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Marine heatwaves can have disastrous impacts on ecosystems and marine
industries. Given their potential consequences, it is important to understand

how broad-scale climate variability influences the probability of localised
extreme events. Here, we employ an advanced data-mining methodology,
archetype analysis, to identify large scale patterns and teleconnections that
lead to marine extremes in certain regions. This methodology is applied to the
Australasian region, where it identifies instances of anomalous sea-surface
temperatures, frequently associated with marine heatwaves, as well as the
broadscale oceanic and atmospheric conditions associated with those
extreme events. Additionally, we use archetype analysis to assess the ability of
a low-resolution climate model to accurately represent the teleconnection
patterns associated with extreme climate variability, and discuss the implica-
tions for the predictability of these impactful events.

In recent years the number of high-profile and devastating marine
heatwaves have brought increased public awareness and scientific
focus to these events'. The growing recognition of their impacts has
resulted in an intense effort to understand the physical drivers of these
phenomena, with the ultimate goal of improving their prediction and
providing information to enable adaptation and mitigation
measures®”. While it is understood that, at a local level, marine heat-
waves can be caused by anomalous ocean heat transport, enhanced
surface heating from the atmosphere, or reduced vertical exchange (or
combination of all three)?, the link between the local drivers and the
broader environmental conditions that favour their development is an
area of active research. A key tenet of modern climatology is that
conditions at one location may be influenced by remote drivers, often
many thousands of kilometres away, through teleconnections®. There is
a strong desire to understand the role played by teleconnections in
marine extremes">*™, as large-scale variability typically has longer
timescales, is better represented in coarse-resolution climate models,
and is hence more predictable than smaller-scale local processes” ™.
To date, the majority of studies that investigate marine heatwaves
and cold-spells focus on detailed case studies of events at a particular
geographic region'®”, although there are a number of studies

investigating the connection between larger regions and remote
drivers®?°?, To link the local extremes with remote drivers, the
general approach taken to date is to begin by defining extreme events
at one or more distinct locations, then explore statistical or dynamical
connections between those events and large-scale climate modes such
as an EI-Nifio” %%, As the analysis proceeds from local to global
scales, we will call this approach the ‘inside-out’.

While this ‘inside-out’ approach has dramatically advanced the
understanding of the characteristics and physical drivers of marine
extremes, unambiguously separating local and remote influences is
difficult due to the complex interconnection between components
within the climate system. As ‘inside-out’ approaches employing fixed
region heat budgets are necessarily limited to analysing the local dri-
vers of marine heatwaves there is merit in considering large-scale
dynamical frameworks that connect remote drivers to marine heat-
wave events'.

In this study, we present an ‘outside-in’ methodology that
directly identifies large-scale patterns associated with extreme sea-
surface temperatures by employing a powerful data-mining
methodology-Archetype Analysis (herein AA). AA seeks to represent
a high-dimensional spatiotemporal dataset as a mixture of a smaller
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Fig. 1| Archetypal patterns and affiliation time series. a, c, e, g Detrended sea-
surface temperature (SST) anomalies for four of the archetypal patterns computed
over the Australasian region (indicated by the black box), and b, d, f, h associated
affiliation time-series (black solid line) and the weights applied to each time snapshot
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to form the archetypes. The four archetypes plotted here are selected based on their
association with well-known marine heatwaves (locations indicated in the text). Maps
created with Cartopy”.

number of ‘archetypal’ spatial patterns along with a probabilistic time-
series’>”, The archetypal patterns are themselves constructed as a
weighted average of a small number of snapshots of the original
dataset, x, that correspond to ‘extreme’ states*****. An approximation
of the original dataset, x, is given by:

@

P
Xx(space, time) = x(space, time) = Z s;(time) z;(space)
l
where z; is the ith archetypal pattern, P is the number of archetypes,
and s;(time) is the affiliation time series of the ith archetype, which can
take values between O and 1. The archetypal patterns can be inter-
preted as extreme modes of variability, and the affiliation probability is
the likelihood that one of these modes is expressed at any given time**.
AA has been employed previously to identify the characteristics of
extreme rainfall events® and long-lived atmospheric phenomena®. To
the best of our knowledge, this work is the first application of AA to
marine extremes.

Here, we apply AA to satellite-derived sea-surface temperature
(SST) over the Australasian region to identify large-scale patterns that
correspond to temperature extremes (i.e. marine heatwaves and
marine cold spells) and show that AA unambiguously identifies

teleconnection patterns associated with extreme events. What is more,
AA is able to reveal subtleties—for example distinguishing between
‘classical’ EI-Nifios and central Pacific (Modoki) EI-Nifios. Once the
large-scale archetypal patterns have been obtained, we then investi-
gate their impact on specific regions—hence ‘outside-in’. Finally, we
apply AA to assess the capacity of a modern climate model to repre-
sent the teleconnections associated with marine temperature
extremes.

Results
Extreme climate modes in the Australasian regions
To begin our analysis, we apply AA to 39 years of SST anomalies over
the southwestern Pacific and southeastern Indian Ocean basins (Fig. 1)
(see Methods). After experimentation we chose a total of eight
archetypes, of which four associated with marine heatwave conditions
in Australasia are shown in Fig. 1 (the remainder are shown in Sup-
plementary Fig. 1). Although the AA methodology is applied only to the
Australasian domain (black box in Fig. 1) we plot the resulting arche-
types by compositing over the southern Indo-Pacific to show the
broad-scale SST patterns. The labelling of the archetypes is arbitrary.
In Fig. 1, we immediately recognise spatial patterns associated
with classical and central Pacific (Modoki) La-Nifia (archetypes #1 and
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periods show days where no qualifying event was found; the total number of
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archetype event days for each archetype that occurs b for each year; and ¢ for each
month over the annual cycle. Maps to the right show spatial patterns of sea-surface
temperature (SST) anomaly for each archetype. Significant climatological events

are indicated by the text annotations. Maps created with Cartopy”..

#2) and EI-Nifio patterns (archetypes #3 and #4). These inferences are
supported by considering the affiliation time series (solid black line in
the right-hand column of Fig. 1) and the temporal distribution of the
weights that are used to construct the archetypal patterns (orange
bars). For example, the weights used to construct the archetype #4
cluster around the years 1998 and 2016, which correspond to powerful
EI-Nifio events®, In addition to the ENSO-like patterns in the equatorial
Pacific, additional features are evident. For example, elevated SST
anomalies are evident along the west coast of Australia (archetype #1,
Fig. 1a), around New Zealand (archetype #2, Fig. 1c), and through the
Great Barrier Reef region (archetypes #3 and #4, Fig. le, g). These
patterns show the large-scale conditions that are likely during periods
when the affiliation time series are close to 1, which may favour the
development of marine heatwaves in certain regions.

