
Article https://doi.org/10.1038/s41467-022-35388-x

Huntington disease oligodendrocyte
maturation deficits revealed by single-
nucleus RNAseq are rescued by thiamine-
biotin supplementation

Ryan G. Lim 1,13, Osama Al-Dalahmah 2,13, Jie Wu 3,13, Maxwell P. Gold4,
Jack C. Reidling1, Guomei Tang 5, Miriam Adam4, David K. Dansu 6,
Hye-Jin Park6, PatriziaCasaccia 6, RicardoMiramontes1, AndreaM.Reyes-Ortiz3,
Alice Lau7, Richard A. Hickman2, Fatima Khan2, Fahad Paryani5, Alice Tang2,
Kenneth Ofori 2, Emily Miyoshi 8, Neethu Michael9, Nicolette McClure8,
Xena E. Flowers2,10, Jean Paul Vonsattel2,10, Shawn Davidson11, Vilas Menon 5,
Vivek Swarup 1,8, Ernest Fraenkel 4, James E. Goldman 2,10,14 &
Leslie M. Thompson 1,3,7,8,12,14

The complexity of affected brain regions and cell types is a challenge for
Huntington’s disease (HD) treatment. Here we use single nucleus RNA
sequencing to investigate molecular pathology in the cortex and striatum from
R6/2mice and humanHDpost-mortem tissue.We identify cell type-specific and
-agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte
precursors (OPCs) are arrested in intermediate maturation states. OL-lineage
regulatorsOLIG1 andOLIG2 are negatively correlatedwithCAG length in human
OPCs, andATACseq analysis ofHDmouseNeuN-negative cells showsdecreased
accessibility regulatedbyOLmaturation genes. Thedata implicates glucose and
lipidmetabolism in abnormal cell maturation and identify PRKCE and Thiamine
Pyrophosphokinase 1 (TPK1) as central genes. Thiamine/biotin treatment of R6/
1 HD mice to compensate for TPK1 dysregulation restores OL maturation and
rescues neuronal pathology. Our insights into HD OL pathology spans multiple
brain regions and linkOLmaturationdeficits to abnormal thiaminemetabolism.

Huntington disease (HD) is a progressive neurodegenerative disease
characterized by prominent loss of medium spiny neurons (MSN) in
the striatum and cortical atrophy1. The disease, which manifests with
cognitive, psychiatric and movement impairments, is caused by an
autosomal dominant CAG repeat expansion in the first coding exon
of the Huntingtin gene and a corresponding expanded polyglutamine
repeat in the Huntingtin (HTT) protein2. Genome-wide approaches,
including bulk RNA- and ChIP-sequencing, have facilitated under-
standing the molecular impact of mutant HTT (mHTT) expression
in a variety of model systems3–6 and have suggested deficits in

neurodevelopmental programs in HD3,7–9. However, bulk tissue analy-
sis limits the understanding of cell type-specific changes. The ability to
distinguish common signatures of HD across multiple cell types from
those that are unique to specific cell types can facilitate our mechan-
istic understanding of the disease. Past studies uncover these differ-
ences by expressing mHTT using cell type-specific drivers in animal
models of HD10 or using human HD induced pluripotent stem cells
(iPSCs) differentiated to specific cell types; these studies support the
idea that cell type-specific effects of HD synergistically lead to
pathogenesis11,12. Recent studies using single cell transcriptomics
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approaches also show cell type-specific neurodevelopmental impair-
ments in HD13,14.

One such cell type are oligodendrocytes (OL) for which there has
been a growing awareness that these and other OL-lineage cells,
includingoligodendrocyte progenitor cells (OPCs), are abnormal inHD.
Prior studies focusing on HD models have shown early myelination
deficits basedon structural and transcriptomicdata inmousemodels of
HD15,16, and that OL targetedmHTT expression causes HD symptoms as
well as myelination deficits and altered OL maturation in mice via a
mechanism involving myelin regulatory factor (Myrf)17. Myelination
deficits were also evident in BACHD and R6/2 mice18,19 and OL
maturation impairments, glial dysfunction20,21 and impaired OPC dif-
ferentiation have been described in HD. For example, HD embryonic
stem cell-derived glial progenitors transplanted into shiverer mice
exhibit decreased differentiation and hypomyelination22, while another
study showed that remyelination was impaired in cuprizone-treated
mice, implicating abnormal OPC function in HD23, and inactivation of
mHTT in OPCs prevented myelin abnormalities in HD mice11. Corro-
borating these findings in HD models, several studies have shown
myelination and OL impairment in HD patient tissue. Bulk transcrip-
tional studies of HD postmortem tissues revealed thatMYT1L, a myelin
transcription factor, and MBP were decreased in the caudate and pre-
frontal cortex, respectively24,25, and radiographic and neuropathologi-
cal studies also reveal that OLs and myelination are abnormal
(summarized in ref. 26). Neuropathologic examination of postmortem
HD brains revealed a higher density than normal of OLs in the caudate
nucleus27,28, including in pre-symptomatic HD patients. Stereological
examinations of white matter revealed a decrease of 20–30% of the
cross-sectional area of white matter in coronal levels from frontal to
occipital regions29, aswell as in the fornix30, in both lower andhigherHD
grades, suggesting that white matter loss represents an early change.

To further support these prior findings of OL maturation deficits,
provide additional insight into cell type-specific versus agnostic sig-
natures, and fill in the gaps in knowledge of key drivers that regulate
OL impairments, we used single nucleus-RNAseq (snRNAseq) to obtain
cell type-specific gene expression data across multiple brain regions
from both the rapidly progressing R6/2 mouse model31 and human
post-mortem brain samples of increasing grades of disease severity—
including both adult- and juvenile-onset HD—and used these data for
correlative and causal network modeling. We detail the differences in
cell type-specific and agnostic gene expression changes, as well as
putative causal drivers of cell type-specific transcriptomic changes.
Consistent with previous literature, we find that OL-lineage cells show
significant transcriptional dysregulation. We expand on these obser-
vations, finding that HD OPCs and OLs have altered the expression of
development and maturation genes in both mice and human, with
many HD OL-lineage cells showing intermediate states of develop-
ment. Causal network modeling identified putative key drivers whose
expression and extent of dysregulation was shown to correlate with
theCAG repeat length in human tissue.We found that a gene central to
the OPC/OL causal network, Protein kinase C epsilon (PRKCE), was
downregulated in human and mouse, and we provide functional stu-
dies to clarify its role in promoting OL maturation. These findings are
further supported by evidence from ATACseq and subsequent vali-
dation studies. We also identified impairments in glucose and lipid
metabolism, identified as cell type-agnostic signatures, as potential
drivers of this pathology. This connection tometabolism led us to find
potentially unique roles for diacylglycerol (DAG), which regulates
PRKCE, and for thiamine and biotin (T&B) metabolic processes in HD
OL maturation impairments. Thiamine Pyrophosphokinase 1 (Tpk1),
which converts thiamine into thiamine pyrophosphate, was differen-
tially expressed in the most cell types in the 12w R6/2 mice, and both
TPK1 and SLC19A2, a thiamine transporter, were downregulated in
human HD. Interestingly, mutations in TPK1 or the thiamine-
transporter SLC19A3 lead to thiamine pyrophosphate deficiencies

and early-onset neurodegeneration with brain atrophy, basal ganglia
impairment, and motor dysfunction which can be effectively treated
with high dose T&B32,33. In addition, mutations in SLC19A2 lead to
Roger’s syndrome, with megaloblastic anemia, thrombocytopenia,
diabetes mellites, and sensorineural deafness34 and general dietary
thiamine deficiencies are known to contribute to a number of neuro-
logical and psychiatric symptoms35. To further examine potential
connections between early metabolic changes in HD and OL matura-
tion,we treatedR6/1mice,whichhas a longer therapeuticwindow than
R6/2mice and also showdys-maturation signatures in a number of cell
types14, with T&B and conducted snRNAseq on the striata of T&B
treated and vehicle-treatedmice. T&B treatment resulted in significant
rescue of dys-maturation signatures in OL and neurons, and an overall
decrease in the number of significant differentially expressed genes
(DEGs). Our data provide evidence that dysregulated metabolism and
metabolic genes can directly contribute to the cell maturation deficits
observed in OLs and other cell types, and that diet supplementation
may be a therapeutic modality for HD.

Results
Single nuclei RNAseq of R6/2 mouse model of HD
R6/2 mice are a rapidly progressing transgenic model that express
mHTT exon 1 and have features in common with human symptomatic
HD, including transcriptional changes31. To uncover progressive, cell
type-specific, and region-specific transcriptional changes, snRNAseq
was conducted on three striatal and cortical samples each from R6/2
and non-transgenic (NT) mice at 8w and 12w of age (Fig. 1a and Sup-
plementary Fig. 1a see “Methods”). snRNAseqdatawere also generated
and analyzed from human HD and control brains (Fig. 1a, e and Sup-
plementary Fig. 1b, c described below). Unsupervised clustering
identified 13 clusters in the 8w and 12w striatal samples, and 18 and 16
clusters in the 8w and 12w cortical samples, respectively (Fig. 1b and
Supplementary Fig. 1a), which we annotated using known cell type
gene markers (Supplementary Fig. 1d). R6/2 and NT cells clearly
separate in some of the clusters, such as the 12w D1 +MSNs, which
corresponded to a large number of DEGs between the two conditions
(Fig. 1b–d and Supplementary Data 1). We also identified DEGs in the
excitatory (Ex) and inhibitory (Inhib) neurons, astrocyte (Astro), OLs,
and OPC clusters (Fig. 1c). Minimal to no changes were seen in the
microglia (MG), vascular cells, and cholinergic neurons (Fig. 1c). These
clusters had the smallest number of cells and therefore could lack the
power required to identify statistical differences. Regional differences
are reflected in the number of cell type-specific DEGs across both
regions (Fig. 1c). When we combined all data from both ages and
regions, we found no clustering differences for each cell type between
age and region, except for cell types that were specific to either the
striatum or cortex, e.g., MSNs in the striatum (Supplementary Fig. 1e).
The only differences between the age groupswere seen as a slight shift
within cluster between the 8w and 12w OLs.

Gene ontology (GO36) enrichment and KEGG pathway analyses
were used to investigate the biological implications of the cell type-
specific DEGs. The top 10 significant terms revealed that the majority
of DEGs, regardless of cell type, are involved in neuronal related
functions, including neurogenesis, synaptic function, and glutamate-
related signaling (Supplementary Fig. 2a), but certain cell types were
enriched for unique terms such as RNA processing in inhibitory neu-
rons. We also identified common terms related to “developmental
process” in the cell types with themost DEGs, such as in OLs andOPCs.
Similar to the GO analysis data there were recurring KEGG pathways
across regions, ages, and cell types as well as sets of unique pathways
that group together (Supplementary Fig. 2b). We also identified cell
type-agnostic DEGs that were common to both glia and neurons. Fig-
ure 2a and Supplementary Fig. 3a show the top multi-cluster DEGs
identified in at least 50% of the cell types/clusters per tissue region and
age. Many DEGs across both glia and neurons are involved in RNA
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Fig. 1 | Single nucleus RNAseq of mouse and human R6/2 and HD samples.
a Illustration of workflow used for this study. After frozen tissue is microdissected
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humandonors (3 grade I, 4 grade II, 4 grade III, 3 grade IV, 5 juvenile-onset HD, and
10 matched controls), or the striatum and cortex of the mice (n = 3), nuclei are
isolated, 10× Libraries are prepared followed by next generation sequencing.
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processing and splicing, and metabolism. KEGG pathway analysis also
highlighted glucose metabolic pathways, many of which appeared in
the earlier 8w samples (Supplementary Fig. 2b). The dysregulated
metabolic genes were found to be in or downstream of the glucose
super metabolism pathway that includes glycolysis, the hexosamine
biosynthetic, polyol, and diacylglycerol pathways, including Tpk1 that
happened to be dysregulated across the most cell types in the 12w

striatum (Fig. 2a). Moreover, Tpk1 was also among the top dysregu-
lated genes in the 12w cortex, and another glycolytic gene, glucose-6-
phosphate isomerase 1 (Gpi1), was one of the topmulti-cluster DEGs in
both 8w striatum and cortex (Fig. 2a and Supplementary Fig. 3a). Both
metabolic genes are upregulated in R6/2. We investigated whether
there was an enrichment for KEGG metabolic genes in the DEGs and
which metabolic pathways were most impacted Fig. 2b, 12w striatum
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and Supplementary Fig. 3b. Tpk1, Ogt, Dgkx genes, and Galnt13, found
in sub-pathways related to glucose and lipid metabolism, are among
the most commonly dysregulated genes in all cell types.

