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Abstract

The advances in ligand binding affinity prediction have been fostered by system generation tools 

and improved force fields (FFs). CHARMM-GUI Free Energy Calculator provides input and 

post-processing scripts for AMBER-TI free energy calculations with various FFs. In this study, 

we used 12 different FF combinations (ff14SB and ff19SB for protein, GAFF2.2 and OpenFF 

for ligand, and TIP3P, TIP4PEW, and OPC for water) to calculate relative binding free energies 

(ΔΔGbind) for 80 alchemical transformations (among the JACS benchmark set) with different 

numbers of λ windows (12 or 21) and simulation times (1, 5, or 10 ns). Our results show that 12 

λ windows and 5 ns simulation time for each window are sufficient to obtain reliable ΔΔGbind 

with 4 independent runs for the current benchmark set. While there is no statistically noticeable 

performance difference among 12 different FF combinations compared to the experimental values, 

a combination of ff14SB + GAFF2.2 + TIP3P FFs appears to be best with a mean unsigned 

error of 0.87 [0.69, 1.07] kcal/mol, a root-mean-square error of 1.22 [0.94, 1.50] kcal/mol, a 

Pearson’s correlation of 0.64 [0.52, 0.76], a Spearman’s correlation of 0.73 [0.58, 0.83], and a 

Kendell’s correlation of 0.54 [0.42, 0.64]. This large-scale ΔΔGbind calculation study provides 

useful information about ΔΔGbind prediction with different AMBER FF combinations and presents 

valuable suggestions for FF selection in AMBER-TI ΔΔGbind calculations.

Graphical Abstract

*Corresponding Author: wonpil@lehigh.edu. 

SUPPORTING INFORMATION
The Supporting Information is available free of charge.
The 10 transformations for each protein system (Table S1), the structures of 10 pairs in BACE1 (Table S2), the overall workflow of 
system preparation and simulation procedure (Figure S1), the correlation between predicted and experimental ΔΔGbind values for 8 
protein systems using ff19SB + GAF2.2 + OPC and 12 λ or 21 λ (Figure S2), and the correlation between predicted and experimental 
ΔΔGbind values for 8 protein systems with 12 FF combinations (Figure S3).

Conflict of Interest
W.I. is the co-founder and CEO of MolCube INC.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2022 December 22.

Published in final edited form as:
J Chem Inf Model. 2022 December 12; 62(23): 6084–6093. doi:10.1021/acs.jcim.2c01115.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Ligand binding interactions often alter target protein conformations,1–3 and thus protein 

functions and biological activities can be regulated by ligand binding.4–6 A ligand with 

a high binding affinity to a target protein can occupy the ligand binding site, trigger a 

physiological response, and achieve an expected therapeutic effect with a relatively low 

ligand concentration.7 This is the reason why a greater affinity of compounds to their target 

protein is one of the crucial features of new drug candidates. However, experimental high-

throughput ligand screening is costly and time-consuming. Thus, computational protein-

ligand binding affinity prediction methods, such as molecular docking,7, 8 molecular 

mechanics/generalized Born surface area (MM/GBSA),9 molecular mechanics/Poisson-

Boltzmann surface area (MM/PBSA),10 and alchemical free energy calculations,11–14 have 

become popular since they require less resources and time, but yield reasonable accuracy. 

Among them, alchemical free energy calculations have shown a high accuracy in ligand 

binding affinity prediction and have been used as an important tool in computer-aided drug 

discovery and drug design.

Ligand binding free energy calculations can be classified into absolute and relative ones, 

which are determined by the thermodynamic end states.15 The protein-ligand relative 

binding free energy (ΔΔGbind) calculations require less computational time than their 

absolute counterparts,16–19 and can be estimated using thermodynamic integration (TI),20 

Bennett’s acceptance ratio (BAR),21 multistate-BAR (MBAR),22 or unbinned weighted 

histogram analysis method (UWHAM).23

The advances in ligand binding free energy calculations have been fostered by enhanced 

sampling algorithms, improved force fields (FFs), state-of-the-art high-performance 

computing architectures, and the tools to generate molecular systems reliably. The FF 

selection for protein, ligand, and water is vital to obtain accurate ligand binding free 

energies with alchemical free energy calculations. However, while there are many protein 

and ligand AMBER FFs and water models available, there are few systematic evaluation 

studies of these FFs that can inform the best combination for ligand binding free energy 

calculations.24, 25 Huggins assessed 3 protein FFs (ff15SB, ff15ipq, AMBER-FB15), 5 water 

models (SPC/E, TIP3P, TIP3P-FB, TIP4PEW, and TIP4PFB), and 1 ligand FF (GAFF2.1) 

with two partial charge models (AM1-BCC26 or RESP27) using OpenMM.24, 28, 29 It was 

reported that the ff15ipq + TIP3P + GAFF2.1 (AM1-BCC) FF combination presents the best 
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results. The author showed that there is no clear improvement using RESP for ligand charge 

in their ligand binding free energy calculations. Gapsys et al. tested AMBER99SB*ILDN 

and CHARMM36m for proteins, GAFF2.1, OpenFF1.2.0, and CGenFF3.0.1 for ligands 

using GROMACS.25, 30 AMBER99SB*ILDN + GAFF2.1 and AMBER99SB*ILDN + 

OpenFF1.2.0 performed better than CHARMM36m + CGenFF3.0.1. However, to the best of 

our knowledge, there is no study that comprehensively tests different FFs for AMBER-TI 

free energy calculations.

In this study, we systematically tested AMBER-TI31 with large-scale ΔΔGbind calculations. 