Investigation of the affiliation time series associated with the 4
archetypes reveals periods of persistence and recurrence. We show
this in further detail in Fig. 2a, where each coloured block corresponds
to periods where a particular archetype is both dominant (affiliation
probability >1/2), and persists for at least 20 days (Supplementary
Fig. 2 shows this information for all 8 archetypes). A number of per-
sistent regimes can be identified, such as a 16-month period from
November 2010 until June 2012, when archetype #1 was strongly
expressed, which manifested as an exceptionally strong La-Nifia®, or
the 6-8 months in 1998 and 2016 of archetype #4 that corresponded to
powerful EI-Nifios*. The inter-annual variability determined by sum-
mation of the number of event days for each dominant archetype in

each year, shown in Fig. 2b, reveals substantial year-to-year variability:
particular regimes dominate in certain years while being completely
absent in others. Seasonality is indicated in Fig. 2c, which shows the
total event days for each month. For example, the archetypes that
most clearly resemble EI-Nifio (archetypes #3 and #4) show a clear
expression in summer months. Further information on the timescales
associated with each archetypal pattern can be found in the supple-
mentary material (see Supplementary Figs. 3-7).

The key result from the previous analysis is that AA reveals broad-
scale, recurrent and occasionally persistent modes of variability. We
now investigate the links between regional ocean temperatures and
these extreme climate modes through a series of case studies.

South-Eastern Indian Ocean marine heatwaves

In the 2010-2011 austral summer, the southeastern Indian Ocean basin
was the location of one of the most intense and devastating known
marine heatwaves, with temperatures of more than 3 °C higher than
the climatological average'®*°%. We investigate the relationship
between broad-scale extreme modes identified by AA and marine
heatwaves in this region.

In Fig. 3a, we show the SST anomalies for the day of the peak
intensity of the 2010-2011 extreme marine heatwave event (Ist of
March 2011) at a representative location (30°S, 112.5°E, indicated by the
grey circle) as well as the of SST anomaly composite average for all
marine heatwaves detected at that location at their peak intensity.
Both the snapshot (Fig. 3a) and the composite average (Fig. 3b) show
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Fig. 3 | The relationship between Marine Heat Waves and Archetype #1 in the
Southeastern Indian Ocean. a Snapshot of sea-surface temperature (SST)
anomalies for the peak of the 2010-2011 extreme marine heatwave event, which
occurred on the 1st of March, 2011; and b SST composite average for all marine
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AL TG ok l“ullillm ]mﬂ AL Ih“ | | H ! ui

2004
2008
2012
2016
2020

pattern (archetype #1); d time-series of SST anomalies (black) and the recon-
struction from archetype #1 (orange) at the representative location shown in panels
a-c; e time-series of archetype affiliation probability for archetype 3. Coloured
bands in panels d, e indicate marine heatwave occurrences, coded by the severity
category described in Hobday et al.*>. Maps created with Cartopy’..

warm SSTs over a broad geographical range, from latitudes 20°S to
35°S, and eastward of longitude of 105°E, with the highest tempera-
tures generally found closer to the continent. We identify a best
matching archetype by comparing the spatial and temporal patterns
shown in Fig. 3a, b with the archetypal patterns plotted in Fig. 1 (see
Methods), in this case archetype #1 (Fig. 4c). The archetype has a
similar distribution of warm SSTs over the region to that of the SST
composite average north of 35°S, and a strong similarity to the SSTs
associated with the 2011 event.

The temporal relationship between the regional marine heat-
waves and the archetype can be revealed by examining the
anomalous SST time series at our chosen representative location
(Fig. 3d) and the affiliation time series for the best matching
archetype (Fig. 3e). The SST anomaly time series shows low-
frequency variation, with periods of above or below average
temperatures that can persist for months or years. Marine heat-
waves also exhibit low-frequency behaviour, with periods where
several (occasionally high intensity) events cluster together,
separated by longer periods with few, moderate-intensity events®.
Periods with frequent marine heatwaves are unsurprisingly cor-
related with periods of higher than average SST.

The affiliation time series, shown in Fig. 3e, in highly correlated
with periods of above average temperatures at our representative

location. For example, the affiliation time-series on the 1st of March
2011, the date of the peak intensity of the extreme marine heatwave, is
a maximum and approaches 1, indicating that the best matching
archetype is the dominant regime during this period. The affiliation is
generally high during periods of high SST and frequent marine heat-
waves and low during periods with few marine heatwaves (e.g.
1990-1996 and 2001-2008). The reconstruction of the representative
SST anomaly using a single archetype (shown as the orange curve in
Fig. 3d) also deviates from O only during periods with frequent marine
heatwaves.

We now employ AA to identify the teleconnection patterns that
accompany the extreme events in this region. The mean spatial pat-
terns for the satellite-derived SST anomalies associated with archetype
#1 are shown for the Pacific and Indian ocean basins in Fig. 4a, while the
surface air temperature and the mid-tropospheric atmospheric circu-
lation (represented by the 500 hPa geopotential height and wind
anomalies) are shown in Fig. 4b. Anomalously cool SSTs are found in
the equatorial Pacific, with a temperature minimum found at ~-170°W,
characteristic of the central Pacific (Modoki) La-Nifia>**. Investigation
of the sub-surface temperature anomalies obtained from Argo floats
along the equator associated with this archetype confirm this inter-
pretation (Fig. 4c): a cool subsurface in the eastern Pacific reaching
~300m depth and surface expression in the central Pacific, co-
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affiliation time series (solid black) together with the multivariate EI-Nifo index
(MEI, grey) and the Marshall Southern Annular Mode (SAM) index (blue). Periods of
marine heatwaves are indicated by red shading. e The lagged cross-correlation
between the affiliation time series and the MEI (grey) and the Marshall SAM index
(blue). Negative lags correspond to the MEI/SAM index leading the affiliation. Maps
created with Cartopy”’.

occurring with a warm anomaly in the western Pacific. These condi-
tions are known to initiate anomalously strong low-level trade winds in
the tropical region, which in-turn result in an anomalous transport of
warm water from the Pacific to the Indian basins via the Indonesian
straits and an anomalous poleward heat transport'®***, with the
highest temperatures in the south-east Indian Ocean occurring
~3-5 months after the most intense negative anomalies in the equa-
torial Pacific.