Taken together, these data indicate that developmental genes,
RNA processing, and glucose and lipid metabolism may be core, cell
type-agnostic signatures, while cell type-specific changes are more
related to cell functions and identity. Further, OPCs and OLs show
massive transcriptional dysregulation that includes both develop-
mental genes and functional genes such as MBP.

R6/2 OPCs are committed to maturation while OLs appear
transcriptionally less mature than NT OLs
Given the changes in developmental genes in OPC and OLs, and the
unique embedding ofR6/2 cells right between theOPCandOL clusters
(Fig. 1), we investigated whether these cells might represent inter-
mediate maturation cell states between OPCs and OLs. The OL-OPC
data were subclustered, revealing six clusters in the 12w striatum and
five clusters in the 8w striatum, 8w cortex, and 12w cortex. Each cluster
represented distinct populations of OPCs or OLs comprised of R6/2
and/or NT (Fig. 2c (12wk striatum), and Supplementary Fig. 3c–e,
integrated data cross regions, and ages are described in supplemen-
tary results and Supplementary Data 2). These subclustered data were
then further annotated based on the gene expression markers and
annotations defined byMarques and Zeisel et al.37 as OPCs, committed
oligodendrocyte precursors (COP), newly formed oligodendrocytes
(NFOL), myelin-forming oligodendrocytes (MFOL), or mature oligo-
dendrocytes (MOL) (Fig. 2c and Supplementary Fig. 3c). The relative
proportions of R6/2 and NT cells in each cell stage and DEG analyses
revealed that R6/2 OPCs (OPC & COP) and OLs (NFOL, MFOL, and
MOL), at both ages and in both anatomic regions have changes in
expression that suggest developmental/maturation impairments.
DEGs included:Mog, Mag, Mbp, Opalin, microtubule genes, and genes
involved in OL maturation, function, and myelination (Supplementary
Data 1 and Supplementary Fig. 3e). DEGs involved in glucose and lipid
metabolism were also found in OPCs and OLs, including upregulation
of Tpk1. Pseudotime analysis38 further suggested that most R6/2 cells
were in transitional cell states between OPCs (pseudotime 0) and
MOLs (pseudotime 30+), with many HD cells found in the COP cluster
and a cluster of NFOL, while NT cells were mostly either OPCs, MFOL,
or MOLs (Fig. 2c, d and Supplementary Fig. 3c–f, these results are
further described in the Supplementary Results).

The downregulation of mature OL genes in the R6/2 cells and the
distribution of R6/2 cells in intermediate stages of OL differentiation
suggests states of abnormal maturation (Fig. 2d) and implies that OPC
maturation and subsequent OL differentiation is impaired in R6/2mice.

Causal network modeling (CNM) identifies disrupted gene
expression networks in R6/2 mice and reveals potential cell
type-specific mechanisms of transcriptional change
To investigate disruptions in cell type-specific gene networks in HD,
and identify potential key driver genes, we utilized weighted gene co-
expression network analysis (WGCNA39) and Bayesian causal network

modeling (Fig. 1a) to identify causal relationships between genes
identified as cell type-specific DEGs and genes correlated within
WGCNA networkmodules40–42. After feature selection (“Methods”), we
usedWGCNA and ran a signed network analysis using cells from all NT
samples; 6 gene co-expression modules were detected across cortical
and striatal tissues at both ages (Fig. 3a, Supplementary Data 3, and
Supplementary Fig. 4). Trait-module correlation analyses showed that
our modules were correlated to specific cell types (Fig. 3a). The yellow
module positively correlated with neuronal cell types and negatively
correlated with glia, and the red, turquoise, green, brown, and blue
modules positively correlated with Ex, MSNs, MG, Astros, and OLs,
respectively. GO enrichment analysis of gene module members
showed enrichment for terms related to each cell type (Fig. 3b). For
example, theOL-correlated bluemodulewas enriched formyelination-
related terms. Except for the green module, each module was sig-
nificantly enriched forDEGsdeterminedusing thehypergeometric test
(Supplementary Fig. 5a and Supplementary Data 3), suggesting that
these gene networks are relevant to the disease state and become
impacted as the disease progresses. The connectivity of the top
module members rank-ordered by eigengene-based connectivity
(kME) revealed significant alterations (Fig. 3c).

To understand the potential cell type-specific causal connections
between these genes we applied a Bayesian causal network modeling
approach (see “Methods”), using the cell x gene data matrix which was
filtered and run for each individual cell type and used for network
structure learning. Gene features were selected as input by using only
that cell type’s DEGs and gene members from the correlated WGCNA
module (Fig. 4a, b, Supplementary Fig. 5b–d, and Supplementary
Data 4). We explored the MSN and OPC/OL bayes nets (bnets) in
detail for two reasons: (1) since MSN are the most studied cell type in
HD the bnet should recapitulate previous findings and also reveal both
known and undefined interactions between known dysregulated
genes, providing validation for our approach, and (2) both cell types
were the most impacted in our mouse model (total number of DEG)
with the OPCs and OLs showing the largest number of DEGs that
suggested developmental deficits. The merged NT and R6/2 bnets per
each cell type are shown in Fig. 4a, b.We enlarged genes that represent
key drivers (hub genes with high outward centrality, or genes con-
necting 2 hubs) which are potentially causal regulators of down-
stream nodes.

The MSN bnet includes genes involved in MSN development/
identity, function, and genes implicated in HD, including Ebf1, a key
driver identified in theR6/2 bnet (yellowedges) and involved in striato-
nigral MSN development43,44. Genes of the indirect pathway in D2 +
MSNs, including Adora2a, Drd2, and Penk, were all downregulated and
only show NT causal interactions (purple edges), indicating a loss of
function of these genes45. Furthermore, Drd2 is a parent node of Penk,
which is not only a downstream target of Drd2 signaling and dysre-
gulated in HD14, but is transcriptionally regulated by Drd2 expression
through dopamine-induced activation46, thus validating the approach.

We next explored the OPC/OL bnet (Fig. 4b) and found Prkce,
Sgk1, Zbtb16 and Tnr as key drivers. Prkce is functionally regulated by

Fig. 2 | Analysis of differentially expressedgenes in R6/2mice and subclustered
analysis of OPCs and OL. a Left: Heatmaps and hierarchical clustering of nor-
malized mean expression values in all glial or neuronal cells of the top cell type-
agnostic DEGs. Cell color represents row min (seafoam green) and max (orange).
Color bars denote NT glial cells (light blue), R6/2 glial cells (orange), NT neural cells
(purple), and R6/2 neuronal cells (yellow). RNA processing and splicing (Ccnl2,
Tra2a, ddx5, Celf2, and Taf15) andmetabolism (Guf1, Tpk1, and Gpi1) related genes.
Glucose super metabolism pathway genes that include glycolysis, the hexosamine
biosynthetic pathway, polyol pathway, and diacylglycerol pathways, include Ogt,
Tpk1, Gpi1, and Galant18. 8w and 12w Str data shown, cortical data in Supplemen-
tary Fig. 3a. Right: violin plot of exemplary geneTpk1 that show global upregulation
in R6/2 mice, across all cell types, from 12w Str. b Network showing all KEGG

metabolic genes significantly dysregulated across the 12w Str DEGs from every cell
type. 12w Str data shown, 8w Str and cortical data in Supplementary Fig. 3b. Node
size is equal to the number of cell types in which the gene is found to be sig-
nificantly dysregulated, and nodes are colored byup anddownregulation (orange =
up and blue = down). c UMAPs of subclustered OPCs and OL in the 12w striatum,
colored by genotype.Cluster composition: NTcells aremainlyMOLs andMFOLs, or
OPCs; while R6/2 cells are COP,NFOL, andMOL. Statistical contrasts: R6/2 vsNT for
each cluster, cluster comparisons between R6/2 and NTMOLs, NTMFOLs and R6/2
MOL, COP vs OPCs. 8wStr and cortical data show in Supplementary Fig. 3c.
dDensity plots of cell numbers across pseudotime cell stages, colored by genotype
and age.
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DAG and transcriptionally by Zbtb1647, a zinc finger binding protein
that is involved on OL maturation and myelination, is found down-
streamof Adipor2, an adiponectin receptor that regulates glucose and
lipidmetabolism. Downstreamof Zbtb16 is serum- and glucocorticoid-
inducible kinase 1 (Sgk1), which is normally upregulated in OLs during
cellular stress and regulates many ion channels and solute carrier
proteins involved in metabolic pathways and glucose uptake (e.g.,

ref. 48), such as GLUT1, GLUT4, and glutamate transporters. Sgk1 is
downregulated in R6/2 mice indicating a potential loss of function in
HD—see supplementary results for additional validation studies.
Exploration of downstream nodes reveals a connection between
Smarca2, which is a protein in the SWI/SNF family involved in gene
expression and chromatin remodeling in OLs, and Prkce. Smarca2
(BRM) and Smarca4 (BRG1) play roles in OPC and OL development,
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including promoting OPC differentiation49,50. The majority of the out-
ward edges from key drivers are NT specific, indicating a loss of causal
connection to downstream nodes in the R6/2 mice. Transcription
regulator analysis of the network gene members using LISA51 revealed
the network is enriched for targets of Smarca4, and Olig2, as well as
other regulators previously highlighted for HD, including Suz12, Fos,
and Mefc2 (Fig. 4c and Supplementary Data 4).

Finally, to complement thesefindings using a completely different
knowledge-driven approach, and provide additional interpretability,
we also included cell type-specific gene regulonnetwork analysis using
IRIS352. This analysis identifies predicted transcriptional regulators
from prior knowledge which we then used to overlay onto our data
driven causal network (Supplementary Fig. 5e, Supplementary Data 4).
We found a significant enrichment of genes and regulons already
within our causal network (p < 2.373e−201, exact hypergeometric
probability), andmany connections between several of these regulons,
including OLIG2, and our key drivers. ELF5 and E2F3, which were two
regulons predicted from the IRIS3 analysis, both regulate Prkce and
have previously been implicated in OPC maturation and HD tran-
scriptional dysregulation5,53. These findings further validate the causal
networks and together these data suggest an interconnected process
between OPC/OL development and lipid and glucose metabolism and
known HD-related genes.

MG, Astro, and Ex neuron bnets are described in the supple-
mentary results.

ATACseq of glial-enriched nuclei identifies regulators under-
lying transcriptional pathology in HD glia
To understand the drivers of gene expression changes in non-neuronal
cells (e.g., glia) versus neurons, and validate the transcriptional reg-
ulator analyses (LISA & IRIS3), we performed ATACseq on NeuN+ and
NeuN- sorted nuclei fromboth the striatum and cortex of the sameR6/
2 mouse cohort (Supplementary Fig. 6a and Supplementary Data 5).
The neuronal protein NeuN is localized in the nuclei and perinuclear
cytoplasm ofmost neurons.We performed footprinting analysis using
the ATACseq data and TOBIAS54 which revealed developmental chan-
ges in the glia-enriched NeuN- data (Fig. 4d (12w striatum) and Sup-
plementary Fig. 6b, and Supplementary Data 5), and enrichment for
immediate early genes in the neuron-enrichedNeuN+ data. Among the
top 20 TFs in the NeuN- data that showed differential binding between
R6/2 andNT, we found Sox9 and 10were significantly decreased in the
8wk striatal data, and Olig1 and Olig2 decreased in the 12wk striatal
data. Interestingly, when all the samples were grouped and we com-
pared the top 20 up and down TFs per an age and region, there were
some overlapping TFs between the 12w cortical and both striatal
samples, but these were in opposite directions (e.g., Hes1 and Zbtb14,
Supplementary Fig. 6b, c). The 8w cortical samples had the least
similarities compared to all other regions and ages (Supplementary
Fig. 6b, c) and showed a number of HOX genes within the top 20 TFs
with reduced binding. The cortical data showed differential binding of
other known HD genes such as Egr1 and Sp1.