8 protein systems (BACE1, TYK2, CDK2, MCL1, JNK1, p38, Thrombin, and PTP1B) 

of the JACS benchmark set32 were used to examine which FF combination would give 

better ΔΔGbind prediction. 12 different FF combinations were tested for protein (ff14SB33 

and ff19SB34), ligand (GAFF2.235 and OpenFF1.3.036), and water models (TIP3P37, 

TIP4PEW38, and OPC39). In addition, the consensus FF approach, averaging out the 

predicted ΔΔGbind values from multiple FFs, is also used to further test the accuracy 

in ΔΔGbind estimation.40 This large-scale ΔΔGbind calculation study provides useful 

information about ΔΔGbind prediction using various AMBER FF combinations and presents 

a valuable guidance for consensus scoring and FF selection for AMBER-TI ΔΔGbind 

calculations.

METHODS

System and force field selection

To have a better comparison with the previous studies, we used the same 8 systems as in 

Wang et al (the so-called JACS benchmark set).32 The 8 systems and their PDB codes 

are BACE1 (PDB: 4DJW), TYK2 (PDB: 4GIH), CDK2 (PDB: 1H1Q), MCL1 (PDB: 

4HW3), JNK1 (PDB: 4GMX), p38 (PDB: 3FLY), Thrombin (PDB: 2ZFF), and PTP1B 

(PDB: 2QBS). To systematically and efficiently perform large-scale AMBER-TI ΔΔGbind 

calculations, we selected 10 transformations from each protein system (Table S1) whose 

ΔΔGbind values cover a relatively large range based on the experimental results. All 80 

transformation systems and inputs were prepared with the 12 different FF combinations 

using Free Energy Calculator in CHARMM-GUI.41–44 Both complex and ligand systems 

were prepared for a total of 960 transformations (i.e., 10 transformations × 8 proteins 

× 12 FFs). The ligand charges were calculated using AM1-Mulliken and AM1-BCC for 

OpenFF1.3.0 and GAFF2.2, respectively.26, 45

AMBER-TI

The following methods were used for all AMBER-TI simulations in this work. ΔΔGbind 

between two ligands (L0 to L1) is calculated as

ΔΔGbind
L0 L1 = ΔGcomplex

L0 L1 − ΔGligand
L0 L1 (1)

where ΔGcomplex
L0 L1 and ΔGligand

L0 L1 are the alchemical transformations of L0 to L1 in the 

complex and solution, respectively. In this study, the reported TI free energy values 

used the trapezoidal rule for the numerical integration to obtain all necessary ΔG values. 
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Long-range electrostatics was treated with the particle mesh Ewald (PME) method, and 

the van der Waals interactions were calculated with a cutoff distance of 10 Å.46, 47 The 

second-order smoothstep softcore potential, SSC(2), was applied.31 The values of 0.2 and 

50 Å2 were used for the parameters α and β of SSC(2), respectively. Equilibration was 

performed for 5 ps employing the NPT (constant particle number, pressure, and temperature) 

ensemble after minimization in each λ window. AMBER-TI simulations were performed 

in the NPT ensemble at 300 K and 1 atm (1.0135 bar) with the pmemd.cuda module 

of AMBER20.31 All simulations were performed sequentially from λ=0 to λ=1. The 

alchemical transformations in this work were done using the unified protocol with a 4 fs 

timestep and the hydrogen mass repartitioning scheme.48, 49 The last 4 ns of the simulation 

results of each λ was utilized for the final ΔΔGbind values for 5 ns AMBER-TI simulations, 

while the last 5 ns was used for 10 ns AMBER-TI simulations. For statistical analysis, 4 

independent runs were performed for each pair and the mean value was recorded as ΔΔGbind 

for all calculations throughout this work. The overall workflow of system preparation and 

simulation procedure is shown in Figure S1.

We first selected 10 pairs (Table S2) from the BACE1 benchmark set to test three 

different 12 λ sets and different simulation lengths (1, 5, or 10 ns) per each λ. The 

same FF combination, ff19SB + GAFF2.2 + OPC, was used to avoid any FF influence 

on ΔΔGbind. The three different 12 λ sets are based on a linear scheme (0.000, 0.091, 

0.182, 0.273, 0.364, 0.455, 0.545, 0.636, 0.727, 0.818, 0.909 and 1.000), the scheme used 

by Song et al. (0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 

0.79366, 0.88495, 0.95206, 0.99078),50 and the scheme used by Lee et al. (0.0000, 0.0479, 

0.1151, 0.2063, 0.3161, 0.4374, 0.5626, 0.6839, 0.7937, 0.8850, 0.9521, and 1.0000).51 

The convergence analysis was applied to ensure that the obtained 12 λ ΔΔGbind values 

were from the equilibrated simulations. For this, the trajectories used for the final ΔΔGbind 

were divided into 12 blocks to estimate the cumulative average ΔΔGbind in the forward 

direction. And, following Yang et al,52 the cumulative ΔΔGbind values were also obtained 

from the time-reversed data starting from the end of trajectories but using the same amount 

of simulation time.

Then, we tested different numbers of λ windows (12 or 21) and different simulation lengths 

(5 ns or 10 ns) per each λ with ff19SB + GAFF2.2 + OPC for 8 protein systems. Only the 

third scheme of 12 λ (used by Lee et al.) was used here. For 21 λ windows, λ values are 

from 0 to 1 with Δλ = 0.05. The ΔΔGbind values with 12 λ or 21 λ windows and 5 ns or 10 

ns simulation times were almost the same (see Results and Discussion).