The anomalous atmospheric circulation associated with this
archetype (Fig. 3b) shows both local and remote anomalies. Locally, an
anomalous cyclonic mid-tropospheric circulation directs airflow from
the north and east, which are likely to contribute to the above average
surface temperatures by bringing warmer continental and tropical air
over the region®*. Remotely, equatorial Pacific, mid-tropospheric
winds show the characteristic divergence pattern associated with the
central Pacific La-Nifias*. A ridge of high pressure extends across the
Southern Ocean and anomalously strong eastward winds are found
south of 55°S, characteristic of the positive phase of the Southern
Annual Mode (SAM)*®,

To further illustrate the relationship between the archetype and
the climate modes, we plot the affiliation time series in Fig. 4d together
with the Multivariate EI-Nifio Southern Oscillation Index** (MEI) and
the SAM index*°. Significant anti-correlation between the affiliation
time series and the MEI can be seen in Fig. 4d, confirmed by a lagged
cross-correlation (Fig. 4e), which shows a negative cross-correlation
coefficient of ~0.5 with the MEI index leading the affiliation by
~6 months. We perform a similar lagged cross-correlation analysis
against the Marshall SAM index, but find only weak correlation (max-
imum of 0.15) near zero lag.

Previous studies of the extreme 2010-2011 south-east Indian
Ocean marine heatwave attribute ~2/3s of the excess warming to
anomalous ocean heat transport, driven by remote conditions in the
equatorial Pacific, while the remaining -1/3 is due to enhanced surface
heating driven by local atmospheric processes'®*®. It is notable that the
AA largely confirms these results, suggesting La-Nifia influences in the
equatorial Pacific, and local influences from a stationary mid-
tropospheric cyclone. Our analysis indicates that the large-scale con-
ditions responsible for the extreme 2010-2011 event are recurring and
could form the basic ingredients of an extreme climate mode that
strongly influences the south-east Indian ocean.

South Pacific marine heatwaves near New Zealand

Our next case study concerns the South Pacific near New Zealand. This
region suffered a severe category marine heatwave in the Austral
summer of 2017-2018, which co-occurred with extreme land
temperatures**%. The impacts of this event were widespread, with the
largest recorded annual loss of glacier ice mass in New Zealand’s
recorded history*.

We plot the SST anomaly for the day of peak intensity of the
2017-2018 marine heatwave event at a representative location (here
45.9°S, 171°E, 5th December 2017) and the composite average of all
events at this location in Fig. 5a, b. The spatial patterns in the single day
snapshot and the composite average are very similar, albeit with dif-
ferent magnitudes, with warm SST centred near New Zealand’s south
island (approximate longitude 170°E, latitude 45°S), extending west
into the Tasman Sea.

The pattern of the best matching archetype (archetype #2 of
Fig. 1g, h), shown in Fig. 5c, has a remarkable visual similarity to those
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shown in Fig. 5a, b. The temporal evolution of the SST anomalies and
the affiliation time series, shown in Fig. 5d, e, indicate that many,
although not all, extreme events are captured by this archetype. As in
the previous case study, marine heatwaves cluster, with a number of
events occurring in a relatively short period of time, punctuated by
longer periods with only a small number of isolated, weaker events.
With only a single exception (between 1989 and 1991), the marine
heatwave clusters occur during periods where the affiliation time
series is persistently >0.5. Examples of these periods are 1984-1987,
1999-2004, 2005, 2013-2015; and 2018-2020, and the peak of the
2019-2020 severe marine heatwave (Fig. 5a) co-occurs with the
absolute maximum of the affiliation time series. However, isolated
marine heatwave events do occur during periods where archetype #2
is not strongly expressed.

As before, we examine the broad-scale SST (Fig. 6a); mid-
tropospheric atmospheric circulation Fig. 6b; and equatorial sub-
surface temperatures (Fig. 6¢) associated with archetype #2. Con-
currently with anomalously high SST centred on New Zealand (long-
itude ~170°E, latitude ~45°, indicated by the box in Fig. 6a-c), cooler
SSTs are seen in the equatorial Pacific, extending from a longitude of
180° to South America. In contrast to the previous case study, the
atmospheric circulation, surface air temperature (Fig. 6b) and the sub-
surface ocean temperature (Fig. 6¢) anomalies are weak in the equa-
torial Pacific. However, a strong blocking high-pressure system can be
seen in the atmospheric field to the east of New Zealand. The anom-
alous atmospheric circulation directs warm air from the north, reduces

cloud cover over the region, and weak surface winds reduce the mixing
of cooler, deep ocean waters with the surface, consistent with previous
work**#2,

The spatial patterns shown in Fig. 6a, b suggest that marine
heatwaves around New Zealand are associated with classical La-Nifia
type patterns, as well as persistent atmospheric blocking high-pressure
systems. However, a lagged cross-correlation shows only a weak cor-
relation of the affiliation time series with the MEI (Fig. 6d and inset
panel), with a peak correlation coefficient of —0.25 at a lag of zero, and
we note that the magnitude of the ocean temperature anomalies in
Fig. 6a, c are weak, which does not suggest a strong equatorial influ-
ence. Previous studies have also attributed marine heatwaves in the
region to forcing associated with the Southern Annular Mode**%
However, we find no significant correlation between the affiliation time
series and the SAM index, and no SAM-like anomalous atmospheric
circulation. The anomalous atmospheric circulation is reminiscent of
the Pacific South-America (PSA) pattern*, albeit displaced westward.
The monthly PSA index is plotted together with the affiliation time
series in Fig. 6d. However, we once again find a weak relationship, with
a peak correlation coefficient of ~0.15.

Our analysis suggests that localised atmospheric blocking may be
strongly linked with extreme and persistent marine heatwaves in the
southern Tasman sea, and the role of broad-scale teleconnections is
uncertain. The similarity of the archetypal SST patterns to that of the
composite average and the clustering of events during periods when
archetype #2 is strongly expressed also suggests these patterns are
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Fig. 6 | Teleconnections associated with marine heat waves in the Tasman Sea.
a Sea-surface temperature anomaly; b surface air temperature (colours) with
anomalous mid-tropospheric (500 hPa) geopotential height (contour lines, con-
tour interval 5 m) and winds (vectors); and ¢ subsurface ocean temperatures
(averaged latitudinaly between 5°S and 5°N within the region indicated by dashed
lines in panels a and b), associated with archetype #2; d The affiliation time-series
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(solid black) together with the multivariate EI-Nifio index (MEI, grey), and the Pacific
South America (PSA) index (blue). Periods of marine heatwaves are indicated by red
shading. e The lagged cross-correlation between the affiliation time series and the
MEI (grey) and the Pacific South America (PSA) pattern index (blue). Negative lags
correspond to the MEI/PSA index leading the affiliation. Maps created with
Cartopy’™.
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reoccurring and associated with many (although not all) marine
heatwaves in the region. While blocking highs are implicated in
extreme marine heatwaves in numerous regions”**, there is currently
no generally accepted theory that completely explains their
dynamics®. Certain persistent atmospheric regimes, such as blocking,
can be detected using AA”, and future work could seek to integrate
these analyses to improve understanding of the dynamics of these
events.

