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Multi-organ imaging demonstrates the
heart-brain-liver axis in UK Biobank
participants

CelesteMcCracken 1,11, Zahra Raisi-Estabragh 2,3,11 , Michele Veldsman 4,5,
Betty Raman1, Andrea Dennis6, Masud Husain 4,5,7, Thomas E. Nichols 4,8,12,
Steffen E. Petersen 2,3,9,10,12 & Stefan Neubauer1,12

Medical imaging provides numerous insights into the subclinical changes that
precede serious diseases such as heart disease and dementia. However, most
imaging research either describes a single organ system or draws on clinical
cohorts with small sample sizes. In this study, we use state-of-the-art multi-
organ magnetic resonance imaging phenotypes to investigate cross-sectional
relationships across the heart-brain-liver axis in 30,444 UK Biobank partici-
pants. Despite controlling for an extensive range of demographic and clinical
covariates, we find significant associations between imaging-derived pheno-
types of the heart (left ventricular structure, function and aortic distensibility),
brain (brain volumes, white matter hyperintensities and white matter micro-
structure), and liver (liver fat, liver iron and fibroinflammation). Simultaneous
three-organ modelling identifies differentially important pathways across the
heart-brain-liver axis with evidence of both direct and indirect associations.
This study describes a potentially cumulative burden of multiple-organ dys-
function and provides essential insight into multi-organ disease prevention.

Early detection and prevention of chronic non-communicable diseases
is a major public health challenge. It is now well-established that many
such illnesses, for example, ischaemic heart disease, stroke, neuro-
cognitive decline and fatty liver disease tend to co-occur1–3, and that
these conditions are critically influenced by a set of shared risk factors
such as elevated body mass index (BMI), hypertension, and diabetes
mellitus4,5. Consequently, it is no surprise that a multi-organ approach
todisease prevention is an area of growing research interest6,7, with the
heart-brain-liver axis as a potentially worthy target. While there is now

extensive evidence that heart, brain, and liver disease outcomes are
empirically linked8–10, the underlying mechanisms are not well
understood.

Evolving research in medical imaging continues to produce
increasinglypowerful diagnostic biomarkers, someofwhichhavebeen
shown to precede disease11–13. However, existing research linking heart,
brain, and liver health has rarely incorporated imaging biomarkers
across multiple organs, rather using single-organ imaging alongside
subjective measures such as clinical diagnoses or cognitive function
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tests. Where multi-organ imaging has been used, this is typically con-
ductedwithin small samples or clinical cohortswith significant disease.
It is not known whether individual associations identified in small
clinical studies still hold in the healthy population at large, or whether
multiple cross-organ associations persist when modelled simulta-
neously. It is important that these relationships are examined in
population cohorts without severe disease, since the targets for pre-
ventative strategies are those who are clinically healthy, but may be at
risk for future potential disease.

Existingworkprovides extensive evidence that risk factors such as
diabetes and hypertension are important drivers across all three
organs, but there is very little known about the multi-organ relation-
ships independent of these primary shared determinants.

The UK Biobank is a large-scale biomedical research database that
combines detailed demographic, lifestyle, and clinical characterisation
with multi-organ magnetic resonance imaging (MRI), providing the
ideal platform for the consideration of multi-system health interac-
tions in a population cohort. This offers an unprecedented opportu-
nity to combine a range of imaging metrics, old and new, and to
explore what these have to tell us about the complex interplay
between the heart, brain and liver organ systems (Fig. 1).

In this study, we map the relationships between organ-level ima-
ging measures of the heart, brain and liver using state-of-the-art MRI
phenotypes in 30,444 UK Biobank participants, considering a wide
range of confounders and potential disease mechanisms. We provide
large-sample validation for known heart-brain-liver relationships,
describe some novel associations, and find evidence for differential
cross-organ dependencies. We demonstrate how shared associations
could point towards shared pathology and have the potential to
inform multi-system risk prediction and treatment strategies.

Results
Study sample
Within the UK Biobank cohort, heart and brain imaging was available
for 31,174 participants.We excluded 730 (2%)participants withmissing
covariate data, leaving a maximum analysis sample of 30,444 partici-
pants (Fig. 2). In this study, there are three nested data sets. The

pairwise heart-brain analyses are based on the main set of 30,444
participants. A subset of 15,097 participants had at least one piece of
liver imagingdata.We refer to this as the liver subset and this forms the
basis of the pairwise liver-brain and liver-heart analyses. Even so, there
is remaining variation in sample sizes across heart, brain and liver
imaging metrics, described in detail in Supplementary Table 1. In the
three-organ path analyses, we use only complete rows across all ima-
gingmetrics,which includes 6865 participants referred to as the three-
organ subset.

Population characteristics
Our sample included 15,905 female participants (52.2%) and 14,539
male participants (47.8%). The average age was 63.2 (±7.5) years, with
median BMI of 25.9 kg/m2 (Table 1). The proportion of participants
with diabetes, hypertension and BMI ≥ 30 kg/m2 was 5.7%, 32.4%, and
18.0%, respectively (Table 1). The three study samples (main set, liver
subset and the three-organ set) were similar in terms of age, sex,
average blood pressure, alcohol intake, smoking and physical activity.
Participants in the three-organ set (n = 6865) had slightly lower levels
of diabetes, hypertension and elevated BMI than the maximum set
(4.9%, 29.8% and 15.3%, respectively, Table 1).