Therefore, we chose the third 12 λ scheme and 5 ns simulation time per each λ to further 

test which FF combination is the best. For a consistent comparison, the same ligand-only 

systems were used if they contained the same FFs for the ligand and water model. For 

example, the complex systems with ff19SB + GAFF2.2 + OPC and ff14SB + GAFF2.2 + 

OPC share one ligand system with GAFF2.2 and OPC. Therefore, we built 960 alchemical 

transformation systems and ran a total of 5,760 (3,840 complex for ΔGcomplex and 1,920 

ligand systems for ΔGligand) AMBER-TI simulations. The agreement between the predicted 

ΔΔGbind values and the experiment was quantified by the mean unsigned error (MUE) 

and root-mean-square error (RMSE), and Pearson’s (rP), Spearman’s (ρ), and Kendell’s (τ) 
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correlations. 95% confidence intervals of MUE, RMSE, rP, ρ, and τ were obtained with 

bootstrapping by resampling ΔΔGbind values 5,000 times with replacement.

A consensus FF approach, the average of ΔΔGbind predicted by multiple FFs, was used 

to further check the accuracy of ΔΔGbind estimation. Gapsys et al. have pioneered the 

application of the consensus FF approach, which averages the estimated ΔΔGbind values 

from different FFs and multiple independent runs. For example, they calculated consensus 

ΔΔGbind by averaging the ΔΔGbind values from two FFs (Amber99SB*ILDN + GAFF2.1 

+ TIP3P and CHARMM36m+ CGenFF + TIP3P) and showed that the consensus approach 

yielded higher accuracy than the individual FF.53 In 2022, Gapsys et al mentioned that 

they did not include OpenFF into the consensus because of the high similarity between the 

early OpenFF version and GAFF2.1.25 However, it has been reported that small variations 

in FFs may cause significant differences in optimized geometries,54–56 indicating that 

minor differences might be enough to alter the geometries of ligands and present different 

ΔΔGbind values. In addition, both GAFF2.2 and OpenFF1.3.0 had substantial improvement 

compared to the previous versions. Therefore, we decided to apply the consensus FF 

approach by averaging ΔΔGbind values from 12 FFs and 4 independent runs of each FF 

to obtain the consensus results. In addition, to examine the performance of the consensus 

approach, we calculated the consensus results by averaging ΔΔGbind values from different 

FF combinations (see Results and Discussion).

RESULTS AND DISCUSSION

Number of λ windows and simulation length for AMBER-TI calculations

For the selected 10 pairs of the BACE1 benchmark set (Table S2), we first tested three 

different sets of 12 λ windows (see Methods) and different simulation lengths (1, 5, or 10 

ns) per each λ window. Each ΔΔG value was obtained from 4 independent runs of 1, 5, 

or 10 ns per windows simulations. Table 1 shows the results across three tested λ sets and 

three simulation lengths. Not surprisingly, longer simulations show better agreement with 

experiments because of the better convergence. In addition, the MUE, RMSE, rP, ρ, and 

τ show reasonable accuracy for the predicted ΔΔGbind from 1 ns and 5 ns simulations. To 

further investigate the accuracy of ΔΔGbind estimation from different simulation lengths, we 

plotted the predicted ΔΔGbind compared to experimental data (Figures 1A–1C). Clearly, the 

ΔΔGbind values from more extended simulations tend to be closer to the experiments since 

more results from 10 ns simulations (blue dots in Figure 1A–1C) are within 1 kcal/mol (e.g., 

dots distribute within the dashed lines), followed by 5 ns simulations (yellow dots), and then 

1 ns simulations (red dots). We observed the opposite signs between predicted ΔΔGbind and 

experimental ones from the results of 1 ns length of simulations for the transformation from 

CAT-13d to CAT-13h. For example, the experimental ΔΔGbind value for this pair is 0.84 

kcal/mol, but all three λ sets of 1 ns simulations showed the ΔΔGbind values (green in Figure 

1A–1C) are all negative (−0.69 ± 0.18, −0.32 ± 0.31, and −0.26 ± 0.20 kcal/mol. Therefore, 

to obtain higher accuracy of ΔΔGbind, we decided to use a longer simulation time (5 ns or 

10 ns) for the following study. For the performance comparison of different λ sets, three λ 
sets show similar results in terms of MUE, RMSE, rP, ρ, and τ and their 95% confidence 
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intervals (Table 1). Therefore, only the third scheme (used by Lee et al.)51 was used for the 

following study.

In addition, to ensure our results from the 12 λ and 5 ns simulation length are from 

the equilibrated simulations, the convergence analysis was performed. The convergence of 

ΔΔGbind from forward and time-reversed data and the overlap matrix for the transformation 

pair from CAT-13j to CAT-4o are shown in Figure 2A. As reported by Klimovich et al.,57 

the forward and time-reversed free energy estimations agree within errors, indicating that 

ΔΔGbind is converged well using 12 λ windows. Also, previous studies reported that the 

overlap matrix should be at least tridiagonal (i.e., green in Figure 2A) and the values in 

these diagonals should be higher than 0.03 to obtain trustworthy results.57 Therefore, both 

the forward and time-reversed free energy estimations and the overlap matrix show a good 

convergence and reliability of our simulations. The forward and time-reversed free energy 

estimations for the other 9 pairs are in Figure 2B, also indicating that our simulations with 

12 λ windows are well converged.