Coral sea and great barrier reef marine heatwaves

For our final case study, we investigate marine heatwaves in the Great
Barrier Reef (GBR) to the north-east of Australia. Summertime marine
heatwaves are associated with mass coral bleaching events, as high
ocean temperatures are a necessary (but not sufficient) condition for
coral bleaching***’. The GBR suffered heat-induced mass bleaching
events in1998,2002, 2006, followed by three events during the period
2016, 2017 and 2020*,

In Fig. 7a, we show the composite average of anomalous SST for all
summertime (December, January and February) marine heatwave
events at a location representative of the “central” and “northern”
regions of the GBR, as well as daily snapshots of anomalous SST for two
marine heatwave events: March 2016 (Fig. 7b) and February 2020
(Fig. 7d), that were implicated in instances of mass coral bleaching. The
composite average SST anomaly for all marine heatwave events shows
that the highest SST anomalies lie close to the Australian coastline,
tending cooler further offshore. A similar SST pattern can be seen in
the daily snapshot of SST anomalies for the 2020 marine heatwave

event (Fig. 7b). The 2016 event, in contrast, shows elevated SSTs
extending further north and more broadly over the Coral Sea.

Unlike in the previous case studies, we find that at least 2 arche-
types, archetypes #3 (Fig. 7c) and #4 (Fig. 7e) are required to capture
summertime marine heatwaves in the GBR region. These archetypal
patterns show a similar spatial structure to the daily snap-shots at the
day of the peak intensity of marine heatwaves detected in 2016 and
2020 (Fig. 7b, d). The necessity for two archetypes becomes clear when
we investigate the relationship between the affiliation time series and
the SST anomalies at the representative location (Fig. 7f, g). Marine
heatwaves associated with major coral bleaching in 2006 and
2020 appear to co-occur with peaks in affiliation time series for
Archetype #3, while Archetype #4 captures the conditions related to
the 1998 and 2016 events. Neither archetype captures the 2017 coral
bleaching event.

We now investigate large-scale patterns associated with sum-
mertime marine heatwaves in the GBR region. The anomalous SSTs
(Fig. 8a), and surface air temperatures (Fig. 8b, colours) for archetype
#4, which was strongly expressed during the severe 2016 coral
bleaching event. The large-scale SST patterns show strong positive
anomalies (of 1-1.5°C) in the equatorial Pacific, characteristic of the
mature phase of classical EI-Nifio. Concurrent warm surface tempera-
tures occur throughout the Coral sea, northern Australia and the
maritime continent. The affiliation time series for archetype #4, shown
in Fig. 8d, shows a clear positive correlation with the MEI, with the lead-
lag relationship suggesting that the archetypal pattern is most strongly
expressed two to three months after the peak of temperatures in the
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Fig. 7 | The relationship between Marine Heat Waves and Archetypes #3 and #4
in the Great Barrier Reef region. a Composite average of the sea-surface tem-
perature (SST) anomaly for all summertime mearine heat waves at a representative
location (18°S, 146.25°E), indicated by the grey circle; ¢, d daily SST anomaly
snapshot for the peak of 2016 marine heatwave; ¢ the SST anomalies for best
matching archetypal pattern for the 2016 event (archetype #4); d, easin c, d for the

2020 marine heat wave; f time-series of SST anomalies (black) and the recon-
struction from archetype #3 and #4 (orange) at the representative location shown
in panels a-c; e time-series of archetype affiliation probability for archetypes #3
and #4. Coloured bands in panels d, e indicate summertime (DJF) marine heatwave
events, coded by the severity category. Black arrows in panel g indicate the
occurrence of mass coral bleaching events. Maps created with Cartopy”’.
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Fig. 8 | Teleconnections associated with marine heat waves in the coral sea and
great barrier reef. a Sea-surface temperature (SST) anomaly; b surface air tem-
perature (colours) with anomalous mid-tropospheric (500hPa) geopotential height
(contour lines, contour interval 5m) and winds (vectors); and ¢ subsurface ocean
temperatures (averaged latitudinaly between 5°S and 5°N within the region indi-
cated by dashed lines in panels a and b), associated with archetype #4; d The

affiliation time-series (solid black) together with the multivariate EI-Nifio index
(MEI, grey), and the Pacific South America (PSA) pattern index (blue). Periods of
marine heatwaves are indicated by red shading. e The lagged cross-correlation
between the affiliation time series and the MEI (grey) and the EI-Nifio Modoki Index
(EMI) index (blue). Negative lags correspond to the MEI/EMI index leading the
affiliation. Maps created with Cartopy”.

tropical Pacific, consistent with the previous work**°, The anomalous
mid-troposphere circulation (Fig. 8b) shows weak anomalies over the
GBR region, indicating little change in trade-wind conditions. How-
ever, surface air temperatures are elevated throughout the region,
consistent with powerful EI-Nifio conditions®. Our results conflict
somewhat with previous results that indicate local wind suppression as
driving elevated SST over the GBR during El-Nifios*” and further
investigation is merited.

Unlike with archetype #4 above, the broad-scale spatial patterns
associated with archetype #3 (Fig. 9) show only weak ocean tem-
perature anomalies (both surface and subsurface) in the central
equatorial Pacific, and weak correlation with the ENSO Modoki index
(maximum correlation coefficient of 0.25). The principal feature of
the mid-tropospheric atmospheric circulation patterns associated
with this archetype is a large blocking high to the east of New Zealand
(centred at longitude 20°W, latitude 50°S), with an accompanying
cyclonic circulation to the southeast of the Australia (centred at
longitude 165°E, latitude 50°S). This cyclonic circulation directly
opposes the westward trade winds that tend to dominate the sum-
mertime conditions in the GBR region. Reduced wind speeds can
induce surface ocean warming through decreased evaporative
cooling and inhibited upwelling of cooler, deep waters to the
surface™2, Investigation of the 2020 bleaching event indicated that
reduced evaporative cooling of the ocean surface due to weak winds
was the primary driver of this event, with increased solar heating
playing a secondary role®. Our analysis broadly supports this

interpretation by elucidating a potential remote driver of the sup-
pressed trade winds, the large cyclonic circulation south-east of
Australia.

Additional case studies

In this study, we have focused on marine heatwaves that are efficiently
described by AA. However, AA is capable of representing cold
extremes as well. To illustrate this, a marine cold spell case study is
included in the supplementary material (Supplementary Figs. 11 and
12). In addition, it is important to note that the power of AA lies in its
ability to recognise extreme states over large spatial scales. As such,
extremes at a regional scale driven by local processes may not be well
captured by AA, which is shown in Supplementary Figs. 13-15,
demonstrate two cases that are not well captured by AA due to the
dominance of local influences.

