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Abstract 

Background:  Macrotrabecular hepatocellular carcinoma (MTHCC) has a poor prognosis and is difficult to diagnose 
preoperatively. The purpose is to build and validate MRI-based models to predict the MTHCC subtype.

Methods:  Two hundred eight patients with confirmed HCC were enrolled. Three models (model 1: clinicoradiologic 
model; model 2: fusion radiomics signature; model 3: combined model 1 and model 2) were built based on their 
clinical data and MR images to predict MTHCC in training and validation cohorts. The performance of the models 
was assessed using the area under the curve (AUC). The clinical utility of the models was estimated by decision curve 
analysis (DCA). A nomogram was constructed, and its calibration was evaluated.

Results:  Model 1 is easier to build than models 2 and 3, with a good AUC of 0.773 (95% CI 0.696–0.838) and 0.801 
(95% CI 0.681–0.891) in predicting MTHCC in training and validation cohorts, respectively. It performed slightly 
superior to model 2 in both training (AUC 0.747; 95% CI 0.689–0.806; p = 0.548) and validation (AUC 0.718; 95% CI 
0.618–0.810; p = 0.089) cohorts and was similar to model 3 in the validation (AUC 0.866; 95% CI 0.801–0.928; p = 0.321) 
but inferior in the training (AUC 0.889; 95% CI 0.851–0.926; p = 0.001) cohorts. The DCA of model 1 had a higher net 
benefit than the treat-all and treat-none strategy at a threshold probability of 10%. The calibration curves of model 1 
closely aligned with the true MTHCC rates in the training (p = 0.355) and validation sets (p = 0.364).

Conclusion:  The clinicoradiologic model has a good performance in diagnosing MTHCC, and it is simpler and easier 
to implement, making it a valuable tool for pretherapeutic decision-making in patients.

Key points 

•	 Clinicoradiologic model has a good performance in diagnosing MTHCC.
•	 In validation set, models 2 and 3 did not significantly improve predictive performance compared to clinicoradio-

logic model.

†Ismail Bilal Masokano and Yigang Pei are co-first authors

*Correspondence:  wz.li@csu.edu.cn

1 Department of Radiology, Xiangya Hospital, Central South University, No. 
168 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-022-01333-1&domain=pdf
http://orcid.org/0000-0003-1791-0097


Page 2 of 15Bilal Masokano et al. Insights into Imaging          (2022) 13:201 

•	 Clinicoradiologic model yielded higher clinical benefit at MTHCC threshold probability of 10%.
•	 Clinicoradiologic model is as beneficial as model 3, yet simpler and easier.

Keywords:  Macrotrabecular hepatocellular carcinoma, Magnetic resonance imaging, Nomograms, Decision-making

Background
Being the most common primary liver malignancy and 
second-most deadly cancer [1], the precise preoperative 
diagnosis of hepatocellular carcinoma (HCC) has been 
increasingly investigated for proper management and 
improvement in patients’ quality of life. Pretherapeutic iden-
tification of the tumor subtype is essential because different 
HCC subtypes respond differently to therapies due to dis-
tinct genetic, clinical, and prognostic characteristics [2, 3].

Macrotrabecular hepatocellular carcinoma (MTHCC) 
is a peculiar subtype with high genetic alterations, includ-
ing gene mutations (TP53 mutations), amplifications 
(FGF19 gene), and overexpression of pro-angiogenesis 
proteins (ESM1, angiopoietin, and endothelial growth 
factors, etc.) [3–5]. Clinically, patients with MTHCC 
have higher serum α-fetoprotein (AFP), larger and more 
aggressive lesions, higher recurrence rates, and poorer 
survival than patients with other subtypes [3, 6].

Therefore, an accurate diagnosis of MTHCC can assist 
in effective clinical decision-making to achieve person-
alized patient care. Currently, pathologic examination 
of HCC specimens is the goal standard for diagnosing 
histologic subtypes. Though the subtype of many HCCs 
can be identified on biopsy, a routine preoperative biopsy 
is controversial, and the clinical risk–benefit balance 
remains unclear [7]. A biopsy is associated with sampling 
bias from tumor heterogeneity [8] because highly heter-
ogenous lesions are characterized by varying proportions 
of necrotic and regressive changes, which may make 
sampled specimens inadequate for pathologic examina-
tion and often warrant a repeat biopsy [9]. Consequently, 
given the risk of the need for a repeat sampling, inadvert-
ent hemorrhage, and tumor embolization [10], a biopsy 
may be unsuitable for routine preoperative HCC subtype 
identification. Thus, a noninvasive approach that uses CT 
or MRI before surgery to identify the MTHCC is crucial 
in patients’ prognostication.

Presently, a few studies have described some MRI fea-
tures of MTHCC. Mule et al. identified substantial necro-
sis on MRI as an independent predictor of the MTHCC 
subtype [11]. Additionally, Cannella et  al. identified a 
larger tumor size and the presence of tumor-in-vein [12], 
Liang et al. [13] found the absence of enhancing capsule 
and blood products in the lesion, and Rhee et  al. [14] 
showed arterial phase peritumoral enhancement (corona 
enhancement), intratumoral arteries, and rough tumor 

margin to be significantly associated with the MTHCC 
subtype on MR imaging. However, these studies were 
based on the qualitative evaluation of MR or CT-based 
imaging findings without incorporating quantitative tex-
ture features.