Since we did not have ATACseq data from our human samples we
next conducted global chromatin accessibility prediction using our
human snRNAseq data and the BIRD tool55. BIRD analysis revealed

differential peaks at genes important for OPC/OL maturation, such as
SMARCA4, which were dysregulated in the snRNAseq data in both
mouse and human samples (Supplementary Fig. 6a).

Independently, both analyses of ATACseq data suggest matura-
tion impairments in HD OPC/OLs. Together with the snRNAseq data, a
coordinated network of regulators and downstream effectors that
implicate known OL developmental genes (e.g., SMARCA4 and Olig2),
and other potential regulators (e.g., PRKCE) is observed.

Single nucleus RNAseq fromHD and control cingulate, caudate,
and nucleus accumbens identifies several heterogeneous OL
lineage cells and altered maturation states
Given the altered gene expression in OL lineage cells in R6/2 mice, we
investigatedwhethermHTTexpression also impactedgene expression
in OPCs and OLs in human HD post-mortem tissue. snRNAseq was
carried out on 66 samples from29 donors (3 grade I, 4 grade II, 4 grade
III, 3 grade IV, 5 juvenile-onset HD, and 10 matched controls—the
demographics of whom are outlined in Supplementary Data 6). To
define the pathology in different brain regions, we microdissected the
cingulate cortex, the caudate, and the nucleus accumbens from frozen
brain tissue as outlined in Fig. 1a. All major lineages were identified in
the 290525 nuclei analyzed (Supplementary Fig. 1e). Projection of
nuclei in UMAP space shows that nuclei of the same lineages largely
occupy neighboring space (Fig. 1e and Supplementary Fig. 1d, e
(tSNE)), without distinct donor or batch related colocalization after
correcting for batch effects (Supplementary Fig. 7a, b). We detected
changes in gene expression in all cell types; for this study, we focused
on cells of the OL lineage.

We focused on OLs and OPCs (Fig. 5a, b) and analyzed 80199 OL
and 13844 OPC nuclei in isolation from other lineages. Projecting OL
andOPC in their own reduced dimension space (PHATE reduction—see
“Methods”) shows a continuous trajectory from OPCs to OLs, and
separation between HD and control nuclei (Fig. 5a, b). To examine the
differentiation states of these cells, using well-established methods56,
we calculated the relative ordering of cells along a pseudotime
dimension (Fig. 5c). Similar to our mouse data, examination of pseu-
dotime values per anatomic region in control, grades I–III HD, and
Juvenile onset HD nuclei show altered maturation states across brain
regions and grade inHD. That is, across all brain regions examined, HD
nuclei showed a relatively larger proportion of cells with intermediate
pseudotime values compared with controls, which is more pro-
nounced with increasing HD grade, particularly in HD grade 3. Con-
versely, in juvenile onset HD (HDJ), the effect was less appreciable in
the cingulate cortex, and more pronounced in the striatum, with the
majority of caudate and accumbens OPCs showing intermediate
pseudotime values (Fig. 5d). The results suggest that HD maturation
pathology is at least partially progressive with HD grade, and that HDJ
maturation pathology affects mainly OPCs.

We next performed unbiased sub-clustering of OL andOPC nuclei
and identified 7 sub-clusters (Fig. 5e). Most subclusters contained a
mix of cells from all three regions (Fig. 5f) and HD grades (Fig. 5g, h),
although in clusters 4 and 6 most nuclei were derived from the cin-
gulate, and in clusters 1, 3, and 7 caudate nuclei represented the largest
proportion (Fig. 5g). Most clusters contained mixtures of nuclei from

Fig. 4 | Causal network analysis and ATACseq of glia reveals Prkce, Olig1/2,
Sox9/10, and glucose and lipid metabolism as important regulators. a MSN
bnet. bOL bnet. a, b Both causal networks are merged from NT and R6/2. If a node
and edge existed in both the NT and R6/2 bnets, the NT data (edge weight) were
used for plotting. Each bnets shows nodes that exist only in NT or R6/2 and nodes
that exist in both, as well as new edges and edges retained in the R6/2 data. Each
bnet was also plotted using a hierarchical structure to show the direction of causal
flow. In each plot, genes with a high degree of outward centrality (>10 outward
edges) are highlighted by increased gene name size, as well as genes that connect
between two genes that have a high degree of outward centrality. We consider

these highlighted genes key drivers of the network. Color scheme is as follows:
Edge (purple = NT, yellow = R6/2, gray = both), node fill color (green = NT node,
pink = R6/2 node, light green = both), node outline color (orange = upregulated,
blue = downregulated). MG, Astro, and Ex neuron bnets are in Supplementary
Fig. 5b–d. c LISA analysis of OL causal network gene members, showing the top 20
regulatory transcription factors. d Volcano plot showing differential binding
scores, and −log(p value) differences of TF binding in open chromatin in 12wNeuN-
striatal cells. blue = top20 by differential binding score, orange = p value < 0.05.
8wStr, cortical, and all NeuN+ data can be found in Supplementary Fig. 6b.
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Fig. 5 | Huntington disease oligodendrocytes are less mature. Projection of
control and HD nuclei in the PHATE dimension color-coded by condition (a),
lineage (b), pseudotime value (c), cluster (using the Levine algorithm) (e), and HD
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bar plots. i Gene expression dot plots showing normalized expression of select
cluster marker genes, with color denoting expression levels and circle size
denoting the proportion of nuclei expressing the gene of interest.
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both HD and controls, but a number showed a preponderance of one
or the other (Fig. 5h) with the caveat that our dataset harbored rela-
tively larger numbers of HD nuclei versus control (Con 17955, HD
76088). With that caveat, Cluster 2 was mostly composed of HDJ
nuclei, while cluster 6 was composed of a preponderance of HD3
nuclei (Supplementary Fig. 7c). Examination of select gene markers
shows that clusters 4 and 5 represent OPCs with relatively high
expression of OPC markers TNR and DSCAM (Fig. 5i and Supplemen-
tary Fig. 7d) and low expression of gene markers for mature OLs.
Compared to cluster 5, cluster 4 shows lower expression of OPC genes
BCAN, VCAN, PDGFRA, and CSPG4, but a higher proportion of cells with
TCF7L2 expression, suggesting this cluster represents differentiation
committed OPCs57 (Supplementary Fig 7d). Conversely, clusters 1, 2, 3,
and 7 show relatively high expression of OL genes CNP, PLP1, andMBP
(Fig. 5i). Among the former, cluster 2 shows the highest expression
levels ofOPALIN andMOG, suggesting it is most mature (myelinating).
Cluster 7 showed expression of both OL genes (although at com-
paratively lower levels) and the OPC geneDSCAM and is interpreted as
an intermediate state between OL and OPC lineages. Likewise, cluster
6 showed expression of the immature OL gene CA2 as well as other OL
genes including APOD, PTGDS, and CRYAB, but not myelin genes. It is
thus also interpreted as immature OL. Interestingly, the HD-enriched
clusters 1, 2, and 7 showed higher expression levels of KIRREL3 com-
pared with the control-enriched cluster 3. KIRREL3 is a gene shown to
be highly expressed in OL residing in chronic inactive lesions of mul-
tiple sclerosis57, andwas identified as a key driver in our causal network
model. The cluster markers are provided in Supplementary Data 7.

These data show a progressive loss of OL maturation in HD that
spans different brain regions. but appears more pronounced in the
striatum. The data also suggests similar mechanisms between the
mouse and human HD samples, showing differential expression of
previously described key drivers, but also unique features of human
HD OLs with immune-related genes changes.

Differential gene expression analysis reveals further differences
between HD and control OLs
We next identified significant DEGs between HD and control OL and
OPC nuclei in different regions; the number of significant DEGs unique
to and shared by respective anatomic regions is shown in Venn dia-
grams for OLs (Fig. 6a and Supplementary Data 8) and OPCs (Fig. 6b
and Supplementary Data 8). Given that the neurodegeneration is
detected in the caudate nucleus at the earliest stages of HD and that
pathology in the nucleus accumbens and cortex is typically seen in
more advanced disease, we reasoned that comparing DEGs in these
regions is informative in the following ways: (1) DEGs that are shared
among the caudate, accumbens, and cingulate likely represent per-
vasive or core transcriptional pathology in different anatomic regions
regardless of disease severity. (2) DEGs shared between the relatively
preserved nucleus accumbens and less severely affected cingulate
cortex likely represent early pathologic alterations that may be com-
pensatory in early stages of the disease and are lost in more advanced
stages. This does not preclude the possibility that any number of these
DEGs may represent cell-autonomous changes due to mHTT in OL
and OPCs.

With this insight, examination of significant DEGs in these regions
highlights a number of themes; first, myelin related and OL identity
genes (e.g.,MAG,MBP,MOBP,MOG, OPALIN, PLP1, CNP, and OLIG1 and
OLIG2) were downregulated in OLs of all areas in HD, (Supplementary
Data 8). This was reflected in a negative enrichment of the GO myeli-
nation in HD OL’s across all three brain regions (Fig. 6c). Second,
multiple heat shock encoding and heat shock response genes were
increased across all anatomic regions, suggesting widespread, perva-
sive pathology in HD OLs (Supplementary Data 8). Multiple metal-
lothionein genes (e.g., MT2A, MT3, MT1X, MT1M, and MT1E) were also
increased in all brain regions in HD (Supplementary Data 8). SPP1,

which encodes a secreted protein that is increased in demyelination
and remyelination58, was also increased in all these regions.CA2, a gene
encoding a carbonic anhydrase enzyme expressed in immatureOL and
mature OLs but not OPCs59, was increased in cingulate OLs (validated
in Supplementary Fig. 8b–e).

To determine whether similar metabolic genes were dysregulated
in our human OPC and OLs that were found in our mouse data, we
overlapped humanOPC and OL DEGs with the dysregulatedmetabolic
genes in the 12w striatum data and found a large overlap with these
DEGs (Supplementary Fig. 8a) including DGKx, GALNTx genes, PTGDS,
and TPK1. Furthermore, several DEGs shared between the accumbens
and cingulate OLs were related tometabolism, including adipogenesis
(ARL4A, COQ3, CHUK, ABCA1, GBE1, and ME1—increased in HD OLs),
fatty acid metabolism (EVOVL2 and PLA2G6—decreased in HD OLs),
and pyruvate metabolism (pyruvate kinase M1/M2 PKM - decreased in
HD OLs). These results implicate metabolic pathways, including lipid
and glucose metabolism in HD pathology (Fig. 6c and Supplementary
Data 8). The involvement of immune genes we observed in HD-
enriched clusters is also reflected in the enrichment of immune-related
ontologies in the HD OLs DEGs, including NFKB activation and
inflammasome (Fig. 6c and Supplementary Data 8). Similar to the
mousedata,we also see terms related tonervous systemdevelopment,
ion channels, and cell adhesion (Fig. 2a and Supplementary Data 8).

These results confirmed the pseudotime analysis showing a
decrease in OL maturation in HD. Downregulation of OL-specific
functional genes and a significant enrichment of metabolic genes,
similarly identified in our mouse data, suggest a common theme
and possible connection between metabolic processes and OL
development in HD.