Evaluation of teleconnections associated with extremes in a
climate model

Numerical ocean and climate models are employed both to predict
distinct extreme events on timescales of days to weeks**’, for attri-
bution studies of particular events”, or for future climate
projections®**>, However, as is well known, climate models are imper-
fect representations of reality, and the representation of extreme
events in numerical models is sensitive to representation of physical
processes and biases?®**. Climate models, particularly at the coarse
resolution used for climate projections, typically do not capture the
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Fig. 9 | Teleconnections Associated with Marine Heat Waves in the Coral Sea
and Great Barrier Reef. a Sea-surface temperature (SST) anomaly; b surface air
temperature (colours) with anomalous mid-tropospheric (500 hPa) geopotential
height (contour lines, contour interval 5m) and winds (vectors); and ¢ subsurface
ocean temperatures (averaged latitudinaly between 5°S and 5°N within the region
indicated by dashed lines in panels a and b), associated with archetype #3; d The

affiliation time-series (solid black) together with the multivariate EI-Nifio index
(MEI, grey), and the Pacific South America (PSA) pattern index (blue). Periods of
marine heatwaves are indicated by red shading. e The lagged cross-correlation
between the affiliation time series and the MEI (grey) and the EI-Nifio Modoki Index
(EMI) index (blue). Negative lags correspond to the MEI/EMI index leading the
affiliation. Maps created with Cartopy’".

tail of the temperature probability distribution, and produce
‘extremes’ that are not as intense or frequent as in reality>**.

However, if climate models are able to capture the broad-scale
teleconnections associated with local extreme events, it may be less
important that the model is incapable of representing the subtleties of
those events at the local scale. A model may well approximate, for
example, the teleconnection patterns associated with EIl-Nifio, and
hence an increased probability of extreme events in certain regions,
even if the model does not capture the localised extreme events
themselves. Down-scaling may improve the representation of the local
extremes, but only in the case that the teleconnections are captured by
the low-resolution model®.

We employ AA to assess the capability of a coupled climate model
to represent the extreme broad-scale patterns. We apply the technique
to a long run the Australian Community Earth Systems Simulator-
Decadal (ACCESS-D), with steady radiative forcing set at perpetual
1990 levels*® (see methods). Eight archetypes are obtained from the
final 39 years of detrended model SST anomalies (i.e., the same length
as satellite SST observations), over a domain identical to the obser-
vational case studies. In Fig. 10 we show the four climate model
archetypes most similar to those utilised in the previous case studies.
For each archetypal pattern we show the large-scale SST anomaly (left
column), the surface air-temperature anomaly, and anomalous mid-
tropospheric circulation (centre) and the affiliation time series along
with the C-matrix weights used to construct the archetypes (right).

For south-east Indian ocean (Fig. 10a-c) and Tasman Sea marine
heatwaves, we note a strong similarity between the climate model
archetypal patterns and those obtained from the observations
(shown in Figs. 4 and 6). In the case of the Southeast Indian region,
the model archetypal patterns show similar anomalous SSTs along
the west Australian coastline and cool equatorial Pacific SSTs,
reflective of La-Nifia like conditions, although the model places the
coolest SST anomalies further to the west than in the observations.
The climate model also accurately reproduces the broad atmo-
spheric circulation anomalies and surface air temperatures over the
Australian continent (Fig. 10b). The model realistically simulates
conditions to those identified in the New Zealand case study
(Fig. 10d-f). In particular, a large atmospheric blocking high-pressure
system is found in the region of highest SST anomalies near New
Zealand, although we note that the high-pressure centre is shifted
significantly to the south and east when compared with observations.
In contrast to the observational case study, equatorial Pacific SSTs
are anomalously warm.

However, when we consider teleconnections associated with the
model’s EI-Nifio like modes, (Fig. 10g-i and j-I), we find the equatorial
Pacific SST anomalies are significantly to the west of those observed in
the satellite SST, which results in anomalously cool SSTs in the GBR
and Coral Seas, instead of warm conditions. AA reveals clearly how
biases in the representation of the equatorial Pacific impact the mod-
el’s ability to simulate important teleconnections to this region.
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Fig. 10 | Broad-scale patterns associated with marine extremes in a climate
model. a, d, g, j: anomalous sea-surface temperature; b, e, h, k: surface air tem-
perature (colours), mid-tropospheric (500 hPa) atmospheric geopotential height
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time-series (right) that correspond the archetypes that marine heatwaves in the
a-c southeast Indian ocean, d-f southwestern Pacific near New Zealand; and
g-i Great Barrier reef/Coral Sea region (indicated by box drawn in maps). Maps
created with Cartopy”’.

Discussion

In this work, we demonstrate that our ‘outside-in’ approach to char-
acterizing extreme SST patterns using archetypal analysis (AA) is able
to clearly identify the relationships between large-scale oceanic and
atmospheric conditions and certain regional marine heatwaves. AA
provides a minimal description of these extreme regional events,
reducing the complex multi-faceted system to only one or two vari-
ables. The power of this approach is shown through several case stu-
dies, that identify not just the climate mode most likely to be
associated with regional extreme SSTs (e.g. El-Nifio or La-Nifa), but
also the atmospheric and oceanic teleconnection patterns, and the
temporal relationships between those climate modes and the expres-
sion of the archetype, as well as the importance of the flavour or phase
of ENSO (i.e. classical or central Pacific/Modoki).

Of the events studied here, both EI-Nifio and La-Nifia conditions,
in their various forms are identified as influences on marine heatwave
occurrence in two of the three case studies (the southeast Indian
Ocean and GBR/Coral Sea), and perhaps a secondary influence in the
3rd (Southwest Pacific/New Zealand events). However, our analysis has
revealed that the type and phase of ENSO plays an exceedingly
important role as well. For example, our investigation of the southeast
Indian Ocean region has shown that the extreme climate mode is
associated with the central Pacific (Modoki) phase of La-Nifia. Applying
AA to climate model output has also shown that subtle model biases,
such as the position of warm equatorial SST in the model’s simulation
of EI-Nifio, can strongly influence the model’s teleconnections. These
results have implications for the prediction of marine heatwaves at
timescales longer than a few weeks, or projection of marine heatwaves
in future climate states.

It is important to note that while AA efficiently describes the large-
scale patterns associated with extremes, it will not capture all indivi-
dual events, particularly those driven by local processes. This should
not be seen as a drawback, as this fact provides a mechanism for
distinguishing between events driven by large-scale climate modes and

those dominated by local processes. We have also not attempted to
use AA to diagnose the distinct physical drivers of the events under
study, and further work will prioritise blending process-based under-
standing with data-driven approaches. Although applied to marine
heatwaves in this study, the approach can, in principle, be applied to a
wide range of other physical phenomena, such as sea-level extremes or
terrestrial heatwaves.