Associations between liver and brain indices
In fully adjusted models, greater liver fibro-inflammation (cT1) was
associated with significantly smaller grey matter brain volumes, larger
volumes of white matter hyperintensities, and adverse white matter
microstructure (Fig. 3a, Supplementary Table 2). Specifically, higher
levels of liver fibro-inflammation (higher cT1) were associated with
lower neurite density (lower ICVF) and a greater proportion of free-
moving water (higher ISOVF). In sense checks against cognitive func-
tion, higher values across the healthy brain features (total brain
volume, grey matter volume and neurite density, ICVF) were asso-
ciated with better cognitive performance, while the reverse was true
for adverse brain features (white matter hyperintensities and free-
water fraction, ISOVF). Greater liver iron was associated with smaller
total brain andgreymatter volumes, butwaspositively associatedwith
neurite density (higher ICVF).

Shared 
multi-organ 
risk factors

Elevated BMI
Sedentary lifestyle

High blood pressure
Poor glycaemic control

Smoking
Alcohol

Deprivation

Outcomes

Cognitive impairment
Heart disease
Liver failure

Multimorbidity
Mortality

Impaired cardiac function
Concentric LV remodelling

Aortic stiffening

Potential disease mechanisms

Fat accumulation
Adverse lipid profile

Hypoperfusion

Endothelial dysfunction
Arterial plaque formation

Prothrombotic state

Insulin resistance
Oxidative stress

Systemic inflammation

Grey matter atrophy
White matter degeneration

Small vessel disease

Fat accumulation
Inflammation / fibrosis

Iron accumulation

Fig. 1 | Conceptual overview of the heart-brain-liver axis. Heart, brain and liver
systems co-exist within a context of shared multi-organ risk factors. In this study,
we identify the ways that subclinical changes in each organ associate with others in
the heart-brain-liver axis, relevant to a range of possible underlying disease
mechanisms. A detailed understanding ofmulti-organ interaction could potentially

improve our ability to predict and prevent connected complex outcomes. BMI
bodymass index, LV left ventricular. Please note, this is a conceptual figure and not
all elements displayed are explicitly tested in this study. Image attributes: heart
made by Smashicons, liver made by Vitaliy Gorbachev, brain made by Justicon, all
from www.flaticon.com.
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In fully adjusted models, greater liver fat (higher PDFF) was sig-
nificantly associatedwith adversemacroscale structural brain changes;
specifically, smaller total brain and grey matter brain volumes and
larger white matter hyperintensity regions. However, the associations
between brain microstructure and liver fat were mixed, in that higher
PDFF was associated with both higher free-water fraction (ISOVF) and
higher neurite density (ICVF). In participants with PDFF above the 5%
threshold, the associations with ICVF metrics were attenuated and
those with ISOVF were strengthened (Fig. 3a, Supplementary Table 2).

Associations between heart and brain indices
We found associations between adverse brain and cardiac image-
derived phenotypes (Fig. 3a, Supplementary Table 3). Specifically,
smaller total brain volumes, smaller grey matter volumes, and greater
white matter hyperintensities were linked to significantly poorer LV
function (lower LVSV), more concentric LV remodelling pattern

(higher LVM/LVEDV), and lower aortic distensibility. Similarly, lower
neurite density (ICVF) and a higher proportion of free-moving water
(lower ISOVF) were linked to adverse cardiac phenotypes (lower LV
GFI, higher LVM/LVEDV, lower aortic distensibility), with aortic dis-
tensibility showing the strongest relationships.

Fig. 2 | Study sample. Across the UK Biobank cohort, 48,996 participants had a
record of an imaging attendance of any type. Relevant brain imaging data was
available for 39,691 participants, cardiac imaging was available for 32,409 partici-
pants, and liver imaging was available for 15,523 participants. The maximum pos-
sible set at the intersection of brain imaging plus either liver or heart imaging
contained 31,174 participants. We excluded 730 (2%) participants with missing
covariate data, leaving a main set of 30,444 participants. This set was used for the
pairwise heart-brain analyses. Within the main set, a subset of 15,097 participants
had at least one piece of liver imaging data. This is the liver subset and this forms
the basis of the pairwise liver-brain and liver-heart analyses. Even so, there is still
variation in sample sizes across heart, brain and liver imaging metrics, described in
detail in Supplementary Table 1. The data set with complete case data available
across all three organs has 6,865 participants. This is the set that was used for the
three-organ path analyses.