Radiomics is a noninvasive approach that can quan-
titatively and more objectively identify the histologic 
characteristics of a tumor by evaluating the grayscale dif-
ferences in an image. Thus, radiomics can potentially aid 
in the preoperative identification of the macrotrabecular 
hepatocellular subtype. To our knowledge, only one study 
[15] on the quantitative assessment of HCC texture fea-
tures for preoperative prediction of the MTHCC subtype 
has been published—it was limited by a small sample size 
(32 MTHCC) and the lack of a validation cohort.

Therefore, the aim of this study was to build and vali-
date three models (clinicoradiologic model, fusion radi-
omics signature, and combined radiomics model) to 
predict MTHCC noninvasively, assess their clinical util-
ity, and decide on the suitable model that will assist in 
patient management.

Materials and methods
Patients’ enrollment
The Medical Ethics Committee of our institution 
(Xiangya Hospital, Central South University) approved 
this retrospective study (Approval Number: 2018111101) 
and waived the requirement for patient consent.

We searched the database of our institution to retrieve 
the pathologic, radiologic, and clinical data of patients 
with histologically confirmed hepatocellular carcinoma 
who had hepatectomy between July 2017 and July 2020. 
Consecutive patients with pathologically confirmed HCC 
were identified and enrolled based on the inclusion cri-
teria: (1) histologically confirmed HCC with a detailed 
pathologic report; (2) MR imaging performed within two 
months before surgery; and (3) sufficient image quality 
to allow accurate interpretation of radiologic features. 
Patients were excluded if they fell within one or more of 
the following: (1) unavailability of MR imaging or imag-
ing was done in another institution; (2) suboptimal image 
quality making the evaluation of imaging characteristics 
difficult; (3) previous intervention therapy (LRT) or sys-
temic chemotherapy in new HCC patients and those with 
recurrence; and (4) presence of an MTHCC and another 
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subtype in the same patient. A total of 208 patients out of 
the 644 subjects with HCC were enrolled and randomly 
split into training and validation cohorts in a ratio of 7:3 
using the non-exhaustive tenfold cross-validation (Fig. 1).

Histologic characteristics
The hepatectomy specimens were reviewed indepen-
dently by two pathologists (D.F. and QQ.H. with 20 and 
15 years of experience, respectively) who were blinded to 
the patients’ clinical data. The following histologic char-
acteristics were recorded: tumor differentiation based on 
Edmondson-Steiner grade (the predominant grade was 

allocated to lesions showing different grades); histologic 
subtype including MTHCC (Fig.  2) [3]; microvascular 
invasion, and satellite nodules. Discrepancies in assess-
ments were resolved by consensus.

MR image acquisition
All patients had MR imaging using a 3.0T MR scan-
ner (Discovery MR750w, GE Healthcare or Siemens 
Healthcare). The public protocol was adopted, and 
the imaging parameters are shown in detail in Table 1. 
One hundred and sixty-one patients had MRI with an 
extracellular contrast agent: 15  ml of gadodiamide 

Fig. 1  Flow diagram of patient enrollment
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(Omniscan, GE Healthcare) was injected at a rate of 
0.2  ml/kg, while 47 had imaging with a hepatobiliary 
agent: 10  ml of gadoxetic acid disodium (Primovist; 
Bayer-Global) was injected, followed by 20  ml of 0.9% 
saline at an injection rate of 1 ml/s or 2 ml/s. Following 
the pre-contrast images, contrast-enhanced dynamic 
images and hepatobiliary phase images were acquired. 
The arterial phase (AP), portal venous phase (PVP), 
delayed phase or transitional phase (for gadoxetic 
acid disodium agent), and hepatobiliary phases (HBP) 
were acquired within 25–30 s, 65–75 s, 130–150 s, and 
15–20 min, respectively, after the contrast injection.

Model 1
Patients’ clinical information
The clinical data were obtained: gender, age at surgery, 
hepatitis B (HBV) and hepatitis C virus (HCV) status, 

immediate preoperative AFP, albumin, total bilirubin, 
aspartate transaminase (AST), and alanine transaminase 
(ALT) levels (Table 2).

Qualitative MR image analysis
Blinded to clinical and histopathologic information, all 
patients’ MR images were retrospectively reviewed. Two 
readers (P.Y. and L.W., with 10 and 15 years of experi-
ence in abdominal imaging, respectively) independently 
interpreted the MRI features: (1) number and diameter of 
tumors; (2) tumor necrosis [11]; (3) intratumor arteries 
[16]; (4) corona enhancement [17]; (5) tumor heterogene-
ity [18]; (6) radiologic capsule [19]; (7) intratumor hem-
orrhage; (8) intratumor fat; (9) characteristic late arterial 
phase hyperenhancement and non-peripheral washout as 
defined by the LI-RADS 2018 [20]; and (10) rim-like arte-
rial phase enhancement [21]. Additional file 1: Appendix 

