shading indicates FDR. 

Effect size and FDR from GSEA algorithm. See also Figure S3 and Table S4.
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Figure 6. TME analysis
A) UMAP of DCIS stromal transcriptome colored by four identified clusters. B) Heatmap of 

top 10 up-regulated genes for each stromal cluster. C) GSEA Hallmark analysis of DE genes 

in each cluster vs rest, outcome-associated pathways only. Dot size and color represents 

the magnitude and direction of pathway deregulation. Background shading indicates FDR. 

Effect size and FDR from GSEA algorithm. D) MIBI-estimated cell density within clusters. 

Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range. 

E) Deconvolution analysis by CSx of epithelial and stromal LCM samples grouped by 
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stromal clusters displaying immune cell and fibroblast abundance. F) Representative MIBI 

images of clusters reflecting different fibroblast states and total immune density. Top left: 

normal-like. Top right: Collagen rich (FAP+). Bottom left: Desmoplastic (SMA+). Bottom 

right: Immune dense (CD45 high). H3, histone 3; VIM, vimentin; panCK, pan cytokeratin; 

SMA, smooth muscle actin; FAP, fibroblast activated protein. G) CSx-inferred cell type 

distribution between cases with iBEs vs controls, TBCRC and RAHBT combined. Boxplot 

represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range. Only 

cell types with FDR<0.05 shown (Wilcoxon rank sum test). See also Figures S4–6 and Table 

S5.

Strand et al. Page 36

Cancer Cell. Author manuscript; available in PMC 2023 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Strand et al. Page 37

Table 1.

Breast Pre-cancer Atlas Patient Cohorts with RNA-seq data and ipsilateral breast event used for outcome 

analysis.

TBCRC RAHBT

DCIS without 
recurrence 

(N=95)

DCIS with 
DCIS 

Recurrence 
(N=66)

DCIS with 
Invasive 

Recurrence 
(N=55)

DCIS without 
recurrence 

(N=68)

DCIS with 
DCIS 

Recurrence 
(N=15)

DCIS with 
Invasive 

Recurrence 
(N=14)

Year of Diagnosis

Median 2009 2008 2006 2006 2008 2009

Age at Diagnosis

Median 54 54 50 52 53 52

Mean (±SD) 54.4 (±8.5) 55.2 (±9.8) 52.6 (±9.8) 53.1 (±7.2) 52.,5 (±6.0) 55.1 (±11.1)

Grade

1 5 [5.3%] 6 [9.0%] 3 [5.5%] 18 [26.5%] 4 [26.7%] 3 [21.4%]

2 37 [38.9%] 26 [39.4%] 19 [34.5%] 28 [48.2%] 4 [26.7%] 8 [57.1%]

3 53 [55.8%] 34 [51.5%] 33 [60.0%] 22 [32.4%] 7 [46.7%] 2 [21.4%]

Pathologic Tumor Size

Median 2.1 1.5 1.9

Mean (±SD) 2.7 (±1.9) 2.2 (±2.0) 2.8 (±2.6)

Marker Status

ER(+) 60 [63.2%] 41 [62.1%] 37 [67.3%] 55 [80.9%] 8 [53.3%] 12 [85.7%]

ER(−) 35 [36.8%] 25 [37.9%] 18 [32.7%] 13 [19.1%] 7 [46.7%] 2 [14.3%]

ER(+) Dx before 2000 0 2 [3.0%] 4 [7.3%] 3 [4.4%] 0 3 [21.4%]

ER(+) Dx 2000 & after 60 [63.2%] 39 [59.1%] 33 [60.0%] 52 [76.5%] 8 [53.3%] 9 [64.3%]

ER(−) Dx before 2000 0 0 1 [1.8%] 2 [2.9%] 2 [13.3%] 0

ER(−) Dx 2000 & after 35 [36.8%] 25 [37.9%] 17 [30.9%] 11 [16.2%] 5 [33.3%] 2 [14.3%]

Treatment

Lumpectomy+Radiation 58 [61.1%] 40 [60.6%] 22 [40.0%] 6 [8.8%] 2 [13.3%] 2 [14.3%]

Lumpectomy−Radiation 5 [5.3%] 16 [25.2%] 12 [21.8%] 45 [66.2%] 11 [73.3%] 8 [57.1%]

Lumpectomy Radiation 
Unknown

1 [1.1%] 1 [1.5%] 2 [3.6%] 0 0 0

Mastectomy 31 [32.6%] 9 [13.6%] 19 [34.5%] 17 [25.0%] 2 [13.3%] 4 [28.6%]

Time to 
Recurrence*(months)

Mean (±SD) 105.7 (±37.0) 52.7 (±39.9) 71.2 (±43.9) 139.8 (±52.7) 54.9 (±40.4) 73.4 (±68.4)

Median 96 40 58 141 36 47

Margins

Ink on tumor 0 0 0 0 0 0

<2mm 27 [28.4%] 28 [42.4%] 17 [30.9%] 15 [22.1%] 4 [26.7%] 6 [42.9%]

Cancer Cell. Author manuscript; available in PMC 2023 December 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Strand et al. Page 38

TBCRC RAHBT

DCIS without 
recurrence 

(N=95)

DCIS with 
DCIS 

Recurrence 
(N=66)

DCIS with 
Invasive 

Recurrence 
(N=55)

DCIS without 
recurrence 

(N=68)

DCIS with 
DCIS 

Recurrence 
(N=15)

DCIS with 
Invasive 

Recurrence 
(N=14)

At least≥ 2mm 37 [38.9%] 25 [37.9%] 21 [38.2%] 11 [16.2%] 4 [26.7%] 1 [7.1%]