Table 1 | Sample characteristics

Characteristic Main set
(n = 30,444)

Liver subset
(n = 15,097)

Three-organ
set (n = 6865)

Female 15,905 (52.2%) 8,145 (54.0%) 3,736 (54.4%)

Male 14,539 (47.8%) 6,952 (46.0%) 3,129 (45.6%)

Age at imaging (years) 63.2 (±7.5) 62.6 (±7.5) 62.7 (±7.4)

SBP (mmHg) 137.8 (±18.2) 137.0 (±17.9) 136.8 (±17.3)

BMI (Kg/m2) 25.9 [23.5, 28.8] 25.7 [23.4, 28.5] 25.7 [23.5, 28.4]

BMI ≥ 30 kg/m2 5469 (18.0%) 2446 (16.2%) 1052 (15.3%)

Smoking status

Never smoked 18,962 (62.3%) 9462 (62.7%) 4346 (63.3%)

Previous smoker 10,160 (33.4%) 4953 (32.8%) 2232 (32.5%)

Current smoker 1095 (3.6%) 566 (3.7%) 241 (3.5%)

Physical activity (total MET-minutes/week)

Highly active (>3,000) 9635 (31.6%) 4557 (30.2%) 2082 (30.3%)

Moderately active
(600–2,999)

15,551 (51.1%) 7833 (51.9%) 3605 (52.5%)

Inactive (<600) 5008 (16.4%) 2573 (17.0%) 1126 (16.4%)

(Missing) 250 (0.8%) 134 (0.9%) 52 (0.8%)

Alcohol consumption frequency

Never 1963 (6.4%) 955 (6.3%) 418 (6.1%)

Less than once per week 6547 (21.5%) 3212 (21.3%) 1453 (21.2%)

Once per week or more 21,704 (71.3%) 10,814 (71.6%) 4948 (72.1%)

(Missing) 230 (0.8%) 116 (0.8%) 46 (0.7%)

Diagnosed status at imaging

Diabetes 1737 (5.7%) 753 (5.0%) 336 (4.9%)

Hypertension 9855 (32.4%) 4649 (30.8%) 2043 (29.8%)

High cholesterol 10,541 (34.6%) 5048 (33.4%) 2280 (33.2%)

Cardiac imaging

LVSVi (ml/m2) 46.9 (±8.4) 46.8 (±8.0) 46.8 (±7.9)

LV GFI (%) 47.6 (±6.9) 47.8 (±6.7) 48.0 (±6.6)

LVM/LVEDV (g/ml) 0.57
[0.52, 0.63]

0.57 [0.52, 0.63] 0.57 [0.52, 0.63]

Aortic distensibility
(x10−3 mmHg−1)

2.23 [1.60, 3.03] 2.27 [1.62, 3.07] 2.24 [1.61, 3.04]

(Missing all cardiac
metrics)

581 (1.9%) 443 (2.9%) –

Liver imaging

Liver fat (PDFF, %) 2.87 [2.00, 4.76] 2.87 [2.00, 4.76] 3.02 [2.12, 5.22]

Fatty liver (PDFF >5%) 3503 (23.2%)* 3503 (23.2%) 1825 (26.6%)

Liver cT1 (ms) 693 [662, 729] 693 [662, 729] 691 [661, 727]

Liver iron (mg/g) 1.22 [1.13, 1.36] 1.22 [1.13, 1.36] 1.22 [1.12, 1.36]

(Missing all liver metrics) 15,347 (50.4) – –

Brain imaging

Total brain volume (mL) 1498.4 (±72.9) 1504.4 (±72.6) 1502.3 (±71.9)

Grey matter volume (mL) 794.1 (±47.8) 797.3 (±47.9) 797.4 (±47.0)

White matter
hyperintensities (mL)

2.74 [1.48, 5.57] 2.58 [1.40, 5.08] 2.68 [1.46, 5.17]

(Missing all brain metrics) 1,317 (4.3%) 1,317 (8.7%) –

Entries are either count (percent) ormean (± standarddeviation) ormedian [25th percentile, 75th
percentile]. * Fatty liver percentage shows the percent of non-missing participants. BMI body
mass index,MET metabolic equivalent task, SBP systolic blood pressure, HbA1c glycated hae-
moglobin, LVSVi left ventricular stroke volume indexed to body surface area, LVEF left ven-
tricular ejection fraction, LVGFI left ventricular global function index, LVM/LVEDV left ventricular
mass to volume ratio (left ventricular mass / left ventricular end diastolic volume), PDFF proton
density fat fraction, cT1 corrected T1 relaxation time. Source data are provided as a Source
Data file.
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Associations between liver and heart indices
In fully-adjusted pairwise models, higher values of all three liver
features (PDFF, cT1, liver iron) were associated with poorer cardiac
structure and function metrics (Fig. 3b, Supplementary Table 4),
with the strongest signal observed for liver fat (PDFF). Higher liver
fibro-inflammation (higher cT1), greater fat content (PDFF >5%), and
higher liver iron were all associated with lower LVSVi, and more
concentric LV remodelling patterns (higher LVM/LVEDV). Greater
liver fat (higher PDFF) was associated with aortic stiffening (lower
aortic distensibility), whereas the relationship between liver cT1 and
aortic distensibility was not significant. In simultaneous modelling
(Supplementary Table 5), higher liver fat (PDFF) had significant
adverse associations with all heart features, and had a stronger
effect on the heart (larger coefficient) than liver cT1 or liver iron. The
heart imaging metrics most strongly associated with liver fat were

reduced LV stroke volume and increased concentric LV remodelling
(higher LVM/LVEDV).