Fig. 2  MR Images (a–e) in a 73-year-old man with a 51-mm MTHCC. The lesion shows a non-rim arterial phase hyperenhancement with 
intratumoral arteries (white arrows) and wedge-shaped arterial corona enhancement (blue arrows) (b); non-peripheral washout and enhancing 
capsule in the portal and delayed phases (c and d). The gross appearance of the lesion after resection (f) and microscopic examination (g) showing 
thick sheets of hepatocytes (*) surrounded by vascular spaces (arrowheads). (Hematoxylin & Eosin, magnification×200). The criterion for the 
pathologic diagnosis of MTHCC is a hepatocellular carcinoma with a predominant macrotrabecular architectural pattern (more than 6 cells thick) 
involving more than 50% of the tumor [3]

Table 1  Imaging parameters

TR repetition time, TE echo time, BW bandwidth, FOV field of view, NEX number of excitations, FS fat saturated, LAVA Liver Imaging with Volume Acceleration-flexible

Parameters TR (msec) TE (msec) BW (Hz/pixel) FOV (mm) Matrix Slice 
thickness 
(mm)

NEX Flip angle (°) Contrast agents used

Respiratory-triggered 
FS T2WI

3529 80.3 83.33 36 320 × 320 6.0 2 110 15 ml of gadodiamide 
(Omniscan, GE Health-
care) in 161 patients

Breath-hold axial LAVA-
flex T1WI

2.7 1.3 142.86 40 512 × 512 4.0 1.0 12 10 ml of gadoxetic acid 
disodium (Primovist; 
Bayer-Global) in 47 
patients

Breath-hold VIBE T1WI 2.7 1.3 1040 40 320 × 167 3.0 2.0 9
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E1 and Figs. S1–4 provide a detailed description of the 
previous features.

Construction of model 1
Univariate analysis was used to compare the differences 
in clinical factors and qualitative MRI features between 
MTHCC and non-MTHCC. A p value < 0.05 indicates a 
significant difference. The significant predictors in the 
training set were entered into a logistic regression analy-
sis to build a clinicoradiologic model (model 1). The odds 
ratio (OR) and 95% confidence intervals (CI) for each 
independent predictor were computed.

Model 2
Tumor segmentation
The ITK-SNAP software (Version 3.8.0) was used to man-
ually segment the entire tumor from T2W, AP, and PVP 
images as previously reported by studies [11, 14] on the 
imaging differences between MTHCC and non-MTHCC. 
Two readers (I.B. and C.J., with 4 years of experience in 
abdominal imaging) performed the segmentation. Only 
the largest lesion was included in patients with multi-
ple tumors (the lesion with a clearer margin was used in 
patients with equally sized lesions). All patients with mul-
tiple lesions in the MTHCC group have only MTHCCs, 
while those in the non-MTHCC group have non-MTH-
CCs. The whole tumor was segmented slice by slice by 
outlining the contour 1–2  mm within its boundary and 
avoiding major vessels and adjacent liver parenchyma. 
The tumor in the last slices was not included to avoid 
volume averaging with adjacent structures. Initially, both 
readers independently segmented 50 randomly selected 
tumors (including 36 MTHCCs and 14 non-MTHCCs). 
After that, a reader (I.B.) repeated the same segmenta-
tion on the 50 tumors a week later to obtain intra- and 
inter-rater intra-class correlation coefficients (ICC) as 
described by [22]. Texture features with ICC > 0.75 were 
considered to have a good agreement. Reader 1  (I.B.) 
continued with the remaining image segmentation.

Feature extraction
The reader (I.B.) transferred the ROIs into the radiomics 
platform of AK software 3.3.0 (Analysis kit, GE Health-
care). The MR images and segmented ROIs were first 
preprocessed. Tumors and ROIs were compared side by 
side to ensure all ROIs match exactly with their corre-
sponding tumors. Images were resampled using a 1.0 mm 
voxel size along the X, Y, and Z coordinates, respectively. 
A Gaussian filter of 0.5 mm bandwidth was used to filter 
noise from the images. First-, second-, and higher-order 
features were extracted. A total of 3111 features—1037 

features from each phase—were extracted (Additional 
file 1: Table S1).

To select the robust radiomics features, the features 
with outliers (under the first quartile or above the third 
quartile of the feature distribution) and missing values 
were replaced by the feature’s median value in the data-
set. Finally, all T2W, AP, and PVP features were stand-
ardized using zero-mean normalization to remove pixels 
that fall outside a specified range of gray levels.

Construction of model 2
First, the radiomics features with ICC > 0.75 from the 
T2W, AP, and PVP images in the training cohort were 
selected to train the predictive model. Subsequently, 
potential features that were significantly different between 
the MTHCC and non-MTHCC groups were obtained 
using the Mann–Whitney U test. Thereafter, the features 
were entered into the least absolute shrinkage and selec-
tion operator (LASSO) regression model to select the 
most valuable features by tuning the hyperparameter λ 
with the smallest tenfold cross-validation error in the 
training set for each set of the images. Model 2 (fusion 
radiomics signature) was thus built using the combined 
robust features from T2W, AP, and PVP images.

The radiomics score for each patient was calculated 
based on the formula in Additional file 1: Appendix E2.

Construction and validation of model 3
Variables from model 1 and model 2 were entered into a 
logistic regression to form a combined radiomics model 
(model 3) to predict MTHCC. The workflow of model 
construction is shown in Fig.  3. The predictive perfor-
mance of the models (models 1, 2, and 3) in training and 
validation cohorts was decided by the maximum area 
under the curve (AUC) and the associated cutoff accord-
ing to the Youden index.