We also used TI-3 (cubic spline interpolation), BAR, and MBAR to obtain ΔΔGbind for 

the same pairs and the same trajectories to validate our analysis from TI (based on the 

trapezoidal rule). TI-3 performs the integration from a natural cubic spline interpolation to 

obtain the free energy values. Figure 1D is a spider plot comparing the results from TI and 

other estimation methods using the results from the third 12 λ scheme (e.g., used by Lee et 

al.) and 5 ns simulations. The range of estimation difference between TI and BAR (blue in 

Figure 1D) is from 0.00 ± 0.07 (pair CAT-4m → CAT-4p) to 0.07 ± 0.38 (pair CAT-17b → 
CAT-17e) kcal/mol. For the comparison between TI and MBAR (orange in Figure 1D), the 

largest difference is 0.13 ± 0.21 kcal/mol (pair CAT-13d → CAT-13h) and the smallest one 

is 0.01 ± 0.05 kcal/mol (pair CAT-4m → CAT-4p). Between TI and TI3 (purple in Figure 

1D), the difference is from 0.00 to 0.08 kcal/mol. Overall, the estimated results obtained 

from TI, TI-3, BAR, and MBAR are almost indistinguishable. Therefore, our calculation of 

TI (e.g., trapezoidal rule) appears to be appropriate and the trapezoidal numerical integration 

is used to do the TI calculation for the following study.

Next, we further tested two simulation lengths (5 or 10 ns per window) using 8 protein sets. 

In addition, two different numbers of λ windows (12 or 21 λ windows) were tested. Our 

results in Table 2 (MUE, RMSE, rP, ρ, τ, and their 95% confidence intervals) and Figure 

S2 show that the ΔΔGbind values with 12 λ or 21 λ windows and 5 ns or 10 ns simulation 

time are very similar, indicating that 12 λ windows and 5 ns simulation time are sufficient to 

obtain reliable ΔΔGbind with 4 independent AMBER-TI runs.

All AMBER-TI simulations for the BACE1 complex systems (~86,000 atoms) were 

conducted using one GTX 1080 Ti or one RTX 2080 Ti GPU with a speed of approximately 

71 ns/day or 169 ns/day, respectively. Therefore, 5 ns of 12 λ window simulations take ~20 

(one GTX 1080 Ti GPU) or ~8.5 (one RTX 2080 Ti GPU) hours with a 4 fs timestep, while 

10 ns of 24 λ window simulations take ~81 (one GTX 1080 Ti GPU) or ~34 (one RTX 

2080 Ti GPU) hours. Using 12 λ windows and 5 ns simulations is ~4 times faster and yields 

one ΔΔGbind value (with 4 independent runs) in ~1.5 days (one RTX 2080 Ti GPU) for the 

BACE1 complex system.
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Overall performance of 12 FF combinations for ΔΔGbind prediction

Using 12 λ windows, 5 ns simulation time in each window, and 4 independent AMBER-TI 

runs for each pair, we examined the FF influence on ΔΔGbind . A statistical analysis of 

the ΔΔGbind prediction performance of each FF combination is shown in Table 3. All FF 

combinations present a good agreement with experimental data based on MUE, RMSE, rP, 

ρ, and τ. Using ff14SB + GAFF2.2 + TIP3P, we can obtain the best rank correlations (rP = 

0.64 [0.52, 0.76], ρ = 0.73 [0.58, 0.83], and τ =0.54 [0.42, 0.64]) for the 80 transformations 

(bold in Table 3), which is similar to Wang et al. using FEP+.32 The highest rP, ρ, and τ 
inform that this FF combination provides the most correct trend compared to experimental 

data. In addition, the lowest MUE (0.87 [0.69, 1.07]) and RMSE (1.22 [0.94, 1.50]) indicate 

that ΔΔGbind calculations are closest to experimental results, i.e., the highest accuracy of 

ΔΔGbind prediction, which is slightly better than Wang et al.32 In comparison, ff19SB + 

OpenFF + TIP4PEW and ff14SB + OpenFF + TIP4PEW show the highest MUE (1.01 [0.80, 

1.25]) and RMSE (1.51 [1.04, 1.92]), respectively, while ff14SB + OpenFF + OPC presents 

the lowest rP (0.55 [0.33, 0.76]), ρ (0.65[0.47, 0.79]), and τ (0.48[ 0.35, 0.61]). Overall, the 

95% confidence intervals are in the acceptable ranges for all the tested FF combinations, 

although 95% confidence intervals for some FF combinations are slightly broader.

Figure S3 shows the correlation between predicted and experimental ΔΔGbind for 12 FF 

combinations, showing 960 ΔΔGbind values (8 systems × 10 pairs × 12 FF combinations) 

and each ΔΔGbind is the mean of 4 independent runs. Among these 960 ΔΔGbind values, 69% 

pairs are within 1.0 kcal/mol from their experimental value, and 88% predictions show less 

than 2 kcal/mol deviation. The correlation between predicted and experimental ΔΔGbind for 

each individual FF combination is shown in Figure 3. With ff14SB + GAFF2.2 + TIP3P, 

only 6 out of 80 pairs (7.5%) deviate more than 2 kcal/mol from their experimental value, 

while there are more pairs showing more than 2 kcal/mol deviation in other FF combinations 

(Table 3). Note that there are 9 pairs showing more than 2 kcal/mol deviation in Wang et al. 

using FEP+.32 The performance of ff14SB + GAFF2.2 + TIP3P, therefore, is the best, while 

other FF combinations also present a good agreement with experimental ΔΔGbind.

Impact of protein, ligand, or water FFs on ΔΔGbind prediction

Next, we investigated the influence of protein, ligand, and water FFs separately on the 

accuracy of ΔΔGbind prediction. ff14SB showed improved accuracy of protein side chain and 

backbone parameters compared to ff99SB,60 while ff19SB showed further improvement of 

backbone conformational profiles for all 20 amino acid residues. To explore the effect of 

protein FFs on ΔΔGbind prediction, we divided 12 FF combinations into 2 groups based on 

the protein FFs. As shown in Table 4, the average values of MUE and RMSE inform that 

the usage of ff19SB or ff14SB has no statistical difference on ΔΔGbind. In particular, all FF 

combinations with either protein FF show the same rank correlation (i.e., the similar rP, ρ, 

and τ).