Multi-organ models
Three-organ path analysis modelling found direct and indirect
associations with both heart and liver for all three brain outcomes
(Fig. 4, Supplementary Table 6). Aortic stiffening (lower aortic dis-
tensibility) and liver cT1 were the strongest heart and liver features
respectively, both directly associated with smaller grey matter
volumes, greater white matter hyperintensities and higher ISOVF,
even after adjustment for confounders. For all three brain outcomes,
aortic stiffening had a stronger signal than liver cT1. In addition to
the features mentioned above, smaller grey matter volumes were
also associated with reduced LVSVi, which itself was strongly asso-
ciated with higher liver fat. On the other hand, the accumulation of

Fig. 3 | Pairwise associations between imaging phenotypes of the heart, brain
and liver. Size of the bars and interval centre dot represent standardised beta
coefficients, error bars represent 95% confidence intervals for the standardised
beta coefficient from multivariable linear regression models. Red bars reflect
negative associations, green bars reflect positive associations. a Heart and liver
imaging metrics in pairwise associations with brain imaging metrics. b Pairwise
associations between liver and heart imaging metrics. Models are adjusted by age,
sex, diabetes, hypertension, BMI ≥ 30 kg/m2, high cholesterol, smoking, physical
activity, alcohol consumption, deprivation, educational level, red blood count,
total cholesterol, and glycosylated haemoglobin. Brain analyses are additionally
adjustedby head size, imaging site, scanner coordinates and date of scanning. Each
bar is froma separatemodel. Coefficient significance is assessedwith a two-sidedT-
test, and p-values were considered significant after adjustment for multiple testing

with a 5% false discovery rate. Where the p-value is not significant, the bar is shown
in transparent colour. PDFF = proton density fat fraction, cT1 = corrected T1
relaxation time, ICVF= intracellular volume fraction, ISOVF = isotropic volume
fraction, LVSVi = left ventricular stroke volume indexed to body surface area, LV
GFI = left ventricular global function index, LVM/LVEDV= left ventricular mass to
volume ratio (left ventricular mass / left ventricular end-diastolic volume), AoD =
aortic distensibility. Associations between cognitive performance and brain ima-
ging were calculated across a minimum of 25,280 participants. Liver-brain asso-
ciations are from a minimum of 9649 participants, heart-brain associations are
from a minimum of 20,610 participants, liver-heart associations are from a mini-
mum of 8234 participants. Precise sample sizes for each pairwise result are pro-
vided in Supplementary Tables 2, 3 and 4. Source data are provided as a Source
Data file.
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white matter hyperintensities was associated with greater concentric
LV remodelling (higher LVM/LVEDV) and reduced LV global function
index, in addition to aortic stiffening and liver cT1. While the variance
explained in brain outcomes (R2) was comparable between alter-
native model forms (see Fig. 2), the final three-organ models repor-
ted in Fig. 4 had better overall fit (lower root mean squared error,
higher Tucker-Lewis index) than their alternative form counterparts
(see Supplementary Table 6 for full information).

Discussion
Summary of findings
In this large population-based cohort of 14,539men and 15,905women
from the UK Biobank, we present multiple patterns of association
across the heart-brain-liver axis using multi-organ imaging. Greater
liver fat, higher liver fibro-inflammation, and greater liver iron were
linked to smaller total brain and grey matter volumes, larger volumes
of brain microvascular injury, and poorer white matter microstructure
(diffusion metrics). Similar associations were observed between brain
and heart imaging metrics. Adverse liver features were linked to
unhealthy cardiovascular structure and function (poorer LV function,
more concentric LV remodelling and lower aortic compliance). The
most consistent markers in the liver-brain, liver-heart, and heart-brain
associations were liver fibro-inflammation (cT1), liver fat (PDFF), and
aortic distensibility, respectively. Importantly, these relationships
were independent of a wide range of shared demographic, lifestyle,

environmental, and vascular risk factors such as diabetes mellitus,
hypertension, high cholesterol, elevated BMI and smoking. Simulta-
neous path analysis illustrated both direct and indirect relationships
between the three organ systems, further supporting inter-
dependencies of the heart-brain-liver axis.

Liver and brain associations
Liver tissue cT1 is elevated in association with increased inflammation
and fibrosis, and as such is considered a marker of liver fibro-
inflammation14.We demonstrated that liver fibro-inflammation (higher
cT1) is the primary way that the liver associates with adverse brain
features, namely decreased brain volume, increased white matter
hyperintensities, lower neurite density (ICVF) and higher free-water
fraction (ISOVF).

Previous studies in smaller cohorts have connected fatty liver
disease status with brain atrophy15–18 and greater white matter hyper-
intensity burden19–21. While we confirmed these findings, however,
when it comes to the microscale imaging metrics, we found the rela-
tionship between liver fat and white matter to be more nuanced. Our
findings indicated that within the lower/healthy range (0 – 4.9%), liver
fat was associated with higher neurite density. This unusual observa-
tion may be related to a phenotypic expression for liver fat in the
normal range in some people22,23, or may reflect the role of fatty acids
in the formation andmaintenanceof axonalmyelin, itself composedof
70–85% lipids24. It is important to note, however, that when liver fat