Estimating the clinical utility of the models
A decision curve analysis (DCA) was used to estimate the 
clinical utility of the models by calculating the net ben-
efits for a range of threshold probabilities (percentage 
risk threshold of detecting the subtype). For each deci-
sion curve, the net clinical benefit was computed using 
the following formula [23]:

where pt is the threshold probability for detecting a posi-
tive patient.

The decision curve plots net clinical benefit (y-axis) 
against threshold probability (x-axis). The clinical utility 

Net benefit =

True positives

N
−

False positives

N
×

pt

1− pt
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of the curve is indicated by the highest net clinical benefit 
at the lowest threshold probability.

Nomogram construction
A nomogram for the most clinically applicable model was 
constructed based on the AUC performance and clinical 
utility at the lowest threshold probability. The process of 
graphical presentation of the nomogram is described in 
Additional file 1: Appendix E3.

Statistical analysis
Statistical analyses were performed using IBM SPSS 
Statistics (version 25, IBM SPSS Inc.) and R statisti-
cal software (Version 3.5.1). Univariate analyses were 
used to compare differences between MTHCC and 
non-MTHCC patients regarding clinicopathologic 
characteristics: using chi-square or Fisher’s exact tests 
for categorical variables and Mann–Whitney U test 
for continuous variables. Continuous variables were 

Fig. 3  Workflow of model construction
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Table 2  Demographic, clinical, and pathologic characteristics of 208 patients according to MTHCC subtype

MTHCC macrotrabecular hepatocellular carcinoma, IQR interquartile range, AFP alpha-fetoprotein, AST aspartate transaminase, ALT alanine transaminase, HBV hepatitis 
B virus (hepatitis B surface antigen), HCV hepatitis C virus (hepatitis C antigen), MVI microvascular invasion

*Significant p values (p < 0.05)

Variables Training set (n = 145)
n (%) or median (IQR)

Validation set (n = 63)
n (%) or median (IQR)

Available data MTHCC (n = 48) Non-MTHCC 
(n = 97)

p value Available data MTHCC (n = 21) Non-MTHCC 
(n = 42)

p value

Gender 145 0.081 63 0.510

  Male 124 (85.5) 43 (89.6) 81 (83.5) 58 (92.1) 20 (95.2) 30 (90.5)

  Female 21 (14.5) 5 (10.4) 16 (16.5) 5 (7.9) 1 (4.8) 4 (9.5)

Age 145 51 (45.50–59.75) 53 (45–63) 0.380 63 44 (40–50.5) 55.5 (44.5–64) 0.026*

AFP 145 0.005* 63 0.037*

  < 20 ng/ml 58 (40.0) 12 (25.0) 46 (47.4) 30 (47.6) 6 (28.6) 24 (57.1)

  20–400 ng/ml 35 (24.1) 12 (25.0) 23 (23.7) 14 (22.2) 6 (28.6) 9 (19.0)

  > 400 ng/ml 52 (35.9) 24 (50.0) 28 (28.9) 19 (30.2) 9 (42.9) 10 (23.8)

ALT 145 0.674 63 0.157

  < 40U/l 81 (55.9) 28 (58.3) 53 (54.6) 32 (50.8) 8 (38.1) 24 (57.1)

  > 40U/l 64 (44.1) 20 (41.7) 53 (45.4) 31 (49.2) 13 (61.6) 18 (42.9)

AST 145 0.521 63 0.374

  < 35U/l 64 (44.1) 23 (47.9) 41 (42.3) 28 (44.4) 11 (52.4) 17 (40.5)

  > 35U/l 81 (55.9) 25 (52.1) 56 (57.7) 35 (55.6) 10 (47.6) 25 (59.5)

Albumin 145 0.262 63 0.216

  < 40U/l 67 (46.2) 19 (39.6) 48 (49.5) 31 (49.2) 8 (38.1) 23 (58.4)

  > 40U/l 78 (53.8) 29 (60.4) 49 (50.5) 32 (50.8) 13 (61.9) 19 (45.2)

Cirrhosis 145 0.193 63 0.807

  Present 128 (88.3) 88 (90.7) 40 (83.3) 53 (84.1) 18 (85.7) 35 (83.3)

  Absent 17 (11.7) 8 (16.7) 9 (9.3) 10 (15.9) 3 (14.3) 7 (16.7)

HBV 145 0.395 63 0.284

  Present 109 (75.2) 34 (70.8) 75 (77.3) 49 (77.8) 18 (85.7) 31 (73.8)

  Absent 36 (24.8) 14 (29.2) 22 (22.7) 14 (22.2) 3 (14.3) 11 (26.2)

HCV 145 0.093 63 1.000

  Present 6 (4.1) 4 (8.3) 2 (2.1) 3 (4.8) 1 (4.8) 2 (4.8)

  Absent 139 (95.9) 44 (91.7) 95 (97.9) 60 (95.5) 20 (95.2) 40 (95.2)

Total bilirubin 145 0.880 63 0.352

  < 20.4 µmol/l 126 (86.9) 42 (87.5) 84 (86.6) 52 (82.5) 16 (76.2) 36 (85.7)

  > 20.4 µmol/l 19 (13.1) 6 (12.5) 13 (13.4) 11 (17.5) 5 (23.8) 36 (14.3)

Pathologic data

  Edmondson-
Steiner grade

145 0.029* 63 0.484

  Grade I 13 (9) 0 13 (13.4) 6 (9.5) 1 (4.8) 5 (11.9)