Two ligand FFs are tested in this study: the updated second version of GAFF and the 

SMIRKS-based FFs from the Open FF Initiative (OpenFF1.3.0). GAFF2.2, compared to 

GAFF2.1, added more than 50% of bond and angle parameters and more than 35% of 

torsional angle parameters. OpenFF 1.0.0 showed an accuracy similar to that of GAFF2.1, 
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OPLS3e, and CGenFF when estimating ΔΔGbind in the study of Qiu et al.36 On the 

premise to keep the improvement of OpenFF 1.1.0 and 1.2.0, OpenFF 1.3.0 improved 

the performance in reproducing amide torsional energy profiles and added the appropriate 

torsion parameters for dialkyl amides. To explore the impact of GAFF2.2 and OpenFF 1.3.0 

on ΔΔGbind prediction, we split 12 FF combinations into 2 groups based on the ligand FF. 

Table 5 shows the average values of MUE, RMSE, rP, ρ, and τ and their 95% confidence 

intervals. Overall, there is no statistically significant difference in performance between 

OpenFF1.3.0 and GAFF2.2 in this study.

OPC, TIP3P, and TIP4PEW are common water models that are frequently used in all-atom 

simulations. In particular, a water model is very crucial for calculations of both ΔGcomplex 

and ΔGligand in ΔΔGbind. To explore the effects of the water model on ΔΔGbind prediction, 

we divided 12 FF combinations into 3 groups based on the water model. As shown in Table 

6, the average values of MUE, RMSE, rP, ρ, τ, and their 95% confidence intervals inform 

that the usage of different water models has a statistically unnoticeable effect on ΔΔGbind 

prediction.

ΔΔGbind prediction using a consensus force field approach

A consensus approach using the average of the predicted ΔΔGbind values from multiple FFs 

could help minimize a bias from the parametrization of individual FFs and provide higher 

accuracy of ΔΔGbind prediction.40 The ΔΔGbind estimation accuracy with the consensus 

approach (case 1 with all 12 FFs in Table 7) is improved or similar compared to those from 

individual FFs (Table 3). For instance, using the consensus FF, 59 out of 80 pairs within 1.0 

kcal/mol from their experimental data and 72 pairs within the deviation of 2.0 kcal/mol (case 

1), while the individual FF ff19SB + GAFF2.2 + OPC (case 1 in Table 3) shows 57 and 

70 pairs have less than 1 and 2 kcal/mol deviation from experiments, respectively. Although 

we could see some improvements in accuracy from the consensus approach, each ΔΔGbind 

value was averaged from 12 FFs and 4 independent runs. It is not economical to obtain one 

ΔΔGbind value from 12 FFs, considering the time for system preparation with various FFs 

and the computing resources. Therefore, we tested a consensus FF comprising GAFF2.2 

and OpenFF1.3.0. For example, the results of ff19SB + OPC consensus FF were obtained 

by averaging ΔΔGbind values from ff19SB + GAFF2.2 + OPC and ff19SB + OpenFF + 

OPC. It is worth noting that, using consensus FFs (Table 7), the number of pairs within 

1 kcal/mol deviation from experiments is always more than their individual FFs (Table 3). 

For example, the ff19SB + OPC consensus FF contain 61 pairs (case 2 in Table 7) deviate 

from their experiments within 1 kcal/mol, while ff19SB + GAFF2.2 + OPC and ff19SB + 

OpenFF + OPC are 57 and 58 pairs (cases 1 and 7 in Table 3), respectively. In addition, 

the consensus FF approach shows a better ΔΔGbind estimation than OpenFF1.3.0 in terms of 

MUE, RMSE, rP, ρ, and τ. Most consensus FF combinations also show a similar or better 

ΔΔGbind prediction than GAFF2.2, except for the cases 5 and 7 (bold) in Table 7. Our result 

indicates that the consensus approach is an applicable strategy to obtain similar or relatively 

higher accuracy and could be more trustworthy values in ΔΔGbind estimation. Overall, the 

tested consensus FFs (FF combinations 2 to 7 in Table 7) show a similar performance 

including the 95% confidence intervals.

Zhang et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CONCLUSIONS

Nowadays, owing to both economic and efficient perspectives, virtual high throughput 

screening using alchemical free energy calculations gains more attention in drug discovery 

and drug design. To calculate reliable ΔΔGbind values using AMBER-TI, we previously 

showed that at least 4 independent runs with 12 λ windows and 5 ns simulation time 

per window are sufficient for soluble protein.44 In this study, we first confirmed this by 

examining the effects of using different numbers of λ windows and simulation times 

per window on ΔΔGbind . Then, we investigated the performance of 12 FF combinations 

for AMBER-TI ΔΔGbind prediction. An AMBER-TI run (with 12 λ windows and 5 ns 

simulation time) for ~86,000 atoms takes ~8.5 hours using one RTX 2080 Ti GPU, meaning 

that one ΔΔGbind value (with 4 independent runs) can be calculated in ~1.5 days. The overall 

real computational time can be further reduced by performing the simulations from different 

windows in parallel across multiple GPUs. With this speed, we believe that screening 

hundreds of lead compounds can be achieved in a timely manner with highly accurate 

ΔΔGbind estimation. One may want to use larger λ windows or longer simulation time if 

their systems are more complex than the current 8 protein systems or when ΔΔGbind values 

do not converge within 5 ns.