Fig. 4 | Simultaneous liver/heart associations with brain healthmeasures. Final
models and standardised beta coefficients from path analyses fitted using the
lavaan package in R. All path analysis models are calculated with 6865 participants.
a Simultaneous heart and liver associations with grey matter volume.
b Simultaneous heart and liver associations with accumulation of white matter
hyperintensities. c Simultaneous heart and liver associations with increased free-
water fraction. Brain measures are in grey, heart measures are in pink and liver
measures are in teal.Models are built for a single brain outcome, and initially include
two liver variables as predictors (liver PDFF and cT1) and all heart variables together
in two alternative forms (i) Brain ~ Heart + Liver, Heart ~ Liver, and (ii) Brain ~
Heart + Liver, Liver ~ Heart (see Supplementary Fig. 1 for detail). Non-significant
pathswere removedone at a time to reach thefinalmodel, then the best fitting form

based on highest Tucker-Lewis fit index and lowest root mean squared error. All
paths are adjusted by age, sex, height, diabetes, hypertension, high cholesterol,
smoking, physical activity, alcohol intake frequency, Townsend deprivation score,
education, systolic blood pressure, BMI≥ 30 kg/m2, total cholesterol, glycated hae-
moglobin, red blood cell count. Paths connecting to the brain are additionally
adjusted by imaging confounders. Coefficient significance was assessed with a two-
sided Z-test, and p-values were considered significant after adjustment for multiple
testing with a 5% false discovery rate. Prior to simultaneous modelling, liver and
heart variables were orthogonalized to remove within-organ correlation (see Sup-
plementary Table 4 for details). LV = left ventricular, PDFF =proton density fat
fraction, cT1 = corrected T1 relaxation time, ISOVF = isotropic volume fraction,
AoD= aortic distensibility. Source data are provided as a Source Data file.
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levels exceeded the 5% threshold, the potentially positive brain effects
disappeared, while adverse brain effects became prominent (for
example, greater ISOVF). In simultaneous modelling, liver fat did not
associate directly with adverse brain phenotypes when liver cT1 was
present in the model, pointing to fibroinflammation rather than liver
fat as the key driver of the relationship. On the other hand, most
participants in UK Biobank are within the healthy liver fat range,
therefore our results may not adequately capture those with very high
liver fat,meaning that these relationshipsmaybedifferent inother less
healthy cohorts.

Heart and brain associations
We report clear associations between the heart and brain across all
structural and functional metrics considered, independent of known
shared risk factors. Aortic distensibility showed the strongest asso-
ciations, consistent with several smaller previous studies linking
aortic stiffness and brain ageing25–27. Our observations linking poorer
LV function and reduced arterial compliance with adverse brain
features provide support for the vascular hypoperfusion paradigm
which links cerebral hypoperfusion to brain atrophy and micro-
vascular plaque accumulation28. An earlier analysis of the UK Biobank
demonstrated an association of lower LV ejection fraction with
adverse structural brain alterations (lower grey matter volume and
greater white matter hyperintensities)29. We significantly extend
these observations by examining associations with a wider range of
both cardiovascular and brain features including both structural and
functional metrics.

Existing research connecting imaging-derived cardiac metrics to
white matter microstructure is sparse. One small study (n = 318) found
that increased LVmasswas associatedwith compromisedwhitematter
in several brain areas, including the superior frontal gyrus, anterior
corona radiata and superior corona radiata30. The current study pre-
sents associations between multiple imaging-derived heart metrics
and state-of-the-art metrics of neuronal microstructure, revealing a
consistent pattern of mutual support between more favourable heart
and brain imaging metrics, with the strongest signal via aortic dis-
tensibility. While previous studies have connected vascular risk factors
such as hypertension or smoking to brain atrophy, white matter
hyperintensities and white matter microstructure31–35, we observed
significant associations between brain and heart metrics even after
adjusting for shared vascular risk factors.

Liver and heart associations
We observed a consistent pattern of association between the liver
and heart across all imaging metrics considered. The most con-
vincing associations were observed between liver fat and the
heart, with higher PDFF strongly linked to reduced LV stroke
volume and more concentric LV remodelling, a pattern which has
been connected to poorer mortality and clinical outcomes36.
Although previous work has linked clinically diagnosed fatty liver
disease to poorer heart health, and LV hypertrophy in particular37,
our study validates this relationship at the organ tissue level, in a
large population-based sample mostly free from clinical disease.
Greater liver fibro-inflammation (cT1) and higher liver iron were
also linked to adverse cardiac features, but these were less
dominant than the liver fat associations. In this context, it is
worth considering that, in many individuals, elevated liver fat
precedes liver fibrosis, and it is possible that the stronger asso-
ciation of measures of cardiac health with liver fat rather than
fibro-inflammation is simply due to the fact that in the UK Bio-
bank population, changes in fat are of a greater magnitude than
changes in fibro-inflammation. Hence, it is possible that associa-
tions of heart health with liver fibro-inflammation may become
more dominant in a population with more advanced liver disease.

Three-organ network
In addition to pairwise associations, simultaneous three-organ path
analysis revealed some potentially important aspects of the heart-
brain-liver axis. Among the heart and liver features studied, two factors
emerged as dominant in their association with brain health – namely
aortic distensibility and liver fibroinflammation (cT1). These features
associate consistently with adverse brain alterations at the macro- and
micro-scale. These findings would suggest that therapies aimed at
improving vascular health and reducing liver inflammation may have
additional positive benefits for the brain. In addition to these direct
effects, there is evidence of interplay between the liver and heart,
potentially compounding adverse associations with the brain. For
example, increased liver fat is associated with reduced LV stroke
volume which then associates with reduced grey matter volume.
Although the effect sizes were small, the observation of both direct
and indirect effects provides evidence of a potentially cumulative
burden of multiple-organ dysfunction.