  Grade II 102 (70.3) 37 (77.1) 65 (67) 46 (73) 16 (76) 30 (71.4)

  Grade III 30 (20.7) 11 (22.9) 19 (19.6) 11 (17.5) 4 (19) 7 (16.7)

MVI 145 0.216 63 0.285

  Present 74 (41) 28 (58.3) 46 (47.4) 30 (47.6) 12 (57.1) 18 (42.9)

  Absent 71 (49) 20 (41.7) 51 (52.6) 33 (52.4) 9 (42.9) 24 (57.1)

Satellite nodules 145 0.265 63 0.530

  Present 37 (25.5) 15 (31.3) 22 (22.7) 15 (23.8) 6 (26.6) 9 (21.4)

  Absent 108 (74.5) 33 (68.8) 75 (77.3) 48 (76.2) 15 (71.4) 33 (78.6)
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summarized as median and interquartile range (IQR). 
Cohen’s kappa coefficient was used to evaluate the 
inter-reader agreement for each qualitative MRI fea-
ture. Intra- and inter-rater intra-class correlation coef-
ficients (ICC) were obtained to evaluate the reliability 
of the manual segmentation [24]. The diagnostic per-
formance of the models 1, 2, and 3 in differentiating 
MTHCC from non-MTHCC was assessed by the AUC 
(with 95% CI), sensitivity, specificity, and accuracy in 
training and validation cohorts. A model is considered 
to have excellent, good, or poor performance when it 
has an AUC of 0.85–1.0, 0.7–0.85, or < 0.7, respectively 
[25]. The curves of the models were compared using the 
Delong test.

The receiver operating characteristic (ROC) curves 
were plotted using MedCalc software (Version 19.5.0). 
The “glmnet,” “rms,” and “dca” packages were used to 
perform LASSO regression, nomogram construction, 
and DCA on R, respectively. A two-tailed p value < 0.05 
indicated statistical significance.

Results
Clinical and imaging characteristics
A total of 145 patients (median age, 53 years; interquar-
tile range (IQR), 45–62 years; 21 women and 124 men; 
48 MTHCC and 97 non-MTHCC) were included in the 
training cohort and 63 patients (median age, 52 years; 
IQR 41–62  years; 5 women and 58 men; 21 MTHCC 
and 42 non-MTHCC) were included in the validation 
cohort (Fig. 1). Sixty-nine of the 208 HCC patients had 
the MTHCC subtype (33.2%); proportions of other sub-
types in our patients are presented in Additional file 1: 
Fig. S5A.

Clinical, pathologic, and imaging variables were not 
significantly different between the training and valida-
tion cohorts (p = 0.087–0.97). By univariate analysis, 
MTHCC significantly differed from non-MTHCC in 
the levels of serum AFP, tumor grade, tumor capsule, 
heterogeneity, intratumoral arteries, corona enhance-
ment, and absence of washout (all p < 0.05). Tumor 
grade and intratumoral arteries were not significantly 
different in the two groups in the validation cohort 
(Tables 2 and 3).

Performance of model 1
Higher serum AFP > 400 ng/ml (OR 2.196; 95% CI 1.245–
3.872; p = 0.007), more heterogeneity (OR 3.269; 95% 
CI 1.142–9.359; p = 0.027), corona enhancement (OR 
3.985; 95% CI 1.217–13.050; p = 0.022), and absence of 
the washout (OR 7.773; 95% CI 1.596–37.847; p = 0.011) 
remained independent predictors of MTHCC.

The model had a good predictive performance in the 
training (AUC 0.773; 95% CI 0.696–0.838; sensitivity: 0.521; 
specificity: 0.910; accuracy: 0.722) and validation (AUC: 
0.801; 95% CI 0.681–0.891; sensitivity: 0.619; specificity: 
0.904; accuracy: 0.702) cohorts, respectively (Table 4).

Performance of model 2
A total of 1585 texture features with intra- and inter-
correlation coefficients > 0.75 (951 features from T2W 
images, 380 from AP, and 253 from PVP) were selected 
for further analysis. One hundred and eighty features sig-
nificantly differed between MTHCC and non-MTHCC 
with ANOVA (p < 0.05). And 5 optimal features were 
selected by LASSO, and logistic regression identified four 
features (AP-derived glcm_Contrast, PVP-based skew-
ness, and T2W images-based gldm_Dependence Vari-
ance and glszm_Small AreaEmphasis) associated with 
MTHCC (Table 5). Radiomics scores based on the above 
four features are presented in Additional file 1: Appendix 
E4 and, Figs. S5B and C.

The AUCs of T2W, AP, PVP images, and model 2 are 
shown in Table  4. Model 2 showed a good predictive 
performance in the training (AUC 0.747; 95% CI 0.689–
0.806; sensitivity: 0.938; specificity: 0.515; accuracy: 
0.727) and validation (AUC 0.718; 95% CI 0.618–0.810; 
sensitivity: 0.857, specificity: 0.500; accuracy: 0.679) 
cohorts. The AUC of model 1 was lightly superior to that 
of model 2 in both training and validation sets. However, 
the difference was not statistically significant (AUCs in 
the training set: 0.773 vs 0.747, p = 0.548; AUCs in valida-
tion set: 0.801 vs 0.718, p = 0.089) (Table 4 and Fig. 4).