Our large-scale ΔΔGbind calculation study provides good practices of FF selection for 

AMBER-TI ΔΔGbind prediction. The accuracy of ff14SB + TIP3P + GAFF2.2 in terms 

of MUE, RMSE, rP, ρ, and τ is the best among the 12 FF combinations tested in this 

study. This FF combination shows higher accuracy than Wang et al32 using FEP+ in terms 

of MUE and RMSE. The ff14SB protein model being trained using TIP3P water model 

could explain why this FF combination presents great ΔΔGbind prediction. Both ff19SB 

and ff14SB show a similar accuracy, indicating that the usage of ff19SB or ff14SB has a 

statistically negligible effect on ΔΔGbind estimation and both protein FFs are suitable for 

ΔΔGbind calculations. Also, there is no statistically significant difference in performance 

between OpenFF1.3.0 and GAFF2.2 and both ligand FFs present good performance. Note 

that the latest OpenFF2.0.0 was recently released, so it will be interesting to check the 

accuracy of OpenFF2.0.0 in the future. In addition, the water models used in this study also 

show comparable accuracy on ΔΔGbind prediction.

The application of a consensus FF approach can yield similar or relatively higher accuracy 

in ΔΔGbind estimation and thus is a good strategy to obtain ΔΔGbind values. However, 

it is worthy of note that the preparation of AMBER-TI systems and implementation 

of simulations with different FFs require additional time and resources, especially for 

large numbers of ligands. Generally, due to the limited test cases and systems, any 

FF recommendation from a benchmark study is biased. A more significant number of 

transformation pairs and systems are always required to draw a more solid conclusion 

of the FF recommendation for ΔΔGbind prediction. Nonetheless, for the individual FF 

combinations, our benchmark testing recommends ff14SB + TIP3P + GAFF2.2 for 

virtual high throughput screening and lead optimization projects. In addition, since all 

tested individual FF combinations in this study present comparable accuracy for ΔΔGbind 

prediction, one could consider their FF combination based on other desired properties such 

as improved protein behaviors (e.g., no protein aggregation).61 We hope that this benchmark 
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study provides some useful suggestions for ΔΔGbind estimation with AMBER FFs and 

AMBER-TI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation between predicted and experimental ΔΔGbind for BACE systems using ff19SB 

+ GAFF2.2 +OPC FF combination and (A) the linear λ scheme, (B) the scheme used by 

Song et al,50 or (C) the scheme used by Lee et al.51 Different simulation time lengths 

used different colors. The error bars are the standard errors of 4 independent AMBER-TI 

runs. (D) The comparison of ΔΔGbind estimation using TI (based on the trapezoidal rule) 

and other analysis methods (BAR, MBAR, or TI-3 (cubic spline interpolation)). The X-axis 

is the transformation pairs, and the Y-axis is the differences in ΔΔGbind values between 

corresponding calculation methods. The difference values become higher as the point 

reaches the edge of the spike. Comparisons between the methodologies TI and BAR, TI 

and MBAR, and TI and TI-3 are shown in blue, orange, and purple, respectively.
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Figure 2. 
(A) Top: free energy convergence as a function of time for pair CAT-13j to CAT-4o with a 

12 λ window scheme (used by Lee et al.),51 5 ns simulation in each window, and ff19SB 

+ GAFF2.2 + OPC. The ΔΔGbind convergence was estimated from the forward (black) 

and time-reversed (red) data of the last 4 ns trajectory. Bottom: overlap matrix O for 

complex system averaged from 4 independent runs. The elements Oij are the probabilities 

of observing a sample in state i (ith row) from state j (jth column). For example, a sample 

collected in state 1 from state 2 simulation is 0.23. (B) Free energy convergence as a 

function of time for the other 9 pairs in the BACE1 benchmark set.
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Figure 3. 
Correlation between predicted and experimental ΔΔGbind for 8 protein systems (10 pairs for 

each protein) with 12 different FF combinations. Different systems used different colors. 

The error bars are the standard errors of 4 independent AMBER-TI runs.
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Table 1.

MUE, RMSE, rP, ρ, and τ between calculated and experimental ΔΔGbind for the BACE1 benchmark set with 

three different 12 λ schemes and simulation lengths using ff19SB + GAFF2.2 + OPC.

λ sets Simulation length (ns) MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ

no.1
1

1 1.04 [0.63, 1.34] 1.18 [0.76, 1.44] 0.62 [0.36, 0.85] 0.52 [−0.39, 0.69] 0.17 [−0.49, 0.50]

5 0.72 [0.53, 1.18] 0.94 [0.66, 1.29] 0.73 [0.38, 0.94] 0.65 [0.01, 0.91] 0.39 [−0.18, 0.79]

10 0.59 [0.39, 0.92] 0.73 [0.45, 1.03] 0.87 [0.59, 0.99] 0.80 [0.22, 1.00] 0.67 [0.17, 1.00]

no.2
2

1 0.83 [0.54, 1.06] 0.93 [0.64, 1.14] 0.78 [0.59, 0.96] 0.67 [0.12, 0.95] 0.44 [0.05, 0.85]

5 0.57 [0.25, 0.88] 0.74 [0.41, 1.00] 0.87 [0.74, 0.97] 0.83 [0.37, 0.99] 0.67 [0.25, 0.95]

10 0.48 [0.28, 0.76] 0.61 [0.40, 0.84] 0.90 [0.74, 0.98] 0.87 [0.41, 1.00] 0.78 [0.35, 1.00]

no.3
3

1 0.87 [0.48, 1.24] 1.05 [0.65, 1.36] 0.70 [0.51, 0.93] 0.57 [−0.04, 0.79] 0.33 [−0.10, 0.65]

5 0.66 [0.42, 0.90] 0.76 [0.50, 0.99] 0.84 [0.64, 0.95] 0.75 [0.15, 0.96] 0.56 [0.08, 0.90]

10 0.48 [0.43, 0.85] 0.54 [0.51, 0.91] 0.87 [0.65, 0.98] 0.79 [0.34, 1.00] 0.65 [0.26, 1.00]

1λ = 0.000, 0.091, 0.182, 0.273, 0.364, 0.455, 0.545, 0.636, 0.727, 0.818, 0.909 and 1.000.