Dysregulated gene expression is related to numbers of CAG
repeats
The length of CAG repeats varied among our donors, and even
between regions in the same donor (Supplementary Data 6). To
determine if any of the OL or OPC genes varied as a function of the
numbersof CAG repeats,we conducted a regression analysiswith gene
expression as response variable and CAG repeats as explanatory vari-
able. We collapsed cells from each sample and used the pseudobulk
samples as input for the regression analysis, corrected for batch and
brain region, and only extracted the significant CAG coefficients
(Supplementary Data 7). A number of genes showed significant cor-
relations between expression andCAG repeat lengths, some inOPCsor
OLs or both (Fig. 6d). Among genes with negative correlations in OPCs
are transcription factors OLIG1 and OLIG2, ASCL1, SOX2, and SOX4,
which play roles in OL-lineage development, along with IGF2R, sug-
gesting that progression through the OL lineage is further inhibited
with longer repeat length. Indeed, OPC lineage genes includingOPCML
andCSPG4werenegatively correlatedwithCAG repeat length (Fig. 6d).
Moreover, PTGDS, a cluster 6 marker, had the most negative coeffi-
cients in both OPCs and OLs as a function of CAG repeat length,
implicating prostaglandin synthesis in the severity of HD pathology.
Some of these genes also were identified in our OL bnet as key drivers,
including: SGK1, TNR, and NAV3 (Fig. 4b). We also investigated KEGG
and REAC pathways that were enriched in genes correlated with CAG
repeat lengths (Fig. 6e and Supplementary Data 7). Among the path-
ways that are enriched in OLs with increasing repeat lengths are those
of inflammation, which is more pronounced in human brain than in
the mice, sphingolipid signaling, and ERK2 activation, known to con-
trol myelination60. Both OLs and OPCs show enrichment in genes
related to glutamatergic synapses and ubiquitin-mediated proteolysis.
When we examined the OL genes with negative coefficients, we found
that a number of them are involved in cholesterol metabolism
including (DHCR7, DHCR24, ABCA2, and ACAT2 – Supplementary
Data 7), which further implicates lipid metabolism as central to OL
pathology in HD.
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Validation of OL pathology in human HD and mouse data
Many genes that regulate OL maturation or were identified as key
regulators were similarly dysregulated in HD patient and mouse data
including: MOBP, MAL, CLDN11, MBP, OLIG1, OPALIN, PRKCE, and
SMARCA2 (Fig. 7a). We performed WB analysis to confirm dysregula-
tion of key genes PRKCE and TPK1. Additional investigation and vali-
dation of OL genes and other metabolic genes was also conducted
(Supplementary results and Fig. 8). Protein levels of PRKCE, and
phospho-PRKCE were significantly decreased in the cingulate and
caudate of HD brains and the cortex and striatum in the 12w R6/2mice

(Fig. 7b–e). Both species showed an increase in PRKCE RNA levels,
opposite of the protein data. The ratio of p-PRKCE to PRKCE was not
altered though, suggesting that reduction in active PRKCE is related to
reduced protein levels (Fig. 7b–e).

Since TPK1 was found to be dysregulated in both mouse (up) and
human (down) data at the RNA level in OLs and OPCs, we assessed the
protein levels of the monomer and active dimer form of TPK1. Fig-
ure 7f, g shows a decrease of TPK1 (monomer and dimer) inHD patient
tissue with HD grades 3 & 4 (At adjusted p-value <0.1 for 3, and <0.05
for 4), and in juvenile HD (adjusted p < 0.05), consistent with RNA
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expression data, whereas TPK1 dimer is increased in the R6/2 striatum
(Fig. 7d, e). Themouse and humandata are discordant fromeachother
which may indicate a loss of function of expression in humans and
compensatory increase in the mice or other unknown mechanism.
Nonetheless, the data confirms that TPK1 is dysregulated in both
human HD and murine model of HD.

Given the potential contribution of DAG to OL development and
as a substrate of PRKCE—a central hub of the OL causal network, we
evaluated DAG levels using lipidomic profiling of control brain versus
HD in the cingulate. A significant decrease in DAG levels was observed
in juvenile HD brain as well as grade 2 HD brains relative to controls
(Fig. 7h). These data support the hypothesis that glucose and lipid
metabolism, and specifically DAG signaling, potentially through
PRKCE, could be playing an important role in the OPC/OL maturation
changes we see between HD and control patients. This is further sup-
portedby the reduction in TPK1 inHDbrains due to the involvement of
thiamine in the production of acetyl-CoA, which is then used during
DAG formation. Given this finding along with the results demonstrat-
ing the reduction of PRKCE in human tissue, together with the causal
network analysis placing PRKCE at the top of the OL/OPC network
upstream to several maturation genes, we hypothesized that it played
an important role in promoting OL differentiation. To test this
hypothesis, we knocked down Prkce in primary murine OPC cultures,
and differentiated these cells into OLs. The cultures expressed OLIG2,
and OLs expressed CNPase. Compared with scrambled siRNA, siRNA
specific to Prkce effectively knocked down the protein (Fig. 7i). The
levels of MOG were significantly increased by Prkce knockdown, sup-
porting that the downregulation of Prkce leads to increased OL dif-
ferentiation. Thus, the loss of PRKCE—as seen in our western blot data
—in both human and mouse HD OPCs/OLs—would lead to increased
OPC commitment to differentiation and an increase in COP cells, seen
in our snRNAseq data.

These results provide validation of our causal network approach
to identify key regulatory genes, and suggests important roles for
glucose, thiamine, and lipid metabolism, through DAG and PRKCE, in
regulating OL maturation in HD.

High Dose thiamine and biotin rescues transcriptional dysre-
gulation in neurons and altered OL and OPC developmental
genes in a mouse model of HD
Given that bothmouseandhumandata showedalterations inTPK1 and
SLC19A2, and these may regulate PRKCE thorough DAG, we hypothe-
sized that altered signaling due to TPP deficiencies may be contribut-
ing to gene expression and cell maturation differences. We, therefore,
tested whether high doses of thiamine and biotin (T&B) treatment,
similar to that used to treat HD-like phenocopy diseases such as biotin-
responsive basal ganglia disease33, would rescue gene expression
changes including OL maturation genes. Furthermore, due to the dis-
cordant RNA expression changes in our mouse and human data we
speculate that the increase inTPK1was compensatory in theHDmouse
model. Considering TPK1 was only increased at 12w and not 8w,

we suspect that these compensatory changes are responding to earlier
metabolic changes and tested whether targeting thiaminemetabolism
at a relatively early timepoint prior to any documented changes in
TPK1 expression61, would rescue the dys-maturation. For this study,
R6/1 mice were used given symptoms are delayed by several weeks
relative to R6/2 mice31, thus allowing a greater window to observe
effects of a given treatment. R6/1 and NT mice (8w-old) were treated
with vehicle or T&B for 7wks to a time point at which transcriptional
changes are observed, before striatal tissuewas collected and analyzed
using snRNAseq (Fig. 8a). MSNs, inhibitory neurons, OPCs, OL, and
Astros showed the most DEGs between R6/1 and NT vehicle-treated
mice (Supplementary Data 10). Comparing R6/2 and R6/1 DEGs for
each cell type, we found high correlation between HD models and a
significant overlap in DEGs, including betweenOPC andOLmaturation
genes (Fig. 8b) supporting the use of R6/1 mice for the supplementa-
tion study. When we evaluated DEGs between R6/1T&B treated and
vehicle-treated mice (treatment effect), for each cell type, there was a
significant overlap of genes impacted by T&B treatment and genotype
DEGs (Fig. 8b). Figure 8c shows a scatterplot of the overlapping DEGs
between the T&B treatment effect (R6/1 + T&B vs R6/1 + vehicle) and
the genotype DEGs (R6/1 vs NT) for each cell type, which shows sig-
nificant discordance between the genotype DEGs and the treatment
DEGs, indicating rescue of these transcriptional alterations. This
translated into a decrease in the number of significant DEGs detected
for each cell type ((R6/1 + T&B vs NT) compared to (R6/1 + Vehicle vs
NT)), except for the Ex neurons which actually had an increase in DEGs
(Fig. 8d). Interestingly, the cell types with the most genes rescued by
T&B treatment (discordant values) were OL-lineage cells and Adarb2+
interneurons that represent inhibitory neuron subcluster 1 (Inhib1
(Fig. 8a)). Based on the reduction of DEGs detected, OL, MSNs, Inter-
neurons, Astros, and OPC all had a large decrease in the number of
DEGs detected (115, 176, 378, 129, and 82 DEGs, respectively). Within
the OPCs and OLs there was significant rescue of maturation-related
DEGs Clnd11 and Mal, and a further increase of Neat1, which was
increased in caudate-parenchymal human HD OLs, and is upregulated
during OL maturation. Several genes that correlated with CAG repeat
length, e.g., Ptgds, Phgdh, and Tmtc2, were rescued by T&B treatment.
GO enrichment analysis also revealed the molecular functions of the
genotype DEGs that were rescued from T&B treatment (Fig. 8e). In
Astrocytes there was a significant rescue of iron metabolism-
related genes, Ex neurons showed rescue of neuroligin binding
and calcium signaling, and the MSNs showed rescue of cyclic nucleo-
tide phosphodiesterase activity, GABA receptor activity, calcium
transport, creatine kinase activity, and electron transport chain genes.
Similar to MSNs, the inhibitory neurons showed rescue of calcium-
related genes, cyclic phosphodiesterase activity, and creatine kinase
activity, but also showed unique terms such as glutamate receptor
activity, LDL binding, neurotrophic TRK receptor, and fructose bind-
ing. Lastly, the OPCs and OLs showed rescue of glutamate receptor
activity, RNA binding, creatine kinase activity, calcium-related genes,
and GTP binding.

Fig. 6 | Differential gene expression analysis of HD and control OPCs and OLs.
Venn diagram analysis of the DEGs in OPCs (a) and OLs (b). The number of DEGs
that are increased (black) or decreased (red) inHDnuclei is highlighted per overlap
sector. The stars indicate the DEGs that are shared across all regions, and the #
indicates the DEGs shared between theCingulate and Accumbens. cGene ontology
(GO) term analysis of differentially expressed genes in select sectors of the Venn
diagrams HD versus control OLs and OPC (from panels a, b). The * and # signs
correspond to the DEGs shared across all regions and DEGs shared between
accumbens and cingulate OL and OPCs, respectively (purple = OPC DEGs, and
green = OL DEGs). The sign of the negative log10 of the adjusted p value indicates
the direction of changes; positive sign corresponds to genes increased in HD, and
negative sign corresponds to genes decreased in HD. Heat shock protein encoding
genes HSPA1A, HSPH1, HSPA4L, HSP90AA1, HSPB1, HSPA4, HSPD1, HSPA1A,

HSPA1B, and HSPB1. d Scatter plot of the correlation coefficients of genes that
correlate with CAG repeats in OPCs (y-axis) and OLs (x-axis). The graph plots the
regression coefficients of each gene in OLs versus OPCs; the upper right quadrant
represents genes with positive correlations in both OPCs and OL, the lower left
quadrant genes that have negative correlations in both. The color of the genes
correspond towhether the coefficientwas significant inOLs only (green),OPCs and
OLs (blue), or OPCs only (purple). e KEGG and Reactome pathway enrichment
analysis of the genes that significantly correlate with CAG repeats in OPCs and OLs
(top panel), OLs (middle panel), or OPCs (lower panel). The negative log10 of the
adjustedp value is indicated on the x-axis, and the pathways on the y-axis. The color
of each circle corresponds to the percentage of overlap between the CAG-
correlated genes and the genes in each pathway.
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These results (a) support the hypothesis that common metabolic
changes across cell types in HD contribute to driving cell type-specific
transcriptional changes and that (b) specifically thiamine metabolism
deficits may be contributing to OL maturation deficits.

Discussion
The studies above describe a systematic and in-depth analysis of single
cell transcriptomics of HD mouse models and human patient brains
leveragingCNM to implicate key drivers of gene expression pathology.