Strengths and limitations
UKBiobankprovidesmulti-organ imaging acquired and analysedusing
standardised approaches, thereby providing an ideal platform for the
present study. As we used imaging measures of organ structure and
function, our assessments were not susceptible to biases and sub-
jectivity of clinical diagnoses or cognitive function testing used in
previous work. Image analysis in our study was with previously vali-
dated fully automated quality-controlled tools, minimising risk of bias.
The deep characterisation of the UK Biobank cohort permitted
adjustment for a wide range of potential confounders. However, there
may be imperfections in the measurement of these covariates (e.g.
physical activity is based on self-report), resulting in residual con-
founding. The analysis in this study represents cross-sectional rela-
tionships. In our three-organ models, we have assigned brain metrics
as model outcomes. This is not a comment on the direction of the
relationships, which we believe is most likely bidirectional, but rather
for consistency and ease of assimilation. Furthermore, the three-organ
model structures presented are not exhaustive of all possible combi-
nations, but serve tohighlight themostprominent simultaneous heart-
brain-liver associations among the metrics studied. In future works,
other approaches may be explored, directed at examining more spe-
cific research questions. Our model structures are based on the
assumption that clinical diagnoses drive organ-level remodelling
represented by the imaging metrics; for example, hypertension lead-
ing to LV hypertrophy. We believe that this is the most likely direction
of these relationships and that therefore the clinical diagnoses are
confounder variables in the model. However, we cannot exclude the
possibility that alterations in imaging metrics also drive clinical diag-
noses, in which case the diagnoses would be colliders. We think that
this is a less likely possibility, but one that merits further study in
future work.

The UK Biobank imaging study is unique in including multi-organ
imaging data for a large population cohort, permitting analyses of
large samples of mostly healthy people. Available evidence supports
the technical and clinical validity of the image-derived phenotypes
used in our study. Evidence is accumulating demonstrating the clinical
validity and trends of the CMR-derived metrics in the UK Biobank38.
With regard to the brain imaging metrics, we have provided a “sense
check” against cognitive function to aid interpretation of the direction
of health. A summary of relevant published evidence for the validity of
liver imaging metrics is provided in Supplementary Table 7. Overall,
further research is essential in shaping a more complete under-
standing of the clinical validity of these measures in population
cohorts. Finally, due to the observational nature of the study, we
cannot exclude residual confounding or infer causation from the
results.
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In conclusion, we have provided an overview of the connections
between the heart, brain and liver, and demonstrated that many of the
individual cross-organ associations identified in smaller clinical studies
can also be found in a large (mostly healthy) population sample. We
have shown thatmulti-organ relationships persist after adjustment for
dominant shared risk factors, and that multiple cross-system associa-
tions can simultaneously coexist within the same participants. Our
work adds to the growing body of multi-organ evidence suggesting
that adverse features in one organ (the liver, for example), may have
additional implications for other organs. In this context, physicians
should be aware of the ways that other organs could be at risk, and the
treatments that could have potential multi-system benefit.

Because this is a hypothesis-generating study, furthermechanistic
studies are warranted to investigate the multi-organ impact of known
risk factors (eg. diabetes, hypertension) and the pathophysiological
processes underpinning the associations identified (whether vascular,
inflammation, nutrition, infection or toxin-related). A more detailed
examination of multi-organ mechanisms would help identify potential
therapeutic strategies to maximise multi-organ benefits (e.g. statins,
angiotensin-converting enzyme inhibitors, blood-sugar lowering
medications).

Looking to the future, an understanding of multi-organ inter-
dependence is fundamental to population-level risk stratification and
disease prevention, since the detection of abnormalities in any of the
three organs signals an opportunity to intervene earlier in patients and
alter the trajectory of disease development. In summary, the cumula-
tive potential insights frommulti-system imaging are expected to have
amajor impact on our ability to predict and prevent complex diseases,
and reliably improve quality of life and overall survival.

Methods
Study population and setting
This study complies with the Declaration of Helsinki; the work was
covered by the ethical approval for UK Biobank studies from the
National Health Service (NHS) National Research Ethics Service on 17th
June 2011 (Ref 11/NW/0382) and extended on 18 June 2021 (Ref 21/NW/
0157) with written informed consent obtained from all participants.

UK Biobank is a large prospective research cohort, covering
approximately 500,000 population-based participants in the UK.
Individuals aged 40–69 years old were identified from National Health
Service (NHS) registers and invited to participate. All participants
completed a baseline visit, where a range of physical measurements
were taken along with a touchscreen questionnaire and in-person
interview. Individuals who were not able to complete baseline assess-
ments due to poor health or discomfort were not recruited.