2λ = 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078.

3λ = 0.0000, 0.0479, 0.1151, 0.2063, 0.3161, 0.4374, 0.5626, 0.6839, 0.7937, 0.8850, 0.9521, and 1.0000. 95% confidence intervals of MUE, 
RMSE, rP, ρ, and τ are provided in square brackets, which were calculated with bootstrapping.
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Table 2.

MUE, RMSE, rP, ρ, and τ between calculated and experimental ΔΔGbind for 8 protein systems with different 

numbers of λ windows and simulation lengths using ff19SB + GAFF2.2 + OPC.

# of λ windows Time
a

MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ

12 5 0.95 [0.77, 1.15] 1.29 [1.00, 1.58] 0.60 [0.47, 0.73] 0.70 [0.54, 0.80] 0.50 [0.38, 0.60]

10 0.94 [0.77, 1.13] 1.24 [0.98, 1.50] 0.61 [0.47, 0.73] 0.71 [0.56, 0.81] 0.52 [0.40, 0.62]

21 5 0.95 [0.76, 1.15] 1.28 [1.04, 1.58] 0.58 [0.44, 0.71] 0.70 [0.53, 0.81] 0.51 [0.38, 0.62]

10 0.89 [0.73, 1.09] 1.21 [0.96, 1.47] 0.62 [0.47, 0.74] 0.71[0.55, 0.82] 0.53 [0.40, 0.64]

a
Simulation length (ns) of each λ window. 95% confidence intervals of MUE, RMSE, rp, ρ, and τ are provided in square brackets, which were 

calculated with bootstrapping.58, 59
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Table 3.

MUE, RMSE, rP, ρ, and τ between calculated and experimental ΔΔGbind for 8 protein systems with12 

different FF combinations.

FF
a

MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ # pairs
b

# pairs
c

1 0.95 [0.77, 1.15] 1.29 [1.00, 1.58] 0.60 [0.47, 0.73] 0.70 [0.54, 0.80] 0.50 [0.38, 0.60] 57 70

2 0.91 [0.72, 1.13] 1.31 [1.00,1.60] 0.60 [0.47, 0.73] 0.71 [0.56, 0.82] 0.52 [0.40, 0.62] 56 72

3 0.96 [0.77, 1.17] 1.33 [1.02, 1.62] 0.58 [0.45, 0.73] 0.70 [0.55, 0.81] 0.51 [0.40, 0.62] 53 70

4 0.87 [0.69, 1.07] 1.22 [0.94, 1.50] 0.64 [0.52, 0.76] 0.73 [0.58, 0.83] 0.54 [0.42, 0.64] 58 74

5 1.00 [0.80, 1.20] 1.35 [1.07, 1.61] 0.59 [0.46, 0.72] 0.67 [0.51, 0.79] 0.49 [0.36, 0.60] 54 69

6 0.94 [0.76, 1.13] 1.28 [1.02, 1.54] 0.62 [0.49, 0.74] 0.70 [0.56, 0.81] 0.51 [0.39, 0.61] 55 70

7 0.94 [0.75, 1.17] 1.35 [0.98, 1.74] 0.58 [0.37, 0.77] 0.68 [0.49, 0.80] 0.50 [0.36, 0.61] 58 69

8 0.98 [0.77, 1.22] 1.42 [1.01, 1.85] 0.55 [0.33, 0.76] 0.65 [0.47, 0.79] 0.48 [0.35, 0.61] 57 72

9 0.93 [0.73, 1.14] 1.33 [0.98, 1.72] 0.60 [0.41, 0.78] 0.69 [0.53, 0.80] 0.50 [0.38, 0.61] 54 71

10 0.94 [0.74, 1.18] 1.39 [0.96, 1.88] 0.55 [0.29, 0.77] 0.66 [0.47, 0.79] 0.49 [0.35, 0.61] 52 70

11 1.01 [0.80, 1.25] 1.43 [1.04, 1.87] 0.58 [0.33, 0.77] 0.66 [0.48, 0.79] 0.48 [0.35, 0.60] 51 70

12 0.99 [0.76, 1.25] 1.51 [1.04, 1.92] 0.55 [0.32, 0.76] 0.66 [0.49, 0.80] 0.50 [0.37, 0.63] 56 69

13 1.05 1.46 0.56 0.61 0.46 49 66

14 0.97 1.28 0.65 0.70 0.52 50 70

a
FF combinations from number 1 to 12 are: (1) ff19SB/GAFF2.2/OPC, (2) ff14SB/GAFF2.2/OPC, (3) ff19SB/GAFF2.2/TIP3P, (4) ff14SB/

GAFF2.2/TIP3P, (5) ff19SB/GAFF2.2/TIP4PEW, (6) ff14SB/GAFF2.2/TIP4PEW, (7) ff19SB/OpenFF/OPC, (8) ff14SB/OpenFF/OPC, (9) ff19SB/
OpenFF/TIP3P, (10) ff14SB/OpenFF/TIP3P, (11) ff19SB/OpenFF/TIP4PEW, and (12) ff14SB/OpenFF/TIP4PEW. 13 and 14 are the results from 

Song et al.50 and Wang et al.32, respectively.

b
Number of pairs with |ΔΔΔG| < 1 kcal/mol.

c
Number of pairs with |ΔΔΔG| < 2 kcal/mol. 95% confidence intervals of MUE, RMSE, rP, ρ, and τ are provided in square brackets, which were 

calculated with bootstrapping.
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Table 4.