Using snRNAseq, we identified dysregulated genes acrossmultiple cell
types and cell type-specific changes that may drive the functional
changes seen in each cell type. In addition to specific changes in
neurons, such as D1 and D2 MSNs, a large number of changes were
seen in the OL lineage that related to development and maturation
processes. We defined a progressive dys-maturation phenotype that
spans multiple brain regions in both human and mouse HD. CNM
identified potential key genes andmolecules with putative causal roles
in cell type-specific alterations, several of which were connected to
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metabolic functions, cell maturation, and OL/OPC-identity genes. This
includes PRKCE, a signaling protein regulated by DAG, which causally
interacts with SMARCA2 and OLIG2, both important in OL maturation.
Functional studies validated PRKCE’s role inpromotingOLmaturation.
ATACseq data provided further validation demonstrating decreased
accessibility for genes regulated by known OL developmental TFs
(SOX9 and 10, OLIG1 and 2, and ASCL1)62, further implicating
abnormalities in OL differentiation in HD. These data provided a fra-
mework tobuild targeted therapeutics, as illustratedby treatmentwith
T&B that restored many of the maturation and transcriptional deficits
and provides further validation of our approach.

Recent single nuclei studies identified common and cell type-
specific transcriptional alterations in R6/2 andQ175 HDmousemodels
that were recapitulated in postmortem HD human caudate and
putamen14,63, showing cell-type specific alterations in HD. In MSNs,
mitochondrial dysfunction underlay a detrimental innate immune
response14. Striatal OLs showed decreased expression of several mar-
kers, however, the correlation between mouse and human OL sig-
natures was low in this case. Here, we show that OLs are increased in
the human cingulate and caudate, and mouse and human OL show
similar transcriptional dysregulation and reduced maturation. HD OLs
are transcriptionally immature across multiple human and mouse
brain regions. The fact that this phenotype spans the severely affected
caudate, moderately involved cingulate, and the relatively preserved
nucleus accumbens suggests that the deficits are independent of dis-
ease severity or anatomic region. Nonetheless, our data shows that
impaired OL maturation is progressive with HD grade, and that in
juvenile-onset HD, the maturation deficits largely involve OPCs. This
was supported by ATACseq results demonstrating reduced binding of
OL developmental TFs.

A caveat of our ATACseq analysis is that we FACS-sorted nuclei
using NeuN.While this enriches for neurons in the sorted fraction, and
glia in the flowthrough fraction, the analysis is limited by the sensitivity
and specificity of the antibody we used. It is also known that not all
neurons express NeuN64. Thus, our NeuN- fraction may still contain
NeuN negative neurons. Furthermore, the NeuN- fraction may contain
other non-glial cells such as endothelial cells. These caveats would be
circumvented by the use of single cell ATACseq, a future direction for
this study. That being said, our NeuN- fraction showed high read
densities over the Olig2 gene, which indicates that we indeed repre-
sented OL-lineage cells in the dataset.

The OL lineage pathology may reflect both a maturational defi-
ciency and an inability to turn over myelin components. We suggest
that OL defects start during the development of OLs fromOPCs, which
is consistent with previous studies22. In our human data, this finding
was most pronounced in juvenile-onset HD, where maturational defi-
cits appear to almost entirely involve OPCs, based on the pseudotime
analysis. We speculate this may arise from the longer CAG repeat
lengths in juvenile-onset HD, and the fact that HTT is expressed more

highly in OPCs compared to OLs65. Other studies suggest that MYRF
plays a role inOLmaturational defects, Huang et al. showed thatmHTT
binds to MYRF and downregulates myelin genes17. MYRF is positively
regulated by CHD7, which is regulated by OLIG249—a master regulator
ofOL identity and a geneour results implicate inHDpathology. Finally,
if the accumulation of mHTT downregulates the transcription of
myelin genes, it may inhibit the ability of already myelinating OLs to
produce myelin components during their normal turnover, thus
leading to a progressive loss of myelin.

Metabolic disturbances in HD are hypothesized to lead directly to
cellular distress, but less is known about their contributions towards
epigenetic regulation, transcriptional deficits, and impact on cell
maturation and identity. Bothmouse and human snRNAseq data show
dysregulation of key genes related to glucose and lipid metabolism
that include genes that are within or downstream of several key
metabolic pathways, including glycolysis, DAG, and hexosamine and
protein glycosylation. Additionally, we show that DAG lipids, which
activate PRKCE, were decreased in HD brains. Interestingly, protein
kinase C signaling has been shown to be important to OPC differ-
entiation, andmyelination66–69.We foundPRKCE levels to bedecreased
in HD, and that downregulating PRKCE in OPCs in vitro leads to
increased differentiation of OLs. Further determination of the
mechanism underlying these findings is the subject of future studies.
Moreover, appropriate glucose metabolism is critical for the
proper development and function of OLs, as OPCs transition to mye-
linating OLs70–73. Finally, thiamine metabolism is linked to OL
differentiation based on evidence from deficient pyruvate dehy-
drogenase function in humans, which is known to cause structural
white matter abnormalities74, and experimental evidence from
pyruvate-dehydrogenase deficient mice, which show a reduction of
O4-positive OL/OPCs75.

TPK1 is a highly dysregulated gene and the most common DEG
across cell types in the R6/2 12w striatal data. TPK1 regulates the
conversion of thiamine to thiamine-pyrophosphate (TPP), a cofactor
required for the conversion of pyruvate to acetyl-CoA, by alpha-
ketoglutarate dehydrogenase in the TCA cycle and by ketolase in the
pentose phosphate pathway, the latter being active in OL cultures and
important formyelinating OLs76. Acetyl-CoA linksmetabolic processes
tomany epigenetic regulatorsof transcriptional control as it is used for
histone acetylation, is required for the TCA cycle and for feeding
metabolites into DNA and histone methylation, for generating both
DAG and UDP-GlcNAc, and for PRKCE signaling and protein glycosy-
lation by OGT (Fig. 8f). Interestingly, mutations in TPK1 are linked to
Thiamine Metabolism Dysfunction Syndrome 5, which pheno-copies
HD, and mutations in thiamine transporters such as SLC19A3 lead to
biotin responsive basal ganglia disease77 which is treatedwith highT&B
supplementation. Driven by our findings and similarities to other
human disorders, we evaluated T&B treatment as a therapeutic strat-
egy to reverse HD pathology in R6/1 mice. We hypothesized that

Fig. 7 | Western, lipidomics, and cellular analyses validates HD differences in
TPK1 and PRKCE. a Scatterplots of Z-score log2 fold change values comparing
mouse and human data in 12w striatum versus humancaudateOLDEGs. Geneswith
|Z-log2FC| values > 1 are highlighted in seafoam green andOLmaturation genes are
highlighted in orange, showing concordance between species for PRKCE and OL
maturation genes, and discordance of TPK1 expression. b Western blot of PRKCE
and phospho-PRKCE in HD and control patient cingulate cortex and caudate.
c Quantification of western blot results. Two-tailed Mann Whitney test used for
each statistical analysis. Exact p-values: Cingulate: PKCE-0.0003, p-PKCE-0.0003;
Caudate: PKCE-0.0055, p-PKCE- 0.0385. n = 3 control and 11–12 HD caudate sam-
ples, and 5 control and 11–12 HDcingulate samples. Data shown asmean +/− SEM as
error bars. d Licor images of Prkce, pPrkce, TPK1, and respective revert in R6/2 and
NT striatum and cortex. e Quantification of licor results. One-way ANOVA used for
statistical analysis. n = 6 NT and 6 R6/2, biologically independent samples. Data
shown as mean +/− SEM as error bars. f Western blot of TPK1 in human caudate

samples from juvenile HD, HD grades 1–4, and control patients. gQuantification of
human TPK1. Statistical analysis was done using a one-way ANOVA and Tukey HSD
posthoc, comparing control to each adult HD grades (adjusted p =0.979, 0.221,
0.070, and 0.018) and control to juvenile HD (p =0.015). Data shown as median
(center line), first and third quartile (Inner quartile range, box), and min and max
values as whiskers. h DAG levels quantified from HD and control patient brains
showing significant decreased DAG levels in HD brains. One-way ANOVA and
Tukey’s HSD posthoc used for statistical analysis, comparing control to each adult
HD grades. n = 7 control, 3 HD1, 3 HD2, 2 HD3, 4 HD4, 8 HD-J, biologically inde-
pendent samples. Data shown as median (center line), inner quartile range (box),
andminandmaxvalues aswhiskers. iWesternblot of PRKCE,MOG,CNPase,OLIG2,
and A-Tubulin in OPC and OLs +/− K/D of PRKCE. Two-tailed Mann Whitney test
used for statistical analysis. n = 3 biologically independent samples per group. Data
shown as mean +/− SEM as error bars. For western blot results, source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-35388-x

Nature Communications |         (2022) 13:7791 14



UMAP1

U
M

A
P2

a b

c

Aplp1
Apod

Cldn11

Csrp1

Mal

Neat1Phgdh Plp1

Ptgds

Qdpr
Rhog

Rpl24

Tmtc2

−3

−2

−1

0

1

2

−2 −1 0 1 2
zlog2fc- R6/1 Veh vs NT Veh

zl
og

2f
c 

- R
6/

1T
B

 v
s 

R
6/

1V
eh

Celltype
Astro
D1+MSN
D2+MSN
Ex1
Ex2
Inhib1
Inhib2
MG
OL
OPC

Scatter zlog2FC

597

1041

1444

92
81

7
29

R6/2 12w Str

R6/1 15w Str

R6/1 15w Str T&B

d

1−alkyl−2−acetylglycerophosphocholine esterase activity
ferric iron binding

ferroxidase activity
oxidoreductase activity, on metal ions, o2 as acceptor

calcium−independent phospholipase A2 activity
histone deacetylase activity

ferrous iron binding
phospholipase A2 activity
protein kinase C binding

iron ion binding
neuroligin family protein binding

transmembrane receptor tyrosine kinase activator activity
acetylcholine receptor binding

protein tyrosine kinase activator activity
calcium ion binding

chemorepellent activity
phospholipase C activity

phosphoric diester hydrolase activity
calcium channel regulator activity

metal ion binding
PDZ domain binding

3',5'−cyclic−nucleotide phosphodiesterase activity
cyclic−nucleotide phosphodiesterase activity

ligand−gated channel activity
ligand−gated ion channel activity

P−type calcium transporter activity
3',5'−cyclic−AMP phosphodiesterase activity

cAMP binding
phosphotransferase activity, nitro group as acceptor

beta−2 adrenergic receptor binding
creatine kinase activity

cyclic nucleotide−dependent protein kinase activity
calcium:cation antiporter activity

cation:cation antiporter activity
3',5'−cyclic−GMP phosphodiesterase activity

clathrin light chain binding
glutamate receptor activity

amyloid−beta binding
RNA binding

alpha−2A adrenergic receptor binding
GTP binding

peroxisome targeting sequence binding
supercoiled DNA binding

A
st

ro Ex

In
hi

b

M
SN O

L

2
3
4
5
6

Enrichment -LOG(FDR)
3
4
5
6
7

NT Veh
NT T&B
R6/1 Veh
R6/1 T&B

e

Glucose

Fructose-6-P

Glyceraldehyde-3-PDiacylglycerol UDP-GlcNAc

Pyruvate

Acetyl-CoA

TPK1 ThiamineTPP

Acetyl-CoA

PRKCE

D1+ MSN1

D2+ MSN

Ex1

MG

OL

OPC

Inhib2

Astro

Vascular

Ex2

Inhib1

Inhib3
Cholin

-3
-2
-1
0
1
2
3
4
5
6

D1+ OL1
D2+ OL2

Inhib1
Astr

o
Inhib2

OPC MG Ex1 Ex2
Inhib3

Vas
cu

lar

Cholin

Log2Ratio # of DEGs

f

g
OPC Intermediate

OL cells
MOL

C
on

tr
ol

H
D

H
D

 +
 T

&
B

PRKCE
DAG

PRKCE
DAG

Fig. 8 | Thiamine and biotin study in R6/1 mice shows rescue of OLmaturation
DEGs and other cell type DEGs. a UMAP showing the R6/1 and NT mouse data
colored by genotype and treatment. b Venn diagram comparing genotype DEGs in
15w R6/1 mice and 12wStr of R6/2 mice against each other and treatment effect
DEGs fromR6/1T&B treated versus vehicle. c Scatterplot showing Z-score log2FCof
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type origin. OL and Inhib1 neurons show themost rescued DEGs. Quadrants 1 and 3
represent rescue of expression and 2 and 4 represent exacerbation. d Barplot