The UK Biobank Imaging Study
The UK Biobank dataset has been augmented with the addition of
multi-organ imaging for a large subset of the original participants. To
date, approximately 50,000 participants have completed the stan-
dardised UK Biobank imaging protocol, which includes MRI of the
brain, heart, and liver. Image acquisition was in accordance with pre-
defined standard operating procedures using uniform equipment and
staff training. The UK Biobank imaging protocol is detailed in pub-
lished sources39–41. A detailed description of MRI acquisition para-
meters for heart, brain, and liver scanning is presented in
Supplementary Table 8. Recruitment for participants in this study took
place between March 2006 and October 2010 with imaging between
May 2014 and March 2019.

Liver imaging-derived metrics
Liver scanswere performedusing a Siemens 1.5 T scanner aspart of the
UK Biobank abdominal imaging protocol42. A single transverse slice
was taken through the centre of the liver above the porta hepatis and
image analysis was performed as described previously14. Scanning

sequences included shortened modified Look-Locker inversion
recovery (ShMOLLI) T1 and multi-echo spoiled-gradient-echo T2*
acquisition. Three 15mm circular regions of interest were identified as
representative parenchymal tissue, and from which the following
summary statistics were calculated: proton density fat fraction (PDFF),
liver iron concentration and iron-corrected T1 (cT1). PDFF is a reliable
measure of liver fat calculated with water-fat separation masks, with
PDFF > 5% indicative of fatty liver disease42. Liver iron concentration is
derived from the T2* signal and is a key biomarker of liver health with
high levels linked to fibrosis, cirrhosis, and hepatocellular carcinoma43.
Finally, cT1 is a novel measure, derived from both T1 and T2* and
developed as a composite marker of liver fibrosis and inflammation
and linked in recent work to adverse liver-related health events13,14. The
liver imaging metrics have been previously assessed for
reproducibility44 and have been used to identify liver differences in
healthy and mixed cohorts45.

Brain volumes and white matter microstructure
Multi-modal brain MRI was conducted using a Siemens 3 T scanner40,46

using three acquisition types; T1-weighted magnetization-prepared
rapid acquisition with gradient echo for overall brain segmentation
and volumes, T2-weighted fluid-attenuated inversion recovery for
white matter lesion detection, and diffusion-weighted imaging acqui-
sition with 100 diffusion-encoding directions over two shells. A range
of standardised brain imaging-derived phenotypes were produced via
an extensive data processing and quality control pipeline47. Further
details of brain MRI acquisition and processing are provided in Sup-
plementary Table 8. In the current study, we included bothmacroscale
and microscale measures of brain structure48. At the macroscale, we
examined overall brain volume, grey matter volume, and peripheral
cortical grey matter volume49 which were normalised for head size.
Volume of white matter hyperintensities (WMH) was included as a
measure of incipient cerebral small vessel disease burden previously
linked to neurodegenerative disease50,51. At themicroscale, we selected
intracellular volume fraction (ICVF), and isotropic volume fraction
(ISOVF) derived from state-of-the-art diffusion MRI analysis known as
neurite orientation dispersion and density imaging (NODDI)52. While
diffusion analyses have traditionally reported mean diffusivity and
fractional anisotropy (FA) as key metrics, NODDI measures were spe-
cifically developed to overcome the tendency for the FA signal to be
conflated with criss-crossing or complexity in the underlying fibre
architecture52. Therefore, we chose to follow several recent studies53,54

wherein NODDI metrics provided a clearer view of the underlying tis-
sue in terms of intracellular and extracellular water. ICVF refers to the
proportion of restricted movement of water diffusion, with higher
values of ICVF thought to reflect higher neurite density. ISOVF repre-
sents the proportion of water moving in a free-moving or unrestricted
motion, with higher values associated with brain oedema, breakdown
inmyelin and increased permeability of axonalmembranes55. Diffusion
indices across 29 white fibre tracts across the whole brain (excluding
the brain stem) were scaled via ordered quantile normalisation56 and
then averaged to form global measures for ICVF and ISOVF. Details of
the fibre tracts included are given in Supplementary Table 9.

Cardiac measures
Cardiovascular magnetic resonance (CMR) was performed using Sie-
mens 1.5 T scanners, including long-axis cines (horizontal long axis,
vertical long axis, left ventricular outflow tract) with a complete short-
axis stack and a transverse aortic cine slice at the intersection of the
pulmonary trunk and right pulmonary artery. The UK Biobank CMR
protocol is available in a separate publication41, along with details of
image processing and metric derivation57,58. We selected CMR mea-
sures of cardiovascular structure and function, previously shown to
have reliable and intuitively interpretable exposure associationswithin
population cohorts59. We selected left ventricular (LV) stroke volume
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(LVSV) and LV global function index (LV GFI) as measures of LV func-
tion. Both have been shown to associate reliably with health and dis-
ease indicators; LV GFI, a modified version of LV ejection fraction,
which incorporates LV structure, has been shown to have superior
prognostic value in population cohorts12,60. We included LVmass to LV
end-diastolic volume ratio (LVM/LVEDV) as a measure of LV structural
remodelling36. Higher LVM/LVEDV indicates predominance of a more
concentric pattern of LV remodelling, which typically represents an
unhealthy structural phenotype. Additionally, we included aortic dis-
tensibility, a measure of local aortic bioelastic function, as an indicator
of arterial health previously identified as an independent predictor of
cardiovascular morbidity and mortality61,62.