Performance of model 3
Model 3 showed an excellent predictive performance in 
the training (AUC 0.889; 95% CI 0.851–0.926; sensitivity: 
0.866; specificity: 0.784; accuracy 0.825) and validation 
(AUC 0.866; 95% CI 0.801–0.928; sensitivity: 0.881, spec-
ificity: 0.714, accuracy: 0.798) cohorts. It performed bet-
ter than model 1 (p = 0.001) only in the training set, but 
not in the validation set (p = 0.321) (Table 4 and Fig. 4).

Clinical utility of the models
The decision curve of model 1 yielded a higher net clini-
cal benefit than the treat-all and treat-none strategy at 
an MTHCC threshold probability of 10% (which is lower 
than the reported prevalence of MTHCC) (Fig.  5). A 
nomogram was constructed for model 1 as it had simi-
lar predictive performance to model 3 in the validation 
cohort and is easier to implement in routine clinical prac-
tice (Fig. 6a). It is predicted probabilities closely aligned 
with the true MTHCC rates in both training (p = 0.355) 
and validation (p = 0.364) cohorts (Fig. 6b, c).
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Table 3  MR imaging characteristics of the HCC lesions according to MTHCC subtype

Image traits n (%) or median (IQR)
Training set (n = 145)

n (%) or median (IQR)
Validation set (n = 63)

Available data MTHCC 
(n = 48)

Non-MTHCC 
(n = 97)

p value Available data MTHCC 
(n = 21)

Non-MTHCC 
(n = 42)

p value Interrater 
agreement**

Number of 
patients

145 0.251 63 0.513 1.00

  Patients 
with single 
lesions

116 (80) 41 (85.4) 75 (77.3) 51 (81) 16 (76.2) 35 (83.3)

  Patients 
with 
multiple 
lesions

29 (20) 7 (14.6) 22 (22.7) 12 (19) 5 (23.8) 7 (16.7)

Tumor size* 
(mm)

145 48.2 (32.05–
91.45)

50.1 (29.65–
73.75)

0.925 63 34.7 (24.2–
72.25)

48.7 (25.05–
67.7)

0.435 0.99

Tumor capsule 145 0.014a 63 0.001a 0.96

  Absent 29 (20) 14 (29.2) 15 (15.5) 12 (19) 6 (28.6) 6 (14.3)

  Partial 20 (13.8) 9 (18.8) 11 (11.3) 8 (12.7) 7 (33.3) 1 (2.4)

Complete 96 (66.2) 25 (52.1) 71 (73.2) 43 (68.3) 8 (38.1) 35 (83.3)

Tumor hetero-
geneity

145 14 (33.3) 40 (41.2)  < 0.001a 63 0.001a 0.78

  Homog-
enous

108 (74.5) 25 (52.1) 83 (85.6) 40 (63.5) 7 (33.3) 33 (78.6)

  Heteroge-
neous

37 (25.5) 23 (47.9) 14 (14.4) 23 (36.5) 14 (66.7) 9 (21.4)

Tumor necrosis 145 0.881 63 0.332 0.97

  Absent 64 (44.1) 20 (41.7) 44 (45.4) 30 (47.6) 8 (38.1) 22 (52.4)

  Present 
(< 20%)

28 (19.3) 11 (22.9) 17 (17.5) 15 (23.8) 6 (28.6) 9 (21.4)

Necrosis > 20% 53 (36.6) 17 (35.4) 36 (37.1) 18 (28.6) 7 (33.3) 11 (26.2) 0.83

Intratumor 
arteries

145 0.047a 63 0.103 0.93

  Present 42 (29) 19 (39.6) 23 (23.7) 13 (20.6) 7 (33.3) 6 (14.3)

  Absent 103 (71) 29 (60.4) 74 (76.3) 50 (79.4) 14 (66.7) 36 (85.7)

Intratumor 
hemorrhage

145 0.633 63 0.237 0.80

  Present 43 (29.7) 13 (27.1) 30 (30.9) 18 (28.6) 4 (19) 14 (33.3)

  Absent 102 (70.3) 35 (72.9) 67 (69.1) 45 (71.4) 17 (81) 28 (66.7)

Intratumor fat 145 0.304 63 0.023a 0.74

  Present 21 (14.5) 9 (18.8) 12 (12.4) 9 (14.3) 0 9 (21.4)

  Absent 124 (85.5) 39 (81.3) 85 (87.5) 54 (85.7) 21 (100) 33 (78.6)

APHE 145 0.228 63 0.255 0.92

  Absent 19 (13.1) 4 (8.3) 15 (15.5) 5 (7.9) 1 (4.8) 4 (9.5)

  EAPHE 11 (7.6) 2 (4.2) 9 (9.3) 4 (6.3) 0 4 (9.5)

  LAPHE 115 (79.3) 42 (87.5) 73 (75.3) 54 (85.7) 20 (95.2) 34 (81)

Rim APHE 12 (8.3) 6 (12.5) 6 (6.3) 0.212 5 (7.9) 3 (14.3) 2 (4.8%) 0.323

Corona 
enhancement

145  < 0.001a 63 0.036a 0.84

  Present 23 (15.9) 17 (35.4) 6 (6.2) 7 (11.1) 5 (23.8) 2 (4.8)