showing the log2ratio of the number of significant DEGs comparing R61 vehicle
versus NT vehicle to R6/1T&B versus NT vehicle. e Top 10 GO terms of overlapping
DEGs per cell type (R61 vehicle versus NT vehicle to R6/1T&B versus NT vehicle).
f Illustration of metabolic pathways impacted in HD. g Illustration showing how
PRKCE and DAG levels regulate OPC commitment to differentiation and MOL
maturation in control and HD, and how T&B treatment rescues maturation
impairments. Created with BioRender.com.
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TPK1 shows a compensatory increase in HD mice at later ages,
responding to earliermetabolic changes, and tested this hypothesis by
treating relatively pre-symptomatic R6/1 HD mice. Several transcrip-
tional pathologies in HD were rescued by high dose T&B, suggesting
promise as apotential treatment strategy. Excitingly, during the course
of our study, a separate study was published showing a decrease in
SLC19A3 and TPP in HD patients and in both R6/1 and zQ175 mice78.
High dose T&B treatment produced both increased thiamine levels in
the brain and CSF and behavioral rescue in R6/1 mice as early as
13weeks.Our snRNAseq data revealed that R6/1mice showmaturation
deficits and loss of cell identity genes similar to the R6/2 model and
that treatment with T&B in the R6/1 mice, prior to TPK1 or SLC19A3
RNA changes, not only rescued a significant portion of dysregulated
genes, including neuronal, but also specifically rescued expression of a
specific subtype of inhibitory neurons and OPC and OL maturation
genes. Furthermore, there was a reduction in the total number of
significant DEGs in all cell types, except for in Ex neurons which may
reflect compensatory changes due to the discordant levels in the
genotype and treatment effects, but this requires further study outside
the scopeof thiswork. Thesedata provide validation of the two studies
and additionalmechanistic insight that rescuebyT&B likely acts in part
through rescue of transcriptional deficits in many cell types and not
just MSNs, whose survival was rescued in the other study, including a
specific subpopulation of inhibitory neurons expressing Adarb2, and
of OPC/OLs. Our data suggests that OL maturation impairments may
be driven, in part, by thiaminemetabolism and changes in the binding
of TFs that regulate OL maturation, including SOX9 and 10 and OLIG1
and OLIG2. Furthermore, HD OPCs seem to have increased commit-
ment into COP and immature OL which could be driven by decreased
DAG and PRKCE, which is rescued by T&B treatment (Fig. 8g).

Lastly, these data further supports T&B as a viable poten-
tial treatment for HD, now undergoing a clinical trial in Spain (https://
clinicaltrials.gov/ct2/show/NCT04478734), and supports the utility of
using single cell approaches and CNM to guide therapeutic target
identification and evaluation.

Methods
All research conducted for this study complies with all relevant ethical
regulations including IACUC approval protocol #s AUP-18-155 and,
ASRC-2022-1 and the Columbia University IRB protocol # AAAT2895.
Human brain tissues from HD and non-HD patient autopsies, which
were diagnosed based on accepted neuropathological criteria, were
obtained from the New York Brain Bank. All brains were donated after
consent from the next of kin or an individual with legal authority to
grant such permission. The use of postmortem brain tissues for
research was approved by the Columbia University Institutional
Review Board (IRB protocol # AAAT2895) with informed consent from
patients or their families. The Institutional Review Board has deter-
mined that clinicopathologic studies on de-identified postmortem
tissue samples are exempt fromHuman Subject Research according to
Exemption 45 CFR 46.104(d)(2).

Mice: All experimental procedures were in accordance with the
Guide for the Care and Use of Laboratory Animals of the NIH and
animal protocols were approved by Institutional Animal Care and Use
Committees at the University of California Irvine (UCI), an AAALAC
accredited institution - PROTOCOL #AUP-18-155. Animal work for OPC
cultures was approved by Institutional Animal Care and Use Commit-
tees at the Advanced Science Research Center at the City University of
New York, an AAALAC accredited institution - PROTOCOL # ASRC-
2022-1. R6/1 (Jax strain 006471 B6.Cg-Tg(HDexon1)61Gpb/J carrying
CAG 115-150) and R6/2 (Jax strain 006494 B6CBA-Tg(Hdexon1)62Gpb/
3J carrying CAG 120 +/− 5) mice have been described elsewhere in
detail31. For the study using R6/2 mice, 10 five-week-old R6/2 and non-
transgenic (NT) male mice were purchased from Jackson Laboratories

and aged to 8 or 12 weeks. For the thiamine/biotin study using R6/1
mice, 10 five-week-old R6/1 and NT male and female mice were pur-
chased from Jackson Laboratories. R6/1mice (5/grp) were given a daily
dose of combined 50mg/kg thiamine and 20mg/kg biotin (Caymen,
Ann Arbor, MI) or vehicle (PBS) I.P. beginning at age 8 weeks, treated
for 7 weeks, then euthanized at age 15 weeks. All mice were housed in
groups of up to five animals/cage under a 12 h light/dark cycle with ad
libitum access to chow and water at ambient temperature: 70F and
50% humidity. Mice were euthanized by pentobarbital overdose and
perfusedwith 0.01MPBS. Striatum and cerebral cortexweredissected
out of each hemisphere and flash-frozen for snRNAseq or biochemical
analysis.

Single nuclei RNAseq
Mouse. Single nuclei were isolated from½ hemisphere full striatal or
full cortex in Nuclei EZ Lysis buffer (Cat#NUC101-1KT, Sigma-Aldrich)
and incubated for 5min. Samples were passed through a 70μm filter
and incubated in additional lysis buffer for 5min and centrifuged at
500 × g for 5min at 4 °C before two washes in Nuclei Wash and
Resuspension buffer (1×PBS, 1% BSA, 0.2 U/μl RNase inhibitor). Nuclei
were FACS sorted using DAPI to further isolate single nuclei and
remove additional cellular debris. These nuclei were run on the 10×
Chromium Single cell 3’ gene expression v3 platform. Libraries were
QCed and sequenced on the NovaSeq 6000 using 30 bases for read 1
and 98 bases for read2, ß to obtain >=50K reads per a cell. A total of
109,053 cells with 6.1 billion reads were sequenced for the 24 samples
with on average 4544 cells per sample with ~55.6 K reads each. Align-
ment was done using the CellRanger pipeline v3.1.0 (10× Genomics
https://github.com/10XGenomics/cellranger) to a custom pre-mRNA
transcriptomebuilt from refdata-cellranger-mm10-1.2.0 transcriptome
using cellRanger mkref. UMI Count matrices were generated from
BAM files using default parameters of cellRanger count command. The
gene barcodematrices for each samplewere imported into R using the
Read10X function in the Seurat R package79 (v3.1.5). Replicates were
combined using cellRanger aggr.

Human. Dissection of the cingulate cortex, caudate nucleus, and
nucleus accumbens from frozen postmortem specimens was per-
formedonmaterial procured andpreserved fromautopsies on control
as well as grade II and grade III HD. These samples were obtained from
the New York Brain Bank. All cases had RNA integrity numbers of >7.
Brain tissue measuring ~ 5 × 4 × 3mm were dissected on a dry ice
cooled stage and processed immediately as described below. A Table
of the cases and controls used is provided in Supplementary Data 4.
Nuclei were isolated as described in (ref. 88). Briefly, brain tissue was
homogenized in aDounce homogenizerwith 12–15 strokes of the loose
pestle and 12–15 strokes of the tight pestle on ice in a Triton X-100
based, sucrose-containing buffer. The suspension from each sample
was filtered through a BD Falcon tube with a cell strainer cap (Becton
Dickinson, cat. no. 352235), washed, re-filtered, washed, followed by a
cleanup step using iodixanol gradient centrifugation as described in
ref. 75. The nuclear pellet was then re-suspended in 1% BSA in nuclease-
free PBS (containing RNAse inhibitors) and titrated to 600–1200
nuclei/μl. The nuclear suspensions were processed by the Chromium
Controller (10× Genomics) using single Cell 3′ Reagent Kit v2 or v3
(Chromium Single Cell 3′ Library & Gel Bead Kit v2/v3, catalog number
PN-1000075; Chromium Single Cell A Chip Kit, 48 runs, catalog num-
ber: 120236; 10× Genomics). Sequencing and alignment: Sequencing of
the snRNAseq libraries was done on Illumina NOVAseq 6000
platformV4 150bp paired end reads. Alignment was done using
the CellRanger pipeline (10× Genomics) to GRCh38.p12 (refdata-
cellrangerGRCh38–1.2.0 file provided by 10× genomics). Count
matrices were generated from BAM files using default parameters of
the DropEst pipeline80.
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QC and filtering
Mouse. Based on the distribution of number of genes detected in each
cell and the distribution of number of UMIs, nuclei with less than 200
genes or more than 6000 genes were excluded from the downstream
analyses. Nuclei with percent mitochondrial reads aligning to mito-
chondria genes of more than 2%were excluded. UMI counts were then
normalized in Seurat 3.0 and top 2000 highly variable genes were
identified using FindVariableFeatures function with variance stabili-
zation transformation (VST).

Human. To remove low quality cells, we first used the combined
quality calls from the CellRanger algorithm as well as the DropEst
algorithm. This allowed us to retain more high-quality nuclei than
either algorithm alone. Data QC was done using the scater package81.
Nuclei with percent exonic reads from all reads in the range of less 75%
were included. Nuclei with percent mitochondrial reads aligning to
mitochondria genes of more than 14% were excluded. Genes were fil-
tered by keeping features with >10 counts per row in at least in 31 cells.
A temporary count slot was created by decontaminating the counts
from ambient RNA by calling decontX() function with default para-
meters in R82. These counts were used for downstream clustering, but
not differential gene expression analysis.

Combining multiple datasets from different sequencing batches
and count normalization: Using the R package Seurat (version 4.06)83,
the datasets were merged after controlling for sequencing batches
(four batches).We integrated the lognormalized and scaled datasets in
Harmony version 0.1. The Harmony reductions were then added to the
merged Seurat object containing all datasets. The merged object was
normalized using SCTransform function in Seurat accounting for
batch and percentage mitochondrial reads84.

Dimension reduction and clustering
Mouse. Based on the elbow plot, top 20 PCs were retained for seurat
objectswith all cell types and 15 for theOPCandOL analysis. These PCs
were used in the downstream unsupervised clustering using a shared
nearest neighbor Louvain modularity optimization to identify clusters
of cells of the same type. Some of the identified clusters were com-
prised of multiple cell types, therefore we subclustered these cells for
further downstream DEG generation and analysis (Supplemen-
tary Fig. 1a).

Human. Pre-clustering of nuclei was done in Seurat using the
shared nearest neighbor smart local moving algorithm85 after using
the iNMF or UMAP reducions, and calling FindClusters(…, algor-
ithm=3,method= “igraph”, n.iter = 100, …). Several resolution and k
options were trialed to select the option with the largest number of
pre-clusters with the high lineage purity. Lineage identity was deter-
mined for each cluster using geneset enrichment analysis of lineage
markers86 and by inspecting cluster markers generated by scran::-
findmarkers(direction = ”up”) function87. We also depended on the
cell_classifier tool we previously used88. Pre-clusters with mixed iden-
tities based on enrichment of multiple lineage genes were sub-
clustered iteratively until all pre-clusters showed pure identities which
we combined into lineages (Astrocytes, neurons, oligodendrocytes,
myeloid, endothelial, OPCs, and ependymal cells). Sub-clustering of
select pre-clusters was done as needed to get the lineage-pure small
clusters. We next combined the clusters of the same lineage to call the
lineages presented in Fig. 1e.

After getting pureOL andOPCs, a newobject fromthese cells only
was created in monocle3. Corpus callosum cells were removed,
because no HD corpus callosum samples were included in the dataset.
Filtering lowly expressed genes yielded 16955 genes. The SCT nor-
malized counts were used to reduce the dimensions using the PHATE
function89 in R correcting for batch (using themutual nearest neighbor
option), and using the following parameters: KNN= 5, Dim=3,

Decay=50, T = 10. Clustering was done in monocle3 utilizing the three
PHATE reductions as input using the Levine algorithm.