Cognitive function
To aid the interpretation of complex brain indices, we calculated their
associations with cognitive function. These results are presented
alongside the brain analyses as a layer of internal face validity. The
battery of cognitive function tests administered by UK Biobank has
been previously evaluated for reliability and validity63,64. A subset of
these were administered at the imaging visit, from which we included
fluid intelligence, reaction time (inverted), and prospective memory -
basedondata availability (>90%) and their broadcoverage of cognitive
functions (problem-solving, working memory, processing speed). An
overall measure of cognitive performance was obtained by calculating
the average z-score across the three measures.

Covariates and confounders
Participants’ sex at birth, date of birth, educational level, and Town-
send deprivation score were obtained from the baseline visit. Physical
measures (height, weight, waist circumference, and systolic blood
pressure) were recorded at the imaging visit. Body surface area and
body mass index (BMI) were calculated from height and weight at
imaging. Self-reported smoking status, alcohol consumption fre-
quency, and physical activity were recorded at imaging. Physical
activity was quantified from responses to the simplified International
Physical Activity Questionnaire (IPAQ)65 into summed metabolic
equivalent (MET)-minutes per week according to UK Biobank
guidance66. Red blood cell count, total cholesterol and glycated hae-
moglobin (HbA1c)were taken fromblood sampling at baseline. Clinical
diagnoses for diabetes, high cholesterol and hypertension were
ascertained via a combination of self-report, biochemistry, and linked
hospital episode statistics data, with status at the time of imaging. A
full listing of UK Biobank fields and codes is given in Supplementary
Table 10. In addition, as per published recommendations, we included
the following de-confounding variables in brain analyses: head size,
imaging site, site by age/sex interactions and de-meaned scanner table
coordinates (X, Y, Z and table position)67.

Statistical analysis
Statistical analysis was conducted with R version 4.1.068 and RStudio
version 1.4.171769. The main body of the analysis comprised a series of
multivariable linear regression analyses to examine pairwise associa-
tions between the heart, brain and liver features. All models were
adjusted by the following covariates: age, sex, height, diabetes, high
cholesterol, hypertension, smoking, physical activity, alcohol con-
sumption, Townsend deprivation index, education, BMI ≥ 30 kg/m2,
systolic blood pressure, red blood cell count, total cholesterol, and
glycated haemoglobin. No missing value imputation was used for the
main study variables (i.e., heart, brain and liver metrics). Missing value
imputation was used for selected covariates, as detailed in Supple-
mentary Table 11.

Results are presented as standardised beta coefficients with 95%
confidence intervals (CIs) and p-values where significance thresholds
were adjusted for multiple testing using a false discovery rate of 0.05
across exposure variables across all pairwise models.

Following pairwise analysis, we sought to identify the relation-
ships between heart, brain and liver that persisted when modelled
simultaneously, to identify the empirically strongest pathways
between organs and potential indirect effects. Features with the
greatest number of significant cross-organ links in the pairwise analysis
were carried forward into three-organ modelling, including all heart
variables, liver fat and liver cT1 and three brain outcomes (total grey
matter volumewhitematter hyperintensities and ISOVF).Wemodelled
simultaneous relationships with path analysis using the lavaan pack-
age in R70. For each brain outcome, liver and heart exposures were
modelled together in two forms, (a) Brain ~ heart + liver, Heart ~ liver,
and (b) Brain ~ heart + liver, Liver ~ heart, as pictured in Supplemen-
tary Fig. 1.

In the first step, all variables were included together in themodel,
along with all confounders described above as linear (not latent)
covariates. The additional imaging confounderswere included inpaths
for the brain outcome. In the second step, non-significant variables
were removed one at a time from each formulation, leading to a final
model for each outcome in forms (a) and (b). From these, the best
fitting model (a or b) was selected based on lowest root mean squared
error and highest brain outcome R2. Prior to simultaneous modelling,
heart and liver variables were orthogonalized with principal compo-
nents analysis rotation to remove within-organ correlation, while
retaining more than 90% of the original signal. Details of each within-
organ adjustment are shown in Supplementary Table 12. In supple-
mentary analyses, path analysis was also used to simultaneously relate
liver features to heart features.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research was conducted using the UK Biobank resource under
access application 59867.UKBiobankwillmake thedata available to all
bona fide researchers for all types of health-related research that is in
the public interest, without preferential or exclusive access for any
persons. All researcherswill be subject to the same application process
and approval criteria as specified by UK Biobank. For more details on
the access procedure, see the UK Biobank website: http://www.
ukbiobank.ac.uk/register-apply/. Source data for figures and tables
are providedwith this paper. Source data are providedwith this paper.

Code availability
Statistical analysis was conducted with R version 4.1.068 and RStudio
version 1.4.171769, making use of the following packages: tidyverse
(version 1.3.1), biglm (version 0.9–2.1), e1071 (version 1.7–9), broom
(version 0.8.0), ggh4x (version 0.2.1), mice (3.14.0), DiagrammeR
(version 1.0.9) and lavaan (version 0.6–11). The R code used for this
analysis is publicly available at https://doi.org/10.17605/OSF.
IO/ZKMEQ.
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