The approach presented in this study provides a viable and robust
manner for linking large-scale variability and regional extreme events
that, in turn, provides an improved understanding of the links between
large-scale drivers and the local impacts.

Methods

Sea surface temperature data

In this study, we use a satellite-derived sea-surface temperature pro-
duct as our primary dataset: version 2.1 of the National Oceanic and
Atmospheric Administration’s Optimum Interpolation SST Advanced
Very High-Resolution Radiometer only product (NOAA OISST-AVHRR
only) which has data for the period 1st January 1982 to 31st December
2020 (hence 39 years)”*® and anomalies are computed relative to this
period. Data are provided at daily output frequency on a regular
0.25° % 0.25° regular latitude/longitude grid.

Atmospheric reanalysis data

The atmospheric reanalysis used in this study is the Japanese 55-Year
Reanalysis (JRAS5)*° provided on a 1.25°x1.25° latitude/longitude
grid. In our analysis, we use daily means of the original 6 hourly output,
and restrict our attention to the period 1st January 1982 to 3lst
December 2020 (i.e. an identical period to that of SST data).

Subsurface ocean temperature data

The subsurface temperature data employed is the optimally inter-
polated product developed at the Scripps Institute of Oceanography®,
which is based on profiles obtained by the international Argo
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program®., This product provides estimates of ocean temperatures
from the surface to 2000 db of depth, on a regular 1° x1° latitude/
longitude grid. These data are only available from the year 2004
onward.

Climate mode indices

In our regional case studies, we correlated affiliation time series for the
best matching archetype with the various climate indices to illustrate
the connection between the extreme modes identified by the AA and
more familiar climate modes.

The Multivariate ENSO (MEI) Index (MEI) is a measure of the SST
variability in the equatorial Pacific (30°S-30°N and 100°E-70°W) that
uses principal component analysis to combine 5 oceanic and atmo-
sphere variables (sea level pressure, sea surface temperature, zonal
and meridional components of the surface wind, and outgoing long-
wave radiation) into a single index*>>. Large, positive values corre-
spond to EI-Nifio conditions, while large negative values correspond to
La-Nifa conditions. Values are provided at a monthly frequency from
December-January 1979 to present.

The Southern Annular Mode (SAM) Index reflects the position and
strength of the westerly winds that blow over the Southern Ocean
between latitudes of 40°S and 65°. The Marshall SAM index is con-
structed from sea-level atmospheric pressure observations taken at 12
weather stations on the Antarctic continent and some sub-Antarctic
islands. Values are available at monthly intervals.

The Pacific South America (PSA)Index measures the strength of a
large, quasi-stationary wave train extending from Australia to Argen-
tina. It is defined in this study as the 2nd (PSA1) and 3rd (PSA2) prin-
cipal component time series of the geopotential height anomalies at
500 hPa from the JRASS reanalysis in the southern hemisphere. We
note that the interpretation of the PSA is complicated by its definition
using statistical properties (i.e. the principle components) and as
opposed to a definition based on dynamics. In reality, the PSA may be
composed of a superposition of travelling and stationary disturbances
that can interact with each other*’, as the PSA1 and PSA2 modes, while
being in approximate phase quadrature, have a relatively low coher-
ence in the relevant frequency bands?”. In this study, we use the gen-
erally accepted definition by convention, but the reader should bear in
mind that the exact nature of the PSA is still a matter of some debate.

Climate model

We use a 2500-year-long run variant of the GFDL Climate Model 2.1
(CM2.1)**, used in older versions of the Australian Community Climate
and Earth System Simulator (ACCESS). The model uses the same
atmospheric, land, and sea ice components as CM2.1 (AM2, LM2, and
SIS respectively) but uses the Modular Ocean Model (MOM4pl). The
ocean model grid is the tripolar ACCESS-o grid®® with a nominal grid
spacing of 1° but with a finer latitudinal grid spacing in the tropics and
the southern hemisphere high latitudes. There are 50 vertical levels,
with 10 m grid spacing in the upper ocean, increasing to a maximum of
300 m. Subgrid processes for the ocean model are adopted from
CM2.], including neutral physics (Redi diffusivity and Gent-McWilliams
skew diffusion), Brian-Lewis vertical mixing profile, Laplacian friction
scheme and a K-profile parametrisation for the mixed layer calculation.
The atmospheric model (AM2) has a grid spacing of 2° in latitude and
2.5° longitude, and 24 hybrid (sigma-pressure or terrain following
pressure) vertical levels. Concentrations of atmospheric aerosols and
radiative gases, and land cover are based on 1990 conditions. The
model’s ocean temperature and salinity fields are restored to World
Ocean Atlas 2013 (WOAI13) climatology at depths below 2000m, with a
restoring time-scale of 1 year which improves the model’s repre-
sentation of the upper ocean stratification, at the expense of sup-
pressing variability with multi-decadal time-scales, which is not the
focus of this work. The model achieves approximate statistical

equilibrium after around 1500 years, with minimal drift in either
temperature or salinity.

Although CM2.1 is an older climate model, used within the Cou-
pled Model Inter-comparison Project phase 3 (CMIP3), we have opted
to use itin this project due to its low numerical cost and relatively good
performance in replicating the broad-scale variability over the Aus-
tralian region.

Archetype analysis

The analysis undertaken in this study employs Archetypal Analysis—an
advanced data mining methodology that has been applied in fields
ranging from marketing to astronomy. However, AA has only recently
been applied to geophysics problems. Here we give a brief description
of the AA problem and its implementation.

AA falls into a broad class of mathematical methods known as
matrix factorisation. The goal of such methods is to represent a
complex, high-dimensional dataset as the product of several, simpler
and lower-dimensional datasets. In AA, for a given spatiotemporal
dataset, x(r, t) represented as a data matrix X ¢ R¥*7, where T is the
number of time observations and M is the number of variables con-
sidered (i.e., number of grid-points in the SST dataset), we seek to find
P << M “archetypal’ states, z, that best represent the data:

P
Xpe=Xp o= 208, i€[LP] )
i

where the subscript ¢ refers to the time index, and the subscript m to
the spatial index. s; is the affiliation probability of the ith archetype,
which is subject the constraints:

P
s;c€[0,1] and > s, =1 3)
7

The first of these constraints indicates that s can only take values
between 0 and 1, and the second indicates that, at any given time, the
sum of the affiliations across all archetypes is equal to one. Matrices
with this property are known as a left stochastic matrices. Mathema-
tically, we say that x is a convex combination of the archetypal patterns
and corresponds only to an approximation of x(r,t). In AA, the
archetypes themselves are written as required to reassemble the data.
To enforce this, the archetypal patterns are written as a mixture of the
data themselves:

;
2= XCoy i €[LP] 4)
t

where c,; are the mixture weights for archetype j, which have the
constraints:

;
¢;€[0,1] and > ¢,=1 5)
t

Matrices with this property are known as left stochastic matrices.
Like with the affiliation probability, the ¢ weights are constrained to
take values between O and 1. The weights associated with the ith
archetype, c,; sum to 1 over all time steps. In the case that the number
of archetypes is equal to the number of time-steps in the dataset x(r, t)
=X, a trivial solution where each archetype corresponds to a the field at
a single time-step.