Cluster annotation and differential gene expression
Mouse. Unsupervised clustering was done using shared nearest
neighbor Louvain modularity optimization. For each cluster, we used
multiple cell type-specific marker genes that have been previously
described in the literature to determine cell type/state identity.
Exemplary genes used as markers for major cell types are shown in
Supplementary Fig. 1. Differentially expressed genes between different
clusters, ages or disease groups were identified using Wilcoxon Rank
Sum test on genes that are expressed in at least 25% of the group.
Further sub-clustering was conducted on some of the main clusters
due to mixed cell types represented in that cluster, e.g., OPCs and
premyelinating oligodendrocytes and astrocytes with vascular cells.
Specifically, for subclustered OPCs and OL, OL-lineage, annotations
were used from Marques et al.37 by looking at gene expression for
marker genes identified in that study. These annotations were then
collapsed into OPC and OL groups for ease of reference and con-
sistency with human OPC and OL cells. Cluster and DEG analyses were
conducted on each region and age for HD versus NT independently
and combined where noted that the cells were integrated together
across region and age.

Human. Differentially expressed genes (DEGs) between HD and con-
trol per anatomic region in OL and OPC separately were identified
using EdgeR glmQLFTest adjusting for sequencing batch and using an
FDR cutoff of 25% (9). The raw counts were used here, not the
decontaminated counts. Retrieving the top 3000 differentially
expressed genes resulted in adjusted p values less than 0.05, which
were considered significant and were used for downstream analysis.

The CAG gene correlation analysis was conducted through the R
package limma (version 3.14). Samples for the analysis were prepared
using a pseudo-bulk approach. Gene expression data for eachdonor at
a specific region were summed up together respectively to create
pseudo-samples for the correlation analysis. Each pseudo donor-
region sample were then log normalized and scaled using Seurat’s
NormalizeData function (version 4.06) for optimal performance in
limma. The covariates accounted for in the design matrix between
samples included age and gender. Lastly, a row in the design matrix
included the CAG repeats for each donor-region sample. The weights
of themodel were determined using limma’s lmFit with the arguments
of the function including the pseudo-bulk donor region expression
data and the design matrix as described above.

Pseudotime trajectory analysis using Monocle3
Mouse. For oligodendrocyte developmental trajectory assessment,
cells that were identified as OPC and OL lineage were used to create a
separate Seurat object using SubsetData function on raw counts.
Pseudotime analysis was conducted on the integrated data across all
regions and ages.

Human. Pseudotime analysis was done using monocle3 employing
the three PHATE dimensions to learn the principal graph using the
following parameters: use_partition = F, learn_graph_control = lis-
t(euclidean_distance_ratio=0.5, geodesic_distance_ratio=0.7, mini-
mal_branch_len=100, orthogonal_proj_tip=TRUE, rann.k = 100),
close_loop = F). The root nodes were set as OPC cells. Grade 4 cases
were excluded because after filtering low quality cells, two samples
had very few OPCs after removing low quality cells and doublets.

ATACseq
Isolation of NeuN+ and NeuN- nuclei: The pulverized tissue was
resuspended in 2ml NEB buffer (320mM sucrose, 10mM Tris-HCl pH
8, 5mMCaCl2, 3mMMgAc2, 0.1mM EDTA, 0.1% Triton supplemented
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with protease inhibitors (Roche, 11836170001) and transferred
through 40μm tissue strainer, followed by 5min centrifugation at
600 × g at 4 °C. The pellet was resuspended in 1ml HS buffer (1.8M
sucrose, 10mM Tris-HCl pH 8, 1mMMgCl2 and Proteinase inhibitors)
and centrifuged for 20min at 16,000 × g at 4 °C. The nuclei containing
pellet was resuspended in blocking buffer (PBS with 0.5% BSA, 5%
Normal Goat Serum and Proteinase Inhibitors) and labeled with anti
NeuN-PE antibody (1:100 dilution, Millipore, FCMAB317PE) and with
Hoechst (1:2000 dilution, Invitrogen, H3570) for 30min. The nuclei
were filtered through 40μm mesh and sorted using BD FACSAria™
with gates set to separate NeuN+ and NeuN- single nuclei populations.
The nuclei were collected in tubes pre-coated with 1%BSA and sucrose
was added to the sorted nuclei to a final concentration of 0.32M fol-
lowed by 15min incubation on ice to stabilize the nuclei after sorting.
The ATAC-seq was performed as described in Corces et al.90. Briefly,
50,000 sorted nuclei were transferred to tubes and pelleted by cen-
trifugation at 2000× g for 15min. The pellet was resuspended in
transposition reaction mix (25μl 2× TD buffer, 2μl transposase, 17μl
PBS, 0.5μl 1% digitonin, 0.5μl 10%Tween-20, 5μl water) and incubated
at 37 °C for 30min following by clean up with Zymo DNA Clean and
Concentrator kit (ZymoD4004). Illumina adapters were added by PCR
to generate sequencing libraries as previously described. The ATAC-
seq libraries were sequenced on an Illumina HiSeq 2000 for single-end
50 bp reads. Fastq files were aligned to the mm10 genome using
Bowtie2 and paramaters previously described in Smith-Gearter et al.
202091.

Footprinting analysis
Weused TOBIAS software54 for footprinting analysis of ATAC-seq data.
Briefly, aligned BAM files were used to call accessible regions (peaks)
using MACS2 using the following parameters:–nomodel–shift
−100–extsize 200–broad. Peaks from all the samples across all con-
ditions were merged to a set of union peaks using bedtools merge. TF
motifs were downloaded from JASPAR CORE 2022 database (https://
jaspar.genereg.net/). TOBIAS software robustly performs all steps of
footprinting analysis including Tn5 bias correction, footprinting, and
comparison between conditions and has been shown to outperform
other common methods of footprinting. TOBIAS also calculates
TF binding on a global level across all sites as well as the locus-specific
level using JASPAR motif data. Scatterplots generated using
ggplot2 (3.3.5).

IRIS3
We used IRIS352 to infer cell type specific regulons for single nucleus
RNA-seq data from 12 week mouse striatal and cortical tissue. Speci-
fically, gene count matrices from the full datasets were subset so that
only OPC and OL cells are retained for striatal and cortical samples
(4689, 3871 cells, respectively). These matrices together with sub
cluster IDs were imported to the IRIS3 web portal (https://bmbl.bmi.
osumc.edu/iris3/) and data were QC filtered, normalized and log
transformed. DrImpute was used to impute the missing values. Gene
modules were detected using QUBIC 2.0 and motif analysis was per-
formed using MEME suite. CTSR(cell type specific regulons) were
reported for each of the identified clusters within the OPC and OL
population.

BIRD
We predicted cell type specific chromatin accessibility from snRNA
data using the BIRD algorithm (https://github.com/WeiqiangZhou/
BIRD)55. Specifically, the human postmortem snRNA data (OPC and OL
cells in caudate only) was first used for imputation ofmiss values in the
10× data with ALRA algorithm (https://github.com/KlugerLab/ALRA).
To make predictions for each cell type (OPC and OL), we pooled cells
within each cell type as input for BIRD. Predictions of chromatin
accessibility were made using models for the human reference

genome trained using 167 ENCODE RNA-seq samples. Prediction
chromatin accessibility signals across both cell types in HD and CTR
samples were converted to WIG format for visualization in genome
viewers.

Gene ontology, KEGG pathway, and TF enrichment analyses
Mouse. DEGs, gene modules members, and bnet gene members were
used for further analyses using GOrilla for gene ontology enrichment
analyses, KEGG pathway analysis, and LISA for TF enrichment analysis.

Human. Gene Ontology term enrichment analysis was done in gPro-
filer2 package in R86. The results of edgeR DEG was used as input and
the following options: (ordered_query=T, significant = T, exclude_iea =
T, underrep = F, evcodes = F, region_query = F, max_p_value = 1,
min_set_size = 0, max_set_size = 100, min_isect_size = 5, correction_-
method = “gSCS”). Statistical significance was determined using the
more conservative gSCS method 38 yielding adjusted p values. Terms
with adjusted p values <0.05 were considered significant. The terms
shown in the Figs. are selected based on ordering the results based on
negative_log10_of_adjusted_p_value followed by the ratio of the shared
of number of genes enriched in a term to that of the total number of
genes in the GO term (desc(intersection_size/term_size)). Dotplots
were generated using ggplot2 (3.3.5).

Network modeling
Mouse. Weighted gene co-expression network analysis (WGCNA)39)
was used to identify gene networkmodules from themouse snRNAseq
data.Normalized count data fromSeurat 3.0werefirst used for feature
selection, filtering all genes without at least 1 count in 25% of all cells.
Co-expression networks were then generated for NT data using
WGCNA. Correlative module-trait relationships were used to identify
genenetworkmodules thatwere positively correlatedwith specific cell
types used as input, and module preservation statistics were used to
assess recapitulation of gene networks in R6/2 data. Bayesian network
modeling: To identify causal relationships between cell type-specific
gene subnetwork we used a bayesian network modeling approach
using the R package BNLearn92. Probabilistic graphical modeling has
been previously used to assess causal relationships between genes/
proteinswith great success in recapitulating knownbiological pathway
interactions from single cell data93. Our approach took advantage of
the co-expressed gene networks we previously identified to try and
find causal relationships amongst these genes. To better interpret our
data we chose to use input data from individual cell types, which were
identified to be most correlated with each individual gene network
module. The resulting causal network would be cell type-specific and
easier to biological interpret. Features were chosen based on their
inclusion within these gene modules and additionally genes were
added based on differential expression between R6/2 and NTmice for
each cell type-gene network module pair. For instance, we identified
that the turquoise gene network module most highly correlated with
our MSNs, these genes and DEGs found in both D1 and D2 MSNs were
used as input fromboth 8 and 12w striatal and cortical data. HD andNT
networks were separately generated to identify changes in network
structure between disease and control. No priors were used as input
for the structure learning. Using this input we constructed our Baye-
sian networks with a bootstrap approach using 50% of samples and
200 rounds. Due to the spasticity of single nuclei data, even after gene
filtering, we chose to use an interval method for discretization, fac-
toring input data into 3 breaks. For structure learning we utilized
Bayesian Dirichlet likelihood-equivalence scoring and a hill-climbing
algorithm for searching for network structures. An average network
was generated from each output where the strength and direction
(empirical frequency computed from the probability of each edges’
existence anddirection) of each causal edgewere greater thanor equal
to 0.85 and 0.5, respectively. HD and control networks were then
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merged to identify changes in network structure, of both nodes
and edges.

Primary oligodendrocyte culture
Mouse primary OPCs were isolated with immunopanning as described
previously94. Briefly, cerebral cortices from C57BL/6 pups at P7 were
digested in papain solution for 20min at 37 °C, followed by titration
and filtration. Cells were then sequentially incubated in three immu-
nopanning dishes (2 negative selections with BSL1, followed by 1
positive selection with anti-mouse CD140a antibody (BD Bioscience,
558774). After positive selection, OPCs were trypsinized, plated onto
PDL-coated culture dishes with SATO medium supplemented with
growth factors (10 ng/mL PDGF-AA and 10 ng/mL bFGF), and main-
tained in a 37 °C, 5% CO2 incubator for further expansion.

siRNA Transfection
Mouse primacy OPCs were seeded onto PDL-coated 6-well plate at a
density of 2 × 105 cells/well a day before transfection. Cells were tran-
siently transfected with either siRNA targeting Prkce or non-targeting
control (Origene, SR427452) at a final concentration of 30 nM using
X-tremeGENE 360 Transfection Reagent (Roche, 8724105001). After
24 h of knockdown, cells were cultivated with either proliferating
(supplemented with growth factors) or differentiation (supplemented
T3, 60 ng/mL) media. After 3 days of proliferation and 5 days of dif-
ferentiation, cells were harvested, and proteins were extracted and
processed for western blot analysis.