  Absent 122 (84.1) 31 (64.6) 91 (93.8) 56 (88.9) 16 (76.2) 40 (95.2)

Washout 145  < 0.001a 63 0.039a 0.83

  Present 130 (89.7) 36 (75.0) 94 (96.9) 58 (92.1) 17 (81.0) 41 (97.6)

  Absent 15 (10.3) 12 (25.0) 3 (3.1) 5 (7.9) 4 (19.0) 1 (2.4)
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Discussion
MTHCC is an aggressive HCC subtype with poor out-
comes. Its identification during patient workup will assist 
in prognostication and selecting patients who may ben-
efit from more vigorous therapies like radical resection 
with wide margins or anatomical hepatectomy, as well as 
strict follow-up schedules. Thus, we developed and vali-
dated various predictive models based on MRI to detect 
the MTHCC subtype preoperatively.

The 2018 EASL clinical practice guideline on HCC 
management suggests that tumor subtyping has no 
impact on clinical decision-making [1]. But recent HCC 
studies indicate that different HCC subtypes exhibit dis-
tinct biologic behavior, respond differentially to HCC-
directed therapies, and consequently show varied clinical 
outcomes. For example, the latest WHO classification 
of HCC [26] includes the MTHCC subtype because 
of its morphologic peculiarity, clinical relevance, and 
prognostic implications—it is highly aggressive [6, 27], 
with greater metastasis rates [28]; has relatively more 
advanced Barcelona stage [11]; and is an independent 
indicator of poor clinical endpoints in patients (early 
and overall recurrence and overall survival) [3, 6, 27]. 
Therefore, pretherapeutic identification of the MTHCC 
subtype will be clinically crucial to deciding the best 
treatment approach and providing individualized patient 
care.

In our study, serum AFP, tumor heterogeneity, corona 
enhancement, and absence of the characteristic non-
peripheral washout were independent predictors of 
MTHCC. Similar to previous reports, we found higher 
levels of serum AFP and greater heterogeneity in the 
MTHCC subtype [11, 29]. Heterogeneity reflects tumor 
aggression and cellular and metabolic alterations [30]. 
Corona enhancement occurs due to the blockage of 
venous tributaries around the tumor, leading to com-
pensatory peritumoral arterial flow into the surrounding 
stroma [31]. Also, 12 of our MTHCC did not demonstrate 
the characteristic washout in both training and valida-
tion sets, which was significantly different from the non-
MTHCC group (12 vs 3 in the training set, respectively; 
p < 0.001). Washout appearance occurs due to rapid 
drainage of arterially delivered contrast out of the tumor 

extracellular compartment and a concomitant reduc-
tion in the tumor’s portal supply [32]. Hypoxia-inducing 
proteins and other pro-angiogenic factors lead to hemo-
dynamic alterations in the MTHCC [4, 33]. Washout dis-
appearance may be due to a reduced outflow of arterially 
delivered blood or improved portal supply. On univari-
ate analysis, more MTHCCs showed intratumor arteries 
compared to non-MTHCCs. This is in keeping with find-
ings by Rhee et al., which showed that intratumor arteries 
are significant predictors of MTHCC [14]. Overall, model 
1 showed a good performance in predicting the MTHCC 
subtype.

Four vital radiomics features (AP-derived glcm_Con-
trast, PVP-based Skewness, and T2W images-based 
gldm_DependenceVariance and glszm_ Small AreaEm-
phasis) associated with MTHCC were obtained from 
model 2. The MTHCC group demonstrated higher 
glcm_Contrast, which might result from more intra-
tumor arteries seen in the MTHCCs. Higher skew-
ness occurs when a tumor contains regions of different 
intensities, implying greater tumor heterogeneity in the 
MTHCC group. Also, intratumor arteries might skew the 
lesion’s gray-level distribution as areas of contrast-laden 
blood vessels in a less enhanced tumor background lead 
to greater skewness [34]. We attribute the T2W-based 
radiomics features to MTHCC’s histologic architecture. 
The gldm_DependenceVariance might reflect the area 
corresponding to the thick macrotrabecular architec-
ture, while the glszm_SmallAreaEmphasis represents 
the surrounding web-like vascular spaces [35]. Based on 
these independent features, model 2 also had a good per-
formance in predicting the MTHCC subtype; its AUC 
being slightly inferior to model 1 in both training (AUC 
0.747 vs. 0.773; p = 0.548) and validation (AUC 0.718 
vs. 0.801; p = 0.089) sets. In a previous study, the fusion 
radiomics signature and the clinicoradiologic model were 
performed similarly in both cohorts regarding the preop-
erative prediction of microvascular invasion [36]. Also, 
the findings of Ma et al. showed that the HCC radiomics 
signature performed much lower than the clinical factor 
model in the validation set (AUC 0.681 vs 0.761), which is 
in keeping with our findings [37]. This could be because 
the type of segmentation technique, feature selection and 

Table 3  (continued)
MTHCC macrotrabecular hepatocellular carcinoma, APHE arterial phase enhancement, EAPHE early arterial phase enhancement, LAPHE late arterial phase 
enhancement, AP arterial phase

*Tumor size based on the largest axial diameter

**Cohen’s kappa statistic and interclass correlation coefficient for qualitative and quantitative variables, respectively; n = number
a Significant p values (p < 0.05)
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reduction methods, modeling approach, and ultimately 
variation in the imaging parameters all influence the 
robustness, reproducibility, and performance of the pre-
dictive radiomics signature [38].