Combining Eqns. (2) and (4) gives:

P T
Xr,t :Xr,t = Z Z erCj,isi,t =XCS (6)

tJ

Nature Communications | (2022)13:7843

12



Article

https://doi.org/10.1038/s41467-022-35493-x

where we write the double summation as a matrix product between the
original data matrix X € RM*7, the C-matrix C ¢ R13”, and the
affiliation matrix S € R2%7. The archetypal spatial patterns, such as
those shown in Fig. 1, are given by:

Z=XC e RM*P )

The problem is now: for a given data matrix X, can we find the C
and S matrices that minimize:

{S,C} = argmin || X — XCS||
gs_c F ®)

where || - || is the Froebenius norm, defined as the square root of the
sum of the squared absolute value of all matrix elements.

While the manipulations written above may seem esoteric, the AA
decomposition has a relatively straightforward interpretation. Equa-
tion (7) states that the spatial archetypal patterns are simply an average
of the original data weighted by the elements of the C-matrix of the
original data, while Eq. (6) shows that the original data can be
approximated by an average of the archetypal patterns weighted by
the elements of the S-matrix.

Formally, the problem above can be shown to be equivalent to
finding a discreet approximation to the convex hull of the
dataset™***, The convex hull is defined as the smallest convex
‘envelope’ of a dataset, and can be considered to be the boundary of a
(potentially high dimensional) dataset. Since the convex hull of a
dataset and the convex hull of its extreme points are identical,
approximating the convex hull is equivalent to finding the extreme
points (or corners) of the data underlying distribution.

As shown by Cutler & Breiman®, the archetypal patterns are
(approximately) located on the convex hull and are, therefore,
approximations to the (high dimensional) extremes of the data. This
astonishing result occurs due to the constraints imposed on the S and
C matrices in Egs. (3) and (5): that these matrices are non-negative and
stochastic®.

We note that native implementation of the AA algorithm as
described by Eq. (6) is incapable of directly extracting temporal pat-
terns, such as serial correlation or persistence, from data”. For
example, a re-ordering of the time index of the data matrix, repre-
sented by the operation X' =RX will result in reordered but otherwise
identical affiliation and mixture weight matrices, given by §'=SR’ and
C’' =RC. Although options for including temporal patterns directly into
the AA procedure have been discussed®, at present, it is only possible
to extract through interrogation of the resultant affiliation time-series
from the S matrix.

Numerical implementation of archetype analysis

The minimization problem posed in Eq. (8) has no analytic solution for
all but the simplest datasets and must be solved numerically in real-
world applications. However, AA falls into a class of problems (non-
negative matrix factorisation) that are known to be NP-Hard®’, which
implies that, in general, only approximations to the ‘true’ solution can
be obtained.

An increasing number of open-source AA algorithms are freely
available and have been implemented for most major computing lan-
guage in use today. Throughout this work, we rely on the MatLab
implementation, PCcHa, by Mgrup & Hansen®®, whereby the optimiza-
tion problem sketched in Eq. (8) is efficiently computed through a
simple, but robust, projected gradient method.

In order to deal with the high dimensionality of geophysical fields,
we apply a modification of AA, coined Reduced Space AA (RSAA),
introduced in ref. 69 to reduce the spatial dimension of the problem
and its computational burden. RSAA takes advantage of the invariance

of the Froebenius norm in Eq. (8) under unitary transformation:

{S,C} = argmin || UXV — UXVCS|| = argmin || ZV — ZVCS||, ©)
S,C S,C

where the spatial patterns or orthogonal empirical functions (EOFs)
characterised by the unitary matrix U e RY*® can be factored out of
the equation when a compact singular value decomposition (SVD) is
applied to the data matrix X=UZV. The optimization is only per-
formed on the scaled Principal Components (PCs), expressed as XV ¢
RR*T in Eq. (9), with £ e RR® the eigenvalue matrix where
R< min{M, T} is the rank of the data matrix X. To recover the arche-
typal patterns Z, the solutions XVC need to be left-multiplied by U such
that Z=UZXVC. Typically, RSAA uses a low-rank approximation of X,
X=UZX'V, with ¥ € RR ;R and R<<R.

When applied to detrended OISST daily pentad (5 day averages)
anomalies in the Australasian region (60 - 0° S, 90 - 240° E), the
dimension reduction step allows a M = 130349/R' = 840 =155-fold
reduction in the number of variables, in our case grid points, the
number of observations T=2849 being left unchanged. The reduced
rank R’ =840 is the number of retained PCs in the truncated SVD fac-
torisation in Eq. (9). R’ corresponds to 95% of the total variance of X. A
similar approach and level of variance truncation are applied to the
climate model data set.

Although the projection gradient algorithm used to solve Eq.
(9) can be shown to converge to a solution for a suitable initialisa-
tion, there are however no guarantees that this solution is optimal
given the NP-Hard character of the problem. An iterative procedure
is required and achieved by resorting to multiple initialisations.
Here, we combine one clustering and random-based initialisation
strategies, whereby the data-driven ‘FurthestSum’ procedure
advocated by®*® is compared to 999 random initialisations pre-
scribed by’® based on ‘coreset’ construction for AA. The optimal
solution across 1000 trials is kept as the final result. For each indi-
vidual trial, the projection gradient algorithm pCHa is considered
converged when the relative sum of the square error stopping cri-
terion reaches 1078,

Selection of the best matching archetype

Determination of the best matching archetype for the case studies
presented is performed manually using semi-objective criteria. How-
ever, there is some subjectivity in the choice the best matching
archetype and a truly objective method of determining would depend
on the problem at hand.

First, the spatial SST pattern of each archetype is assessed at each
representative location by linearly interpolating of the fields shown in
Fig. 1. Only those archetypes with a strong expression at each repre-
sentative location were considered. Then, the spatial patterns of the
archetype are examined for similarity with the composite average of all
marine heatwave events detected at that location (as in Figs. 3, 5 and 7),
and the affiliation time series for that archetype examined for its
similarity with the SST anomalies and the temporal distribution of
marine heatwave events.