Qualitative lipidomic analysis of samples by electrospray triple
Quadrupolemass spectrometry coupled with high performance
liquid chromatography
Total lipids were extracted from frozen 40–70mg human brain dis-
sected as described above. Lipidomics profiling in mouse plasma and
tissue samples was performed using Ultra Performance Liquid
Chromatography-Tandem Mass Spectrometry (UPLC-MSMS). Lipid
extracts were prepared from homogenized tissue samples using
modified Bligh and Dyer method95, spiked with appropriate internal
standards, and analyzed on a platform comprising Agilent 1260 Infinity
HPLC integrated to Agilent 6490A QQQmass spectrometer controlled
by Masshunter v 7.0 (Agilent Technologies, Santa Clara, CA). Glycer-
ophospholipids and sphingolipids were separated with normal-phase
HPLC as described before96, with a few modifications. An Agilent Zor-
bax Rx-Sil column (2.1 × 100mm, 1.8 µm) maintained at 25 °C was used
under the following conditions:mobile phaseA (chloroform:methanol:
ammonium hydroxide, 89.9:10:0.1, v/v) and mobile phase B (chloro-
form:methanol: water: ammoniumhydroxide, 55:39:5.9:0.1, v/v); 95%A
for 2min, decreased linearly to 30% A over 18min and further
decreased to 25% A over 3min, before returning to 95% over 2min and
held for 6min. Separation of sterols and glycerolipids was carried out
on a reverse phase Agilent Zorbax Eclipse XDB-C18 column (4.6 ×
100mm, 3.5μm) using an isocratic mobile phase, chloroform, metha-
nol, 0.1M ammonium acetate (25:25:1) at a flow rate of 300μl/min.
Quantification of lipid species was accomplished using multiple reac-
tion monitoring (MRM) transitions96,97 under both positive and nega-
tive ionization modes in conjunction with referencing of appropriate
internal standards: PA 14:0/14:0, PC 14:0/14:0, PE 14:0/14:0, PG 15:0/
15:0, PI 17:0/20:4, PS 14:0/14:0, BMP 14:0/14:0, APG 14:0/14:0, LPC 17:0,
LPE 14:0, LPI 13:0, Cer d18:1/17:0, SM d18:1/12:0, dhSM d18:0/12:0,
GalCer d18:1/12:0, GluCer d18:1/12:0, LacCer d18:1/12:0, D7-cholesterol,
CE 17:0, MG 17:0, 4ME 16:0 diether DG, D5-TG 16:0/18:0/16:0
(Avanti Polar Lipids, Alabaster, AL). Lipid levels for each sample were
calculated by summing up the total number of moles of all lipid
species measured by all three LC-MS methodologies, and then nor-
malizing that total to mol%. The final data are presented as meanmol%
with error bars showing mean ± S.E. Statistical comparisons were done
using a one-way ANOVA and Tukey’s test for post hoc analysis.

Only results on DAG are provided. Boxplots were generated using
ggplot2 (3.3.5).

Western blots
Mouse. Brain tissue was prepared for western blot analysis as follows:
Soluble/Insoluble Fractionation: Striatal tissue was processed as
described previously98. Total Fractionation: Isolated striatumor cortex
was homogenized with 20 strokes of a potter-Elvenhjem glass tissue
homogenizer in 1mLmodified RIPA buffer (50mM Tris-HCl pH 7.4, 1%
NP-40, 0.25% Na-deoxycholate, 150mM NaCl, 1mM EDTA) supple-
mentedwith one Pierce protease inhibitormini tablet (Fisher Scientific
A32953), 1mM PMSF, phosphatase inhibitors 2 (Millipore Sigma,
P5726) (1:1000) and 3 (Millipore Sigma P0044) (1:1000), 10μg/mL
aprotinin, and 10μg/mL leupeptin. Lysates were sonicated then cen-
trifuged at 16,000 rcf for 15min, and 5–10μg analyzedbywesternblot.
Combined linear range was quantified on Empiria by analyzing a con-
centration gradient of protein (1.25, 2.5, 5, 10, and 20 μg per lane) with
Revert for each antibody (Licor) to determine loading concentration.
Proteinwas then subjected to SDS/PAGEon aNuPageNovex 4–12%Bis-
Tris precast gel (Thermo Fisher NW04125) with MOPS running buffer
(Invitrogen NP0001) and transferred onto a Immobilon-FL PVDF
(Millipore Sigma IPFL00010) membrane. 5 µg of reduced, insoluble
protein from Insoluble Fractions were resolved on 3–8% Tris-Acetate
Poly-Acrylamide gels. Whole protein was quantified using the revert
assay (LI-COR Biosciences 926-11016), and the membrane was blocked
with Intercept (TBS) Blocking Buffer (LI-COR biosciences 927-60010)
for 1 h. The membrane was then incubated in primary antibodies
overnight, washed three timeswith TBS-0.1% Tween-20, and incubated
for 1 h in Intercept block supplemented with 0.1% Tween-20 and near-
infrared conjugated secondary antibodies. Membranes were imaged
on a LI-COR scanner and quantified using Empiria Software. Experi-
ments were performed at least twice with multiple biological repli-
cates. Antibodies for the following antigens were used: DGKB
(Thermofisher cat# PA5-15416 1:1000), PRKCE (Invitrogen PA5-83725 –
1:1000), p-PKCε (ser729) (Millipore 06-821-1; 1:1000), SGK1 (abcam -
ab59337 1:1000), TPK1 (Fisherscientific cat# 50-172-6732 1:500), GPI1
(Thermofisher cat# PA5-26787 1:1000), Anti-Huntingtin Antibody (a.a.
1-82|MAB5492 - EMD Millipore 1:1000). The mice used for westerns
were from two separate cohorts and did not include the mice used for
snRNAseq and snATACseq. 6 males animals per group were used for
each western except for the solb/insolb fractionated western which
were mice were from a third cohort that included 4 male mice per
group. All Western statistical analysis was performed using Students
T-Test with two-tailed distribution and two-sample equal variance
(homoscedastic). Exact p-values for significant differences are pro-
vided in the figure.

Human. Protein was extracted fromdissected frozen tissue using RIPA
buffer on ice. Protein concentration was estimated using a modified
Bradford assay. Western blotting was performed using sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) as descri-
bed previously99. Briefly, protein lysates were separated by precast
4–20%Bis-Tris gradient gels (GenScript), followedby transferring onto
PVDF membrane (Millipore). After 1 h blocking in blocking buffer (5%
milk, 0.1% TBS-Tween) at room temperature, membranes were incu-
bated overnight at 4 °C with primary antibodies. Antibodies for the
following antigens were used: MAG (Proteintech cat#14386-1-AP -
1:1000-3000), MOG (Proteintech #12690-1-AP - 1:500-1000), PRKCE
(Invitrogen PA5-83725 – 1:1000), p-PKCε (ser729) (Millipore 06-821-1;
1:1000), MBP (Cell signal #78896S, 1:1000), SGK1 (abcam - ab59337
1:1000), TPK1 (Fisherscientific cat# 50-172-6732 1:500), GAPDH (Pro-
teintech 60004-1-Ig 1:1000), Actin (Proteintech 66009-1-Ig; 1:5000),
Anti-mouse and anti-rabbit Peroxidase-AffiniPure Donkey IgG (H + L)
(Jackson ImmunoResearch Labs Cat# 715-035-151 and 711-035-152).
Detection was using enhanced chemiluminescence (cat# 1705061 or
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1705062) on a Bio-RadChemiDoc™ Touch Imaging System. Band areas
were normalized to Actin and/or GAPDH. Statistical comparisons were
conducted using unpaired two-tailed t-test or Mann–Whitney test as
appropriate. TPK1 was analyzed separately using similar methods as
described in the mouse section and using only striatal tissue lysates.
Boxplots were generated using ggplot2 (3.3.5).

Western blot analysis of OPC cultures was performed as outlined
above with the followingmodifications. The following antibodies were
used: rabbit anti-PRC-epsilon (Invitrogen PA5-83725, 1:1000), mouse
anti-OLIG2 (Millipore, MABN50, 1:1000), mouse anti-CNPase (Biole-
gend, SMI-91, 1:5000), rabbit anti-MOG (Thermo, PA5-19602, 1:1000)
and mouse anti-αTUBULIN (Calbiochem, CP06, 1:2500). Detection of
target proteins was done by measuring chemiluminescence signal
using ECL™ Prime Western Blotting Detection Reagent (Sigma,
GERPN2232) on a ChemiDoc Imaging System (Bio-Rad). Image J was
used to quantify the protein bands and αTUBULINwas used as loading
control.

Immunohistochemistry and in situ hybridization
Standard chromogenic and fluorescent immunohistochemistry as well
as in situ hybridization were done as described previously88. Paraffin-
embedded formalin-fixed tissue sections were used for IHC and ISH.
The following antibodies were used CA2 (Abcam ab124687- 1:100),
MBP (Invitrogen PA1-10008 – 1:5000). RNAscope™ was done per the
manufacturer instructions using anRNAscope™multiplex Fluorescent
v2 kit (ACDbio 323100) with the following probes for SPP1 (cat#
889751-C2), NEAT1 (cat# 411531-C3), and MBP (cat# 573051-C4).

Imaging and quantification
Whole slides were scanned and the images on an Aperio™ Leica slide
scanner at 40×. Fluorescent stained slides were scanned on Leica
Aperio™ Versa scanner at 40×. additional images were taken on a
Zeiss™ 810 LSM 800 confocal microscope at using a 40×/1.3 NA oil-
immersion objective. For quantification of IHC, we employed an
automated method using Qupath v0.2 positive cell detection
algorithm100. Identification of pencil fibers and blood vessels was done
using apixel classifier trainedon regions not quantifiedbut in the same
slide. Quantification of ISH slides uses positive cell detection method
followed by subcellular detection. Only cells with nuclear signal were
considered positive. Staining artifact and blood vessels were excluded.
One or more images from each patient were used. The results were
loaded in R v4.0. and cells with a minimum of 3 or more MBP dots or
clusters were considered positive. NEAT1 and SPP1 were quantified in
MBP positive cells. Nuclei with 2 or more dots or clusters were con-
sidered positive for SPP1 and with 2 or more dots/clusters for NEAT1.
Statistical comparisons were done using one-tailed t-test or Wilcox
rank test as appropriate. For calculating MBP:CA2 ratios, immuno-
fluorescence forMBP andCA2was performedon threeormore images
per case from 3 HD and 4 control caudate stained sections. The MBP
signal was binarized using the threshold function in ImageJ (threshold
detected automatically) and was divided by the number of CA2 posi-
tive cells counted in each image.

Statistics and reproducibility
All features highlighted in the paper and reported as statistically sig-
nificant havep-values <0.05 or adjustedp-values <0.1, unless otherwise
stated. For single nucleus sequencing, we use negative binomial dis-
tribution to estimate power and sample size (https://satijalab.org/
howmanycells). Assuming there are ≤18 cell types within the tissue, in
order to detect rare cell types present at 1% with at least 20 nuclei per
each type, we need at least 3775 nuclei to achieve power of 0.99. In our
10× experiment, we detected 4k–5k single nuclei per subject, to
achieve power >0.99. No statistical methods were used to pre-
determine sample sizes for the number of subjects needed but our
sample sizes were similar to those reported in previous publications.

No data were excluded from the analyses. The experiments were not
randomized. For all human data collection and analysis, the investi-
gators were blinded to conditions, data was unblinded after the
completion of data collection. Mouse treatment groups were rando-
mized but no other blinding was done.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human snRNAseq, mouse snRNAseq, and mouse ATACseq data
generated in this study have been deposited in the GEO database
under accession code GSE180928, GSE180294, and GSE180236,
respectively. The aggregate imaging, western blot and DAG lipidomic
data generated in this study are provided in the Source Data files. The
JASPAR CORE 2022 data can be found at https://jaspar.genereg.net/. In
addition to being found in the above locations, all raw data, materials,
code, and associated protocols can also be requested from the cor-
responding authors and will be made available immediately to the
requester. Source data are provided with this paper.

Code availability
The code used in this study are deposited in the GitHub repository at
https://github.com/jwuuci/snRNAseqHD.
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