Clear, unknown mm 31 [32.6%] 13 [19.7%] 17 [30.9%] 42 [61.8%] 7 [46.7%] 7 [50.0%]

Race

White 62 [65.2%] 38 [57.6%] 28 [50.9%] 44 [64.7%] 10 [66.7%] 9 [64.3%]

Black 22 [23.2%] 21 [31.8%] 22 [40.0%] 24 [35.3%] 5 [33.3%] 5 [35.7%]

Asian 2 [2.1%] 1 [1.5%] 2 [3.6%] 0 0 0

Pacific Islander 0 1 [1.5%] 0 0 0 0

Other 0 0 0 0 0 0

Unknown 9 [9.5%] 5 [7.6%] 3 [5.5%] 0 0 0

*
To end of follow-up for no recurrence. See also Table S1.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies Abcam ab212156

CK7 Spring M3524.C

VIM Cell Signaling Technologies 5741BF

CD44 Thermo Fisher Scientific MA5-13890

CK5 Spring M3274.C

PanCK Thermo Fisher Scientific MS-343_PABX

HIF1A Abcam ab210073

CD45 Cell Signaling Technologies 13917BF

AR Cell Signaling Technologies 5153BF

HLADR/DP/DQ Abcam ab209968

GLUT1 Abcam GR32744795

ECAD Abcam ab201499

CD20 Cell Marque 120M-8-Oem

MMP9 Abcam ab204850

FAP R&D Systems AF3715

CD11c Abcam ab216655

HER2 Millipore 3013420

CD3 Cell Signaling Technologies 85061BF

CD8 Cell Marque 107M-9-OEM

CD36 Cell Signaling Technologies 14347BF

MPO R&D Systems AF3667

CD68 Cell Signaling Technologies 76437BF

pS6 Cell Signaling Technologies 4858BF

Granzyme B Abcam ab219803

P63 Cell Signaling Technologies 39692BF

Ki67 Cell Signaling Technologies 9449BF

IDO1 Spring M5604.C

Anti-Biotin BioLegend 409002

CD31 Abcam ab216459

PD1 Cell Signaling Technologies 86163BF

CD14 Cell Signaling Technologies 56082BF

CD4 Abcam ab181724

Anti-Alexa488 Thermo Fisher Scientific A11094

Collagen 1 Abcam EPR7785

SMA Abcam ab242395

COX2 Spring M3214.C

Histone H3 Cell Signaling Technologies 4499BF

ER Abcam ab205850
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REAGENT or RESOURCE SOURCE IDENTIFIER

PDL1-biotin Cell Signaling Technologies 13684S

Chemicals, peptides, and recombinant proteins

SMARTScribe reverse transcriptase Clontech 639537

SUPERase• In RNase inhibitor Thermo Fisher Scientific AM2694

AMPure XP SPRI bead mix Beckman Coulter A63880

Kapa HiFi HotStart ReadyMix Kapa KK2601

Proteinase K, 20 mg/mL NEB P8107S

Proteinase K inhibitor Millipore 537470

dNTP mix, 10 mM ea. Thermo Fisher Scientific R0191

PhiX control library Illumina FC-110-3002

TBS IHC Wash Buffer with Tween 20 Cell Marque Cat#935B-09

PBS IHC Wash Buffer with Tween 20 Cell Marque Cat#934B-09

Target Retrieval Solution, pH 9, (3:1) Agilent (Dako) Cat#S2375

Avidin/Biotin Blocking Kit Biolegend Cat#927301

Gelatin (cold water fish skin) Sigma-Aldrich Cat#G7765-250

Xylene Histological grade Sigma-Aldrich Cat#534056-500

Glutaraldehyde 8% Aqueous Solution EM Grade EMS Cat#16020

Normal Donkey serum Sigma-Aldrich Cat#D9663-10ML

Bovine Albumin (BSA) Fisher Cat#BP1600-100

Centrifugal filters (0.1 μm) Millipore Cat#UFC30VV00

Biological samples

The Resource of Archival Breast Tissue (RAHBT) 
cohort, collected at Washington University in St. 
Louis.

HTAN portal https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs002371.v1.p1

The Translational Breast Cancer Consortium 
(TBCRC) 038 cohort collected at 12 participating 
sites and administered by Duke University.

HTAN portal https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs002371.v1.p1

Critical commercial assays

NextSeq 500/550 High Output Kit v2.5 (75 Cycles) Illumina 20024906

KAPA HyperPlus Kit Kapa Biosystems #07962428001

SeqCap Adapter Kit A Kapa Biosystems #7141530001

Qubit® dsDNA HS Assay Kit (#) Thermo Fisher Scientific #Q32851

PicoPure DNA Extraction kit Thermo Fisher Scientific #KIT0103

MIBItag Conjugation Kit IONpath Cat#600XXX

ImmPRESS UNIVERSAL (Anti-Mouse/Anti-
Rabbit) IgG KIT (HRP)

Vector Laboratories Cat#M P-7500-15

ImmPACT DAB (For HRP Substrate) Vector Laboratories Cat#SK-4105

Deposited data

TBCRC & RAHBT RNA and DNA sequencing data HTAN portal https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs002371.v1.p1

TBCRC & RAHBT metadata HTAN portal (Atlas name: HTAN 
Duke)

https://humantumoratlas.org (Atlas name: 
HTAN Duke)
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REAGENT or RESOURCE SOURCE IDENTIFIER

RAHBT MIBI imaging data HTAN portal (Atlas name: HTAN 
Duke)

https://www.humantumoratlas.org (Atlas 
name: HTAN Duke)

Software and algorithms

Data analysis using R R NA

Analysis code for R Mendeley https://data.mendeley.com/datasets/
tbzv5hpvw5/1
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