In the first two case studies presented here (as well as those in
the supplementary material) the best matching archetype was
relatively obvious based on spatial patterns alone. However, the
Coral Sea case study required some care in selecting archetypes, as
only summertime (December, January, February) events were con-
sidered (as these events lead to coral bleaching) and no one
archetype was consistently consistently associated with summer-
time marine heatwaves. As such, we selected the only two arche-
types that had positive expressions at the representative location
during the appropriate season. Further detail is included in the
supplementary material.
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Forming composite fields using affiliation (S-Matrix) and
archetype weights (C-Matrix)
Once an affiliation time-series has been computed, it can be applied as
aweight to form clusters or composites in order to identify the climatic
states associated with any particular archetype. For example, in this
study, we have extracted atmospheric and sub-surface ocean patterns
associated with the extreme states identified in the SST by the AA in
order to demonstrate the remote teleconnections that may influence
the regional extremes. This utility arises from the interpretation of the
affiliation time-series as the probability at time ¢ that the data is asso-
ciated with the ith archetypal pattern z**:
Sie=Pr(zjlx,). (10)

As such, the affiliation can be used to associate any dataset with
the ith archetypal state.

To derive the spatial fields of a supplemental dataset (for example,
atmospheric geopotential height at 500 hPa) y=y(space, time) =y,
associated with the ith archetype, we simply compute the temporal
average of y weighted by s; .

Vo= > YmeSic _ ys’
'm,i .
{ X1 S

¢ Sit

In this study, AA is applied to an SST dataset with a temporal
period from 1st January 1982 to 31 December 2020, at 5-day output
frequency. As such, the affiliation time series spans an identical time
period with identify output frequency. However, the atmospheric
reanalysis spans a longer time period (1958-present) with daily output
frequency, while the Argo-derived sub-surface temperature dataset
spans a shorter time period (2004-present) at monthly output fre-
quency. In order to apply Eq. (11) to these datasets, the JRASS fields are
first down-sampled to a 5-day output frequency by low-pass filtering
the data using a standard box-car filter with a cut-off period of 1/5 days,
then sub-sampled to 5-day output frequency, truncated to the same
temporal period as the SST data, which allows direct application of (11).
In the case of the sub-surface temperature dataset, the affiliation time
series is down-sampled and truncated to match that of the Argo
product.

A similar procedure using the archetype weights (C-matrix) may
also be enacted. However, since Z[ ¢,;=1, the weighted average is
simply:

an

-
Ymi= Zym,tct,i =YC (12)
t

At any given time step in the data, ¢, the value of the affiliation
time-series for archetype p, written S, expresses an estimate of the
strength of the archetype’s expression at that timestep with O lag.
However, by shifting the time index of the affiliation probability with
respect to the data to form lagged composites, which can be used to
investigate the temporal propagation of certain spatial features and
(equivalently) their associated timescales. We have alluded to the
temporal evolution in each of the case studies, and present the results
of lagged composite analysis in the supplementary material. Maps of
the lagged composites for a discreet number of lags are shown in
Supplementary Figs. 3-6, while point values for all lags are shown in
Supplementary Fig. 7.

Determination of the statistical significance of the compo-

site fields

At present, the question of determining the significance level of
archetypal patterns is unresolved. As such, in this paper, the statistical
significance of the composite fields formed from the weighted avera-
ges is assessed by a simple, brute force Monte-Carlo technique. To

begin, we generate synthetic S and C matrices by populating each
element with a random number drawn from a uniform distribution
between O and 1. The rows or columns are then appropriately nor-
malised to apply the constraints in Eqgs. (3) or (5). We then form
composite average fields using these synthetic matrices following Eq.
(11) (when testing the significance of the composites formed with the
affiliation time series) or Eq. (12) (for testing the significance of com-
posites formed using the C-matrix). The procedure is then repeated
1000 times and the 95% and 5% percentile computed. The spatial
patterns obtained from the AA are then tested against these synthetic
composites: a single pixel is considered ‘significant’ (with a 95% con-
fidence level) if its value is less than the 5th percentile or greater than
the 95th percentile.

Archetypal patterns and the associated composite averages
are almost everywhere significant, as might be expected from a
methodology that specifically extracts patterns associated with
extreme states. This information is shown in Supplementary
Figs. 8-10.

Identification of marine heat wave/marine cold spell events
The definition of Marine Heat Waves (and Marine Cold Spells as dis-
cussed in the supplementary material) follows that of Hobday et al.
2018 with a slight modification: a MHW is detected if the SST at a
particular location exceeds the 90th percentile for a duration of at
least 10 days (as opposed to the standard definition of 5 days). The
temperature may briefly drop below the required thresholds for a
period not exceeding 2 days and still be declared an extreme event. We
have imposed a slightly more strict criteria on the persistence of events
in order to eliminate multiple short duration, moderate intensity
events that occur in near-coastal regions that appear to be more a
response to high-frequency noise in the SST than modulated low-
frequency variability.

Data availability

We have made use of publicly available data only; no new data were
generated as a result of this study. NOAA-OISST sea-surface tempera-
ture data is obtained from the National Oceanic and Atmospheric
Administration’s National Centers for Environmental Information
(NOAA-NCEI), from (10.7289/V5SQ8XBS5). The Japanese 55-year reana-
lysis project (JRA-55) are obtained from the National Center for
Atmospheric Research (NCAR) Research Data Archive: https://doi.org/
10.5065/D6HH6H41. The gridded subsurface ocean temperature
dataset is downloaded from https://sio-argo.ucsd.edu/RG_Climatology.
html. The Argo temperature profiles themselves were collected and
made freely available by the International Argo Program and the
national programs form the part of the Global Ocean Observing System
(http://www.argo.ucsd.edu, http://argo.jcommops.org) Multivariate
ENSO Index (MEI) v2 time series were published by the National
Oceanic and Atmospheric Administration’s Physical Science Labora-
tory and obtained from https://psl.noaa.gov/enso/mei/. The Marshall
Southern Annular Mode (SAM) index These were published by the
British Antarctic Survey and obtained from https://legacy.bas.ac.uk/
met/gjma/sam.html.Map backgrounds were made with Natural Earth,
free vector and raster map data (naturalearthdata.com).

Code availability

Source code used for the generation of archetypes, written in the
Matlab language, is freely available from the website of its author
Morton Mgrup: http://www.mortenmorup.dk/MMhomepageUpdated_
files/Page327.htm. Source code for the climate model used in the study
can be obtained from the National Oceanic and Atmospheric Admin-
istration (NOAA) Geophysical Fluid Dynamics Laboratory: https://
datal.gfdl.noaa.gov/CM2.X/. Code for the definition of marine heat-
waves following Hobday et al.*? is available from https://github.com/
ecjoliver/marineHeatWaves.
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