Averaged MUE, RMSE, rP, ρ, and τ between calculated and experimental ΔΔGbind from all FF combinations 

with ff19SB or ff14SB for 8 protein systems.

FF
a

MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ

1 0.97 [0.88, 1.05] 1.35 [1.21, 1.50] 0.59 [0.51, 0.66] 0.68 [0.62, 0.74] 0.50 [0.45, 0.54]

2 0.94 [0.85, 1.02] 1.36 [1.20, 1.51] 0.58 [0.50, 0.66] 0.69 [0.62, 0.74] 0.50 [0.46, 0.55]

a
FF combinations for number 1 and 2 are 6 FFs with ff19SB and 6 FFs with ff14SB, respectively. 95% confidence intervals of MUE, RMSE, rP, ρ, 

and τ are provided in square brackets, which were calculated with bootstrapping.
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Table 5.

Averaged MUE, RMSE, rP, ρ, and τ between calculated and experimental ΔΔGbind from all FF combinations 

with GAFF2.2 or OpenFF for 8 protein systems.

FF
a

MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ

1 0.94 [0.86, 1.02] 1.30 [1.18, 1.41] 0.60 [0.55, 0.66] 0.70 [0.65, 0.75] 0.51 [0.46, 0.55]

2 0.96 [0.88, 1.06] 1.41 [1.23, 1.58] 0.57 [0.48, 0.66] 0.67 [0.60, 0.73] 0.49 [0.44, 0.54]

a
FF combinations for number 1 and 2 are 6 FFs with GAFF and 6 FFs with OpenFF, respectively. 95% confidence intervals of MUE, RMSE, rP, ρ, 

and τ are provided in square brackets, which were calculated with bootstrapping.
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Table 6.

Average MUE, RMSE, rP, ρ, and τ for computational and experimental ΔΔGbind from all FF combinations 

with OPC, TIP3P, or TIP4PEW for 8 protein systems.

FF
a

MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ

1 0.95 [0.85, 1.05] 1.34 [1.17, 1.52] 0.58 [0.49, 0.67] 0.69 [0.61, 0.75] 0.50 [0.44, 0.56]

2 0.93 [0.83, 1.03] 1.32 [1.14, 1.52] 0.59 [0.50, 0.68] 0.69 [0.62, 0.76] 0.51 [0.45, 0.56]

3 0.99 [0.88, 1.10] 1.39 [1.21, 1.58] 0.59 [0.48, 0.67] 0.68 [0.60, 0.74] 0.49 [0.43, 0.55]

a
FF combinations for number 1, 2 and 3 are 4 FFs with OPC, 4 FFs with TIP3P, and 4 FFs with TIP4PEW, respectively. 95% confidence intervals 

of MUE, RMSE, rP, ρ, and τ are provided in square brackets, which were calculated with bootstrapping.
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Table 7.

MUE, RMSE, rP, ρ, and τ of consensus FF for 8 protein systems.

FF
a

MUE (kcal/mol) RMSE (kcal/mol) rP ρ τ # pairs
b

# pairs
c

1 0.85 [0.67, 1.06] 1.25 [0.93, 1.57] 0.62 [0.47, 0.77] 0.72 [0.58, 0.83] 0.54 [0.42, 0.64] 59 72

2 0.86 [0.68, 1.07] 1.24 [0.93, 1.55] 0.62 [0.48, 0.76] 0.71 [0.56, 0.82] 0.52 [0.40, 0.63] 61 72

3 0.87 [0.68, 1.08] 1.28 [0.97, 1.62] 0.60 [0.45, 0.76] 0.71 [0.56, 0.83] 0.53 [0.41, 0.65] 57 70

4 0.86 [0.69, 1.08] 1.24 [0.94, 1.57] 0.62 [0.48, 0.77] 0.74 [0.59, 0.83] 0.54 [0.43, 0.65] 59 73

5 0.84 [0.67, 1.06] 1.23 [0.92, 1.58] 0.62 [0.46, 0.78] 0.72 [0.56, 0.83] 0.53 [0.41, 0.65] 59 71

6 0.92 [0.74, 1.13] 1.29 [1.00, 1.60] 0.62 [0.47, 0.76] 0.71 [0.56, 0.81] 0.52 [0.40, 0.62] 55 70

7 0.92 [0.73, 1.15] 1.31 [1.00, 1.65] 0.61 [0.44, 0.76] 0.71 [0.56, 0.82] 0.52 [0.40, 0.63] 56 71

a
FF combinations from number 1 to 7 are: (1) 12 FFs, (2) ff19SB/OPC/consensus FF, (3) ff14SB/OPC/consensus FF, (4) ff19SB/TIP3P/consensus 

FF, (5) ff14SB/TIP3P/consensus FF, (6) ff19SB/TIP4PEW/consensus FF, and (7) ff14SB/TIP4PEW/consensus FF, respectively.

b
Number of pairs with |ΔΔΔG| < 1 kcal/mol.

c
Number of pairs with |ΔΔΔG| < 2 kcal/mol. 95% confidence intervals of MUE, RMSE, rP, ρ, and τ are provided in square brackets, which were 

calculated with bootstrapping.
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