Although model 3 (the combined radiomics model) 
performed better than models 1 and 2 in the training 
cohort (AUC 0.889; sensitivity: 0.866; specificity: 0.784), 
its performance was not significantly higher than model 
1 in the validation cohort (AUC 0.866 vs 0.801; p = 0.321). 
This indicates that model 1 has a similar diagnostic per-
formance comparable to model 3. Likewise, the per-
formance of the clinicoradiologic model and combined 
radiomics did not differ in the validation cohorts of sev-
eral other studies on preoperative HCC histologic charac-
terization [36, 37, 39]. In the validation cohort, Nie et al. 
[22] reported that the clinicoradiologic and combined 

radiomics models performed similarly in differentiating 
focal nodular hyperplasia and HCC (AUC 0.769 vs 0.917; 
p = 0.376). Another study found that the two models had 
the same diagnostic performance in predicting micro-
vascular invasion of HCC in the validation cohort (AUC 
0.850 vs 0.943, respectively; p = 0.111) [36]. In HCC, 
building and clinical validation of a radiomics-based 
model are challenging and currently limited by the need 
for large datasets, heterogeneity of image acquisition pro-
tocols, as well as difficulty in harmonizing study findings 
[40, 41]. Since there was no added diagnostic benefit of 
using the radiomics signature and combined radiomics 
model in the validation cohort compared to the more sim-
ple and easily implementable clinicoradiologic model, this 
study demonstrates that the radiomics model is of limited 
benefit in the clinical management of patients. The clini-
coradiologic model is thus more suited for the everyday 
clinical management of MTHCC patients.

The prevalence of MTHCC in this study is 33%, which 
falls within the range of 15% and 35% reported in the lit-
erature [11, 27, 29]. According to the clinical utility analy-
sis, model 1 is beneficial in detecting MTHCC at a lower 
threshold probability of 10%—a threshold lower than the 
reported prevalence—reiterating its value in assisting cli-
nicians in improving pretherapeutic decision-making. As 
it is easier and simpler to build than models 2 and 3, it is 
more suitable to use in routine clinical practice to predict 
the MTHCC subtype.

This study has some limitations. First, our retrospec-
tive study needs to be externally validated by a larger 
multicenter prospective study. Second, we used only 

Table 5  Correlation coefficients and p values for features after 
LASSO

Standard error (Std.Err); Coefficient (Coef.)

*Significant p value (p < 0.05)

Variables Coef. St. Err p

Intercept − 0.0142 0.1580 0.929

Original_glcm_Contrast [AP] 0.5061 0.1775 0.004*

Original_shape_Flatness [AP] 0.3152 0.1643 0.055

Original_firstorder_Skewness [PVP] 0.6996 0.1792 < 0.001*

Original_gldm_DependenceVariance 
[T2WI]

0.3312 0.1666 0.047*

Original_glszm_SmallAreaEmphasis [T2WI] − 0.3529 0.1706 0.039*

Fig. 4  Comparison of receiver operating characteristics curves of the three models in training (a) and validation (b) cohorts
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three phases and did not include HBP because not all 
patients had gadoxetic acid-enhanced MRI; we also have 
not included T1W images because some lesions had 
inconspicuous margins making tumor segmentation 
difficult. DWI is a powerful MR tool for detecting and 
characterizing liver lesions. Likewise, we did not include 
DW images as not all patients underwent DWI during 
workup; the reliability and stability of HCC radiomics 
features extracted from DW images are further limited 
by lower spatial resolution, sensitivity to motion, and 
varying signal-to-noise ratio with different b values [42, 
43]. Third, we did not use the LI-RADS categorization 
in this study. The MTHCC has been associated with a 
tumor in the vein [12]. Our subsequent study will exam-
ine the relationship between the LI-RADS and ADC ratio 
in the MTHCC subtype, as well as the utility of the ADC 
as a biomarker for tumor recurrence. Forth, to obtain a 
reasonably large sample size, the study included patients 
imaged with two scanners and two different contrast 
agents, which may inevitably affect the reproducibility 

of segmentation and feature extraction [44]. Neverthe-
less, we attempted to achieve reliable segmentation and 
feature extraction by ensuring a good ICC. Finally, we 
did not incorporate genomics factors related to MTHCC 
due to the cost of gene assays. We intend to incorporate 
radiogenomics and evaluate the impact of different imag-
ing protocols on the robustness of the model in subse-
quent multicentered series.

In conclusion, three models were developed to predict 
the MTHCC subtype preoperatively. The clinicoradio-
logic model (model 1) had a good diagnostic performance 
in predicting MTHCC in training and validation cohorts. 
It was slightly superior to the fusion radiomics signature 
(model 2) in both cohorts and similar to the combined 
radiomics model (model 3) in the validation cohort. Fur-
thermore, the clinicoradiologic model is easier and sim-
pler to build than the fusion radiomics signature and 
combined radiomics model in clinical work. Thus, it will 
be helpful in predicting the MTHCC subtype in routine 
clinical practice.

Fig. 5  Decision curves analyses (DCA) across all threshold probabilities. The DCA plots the model’s net benefit (y-axis) against threshold probability 
(x-axis) for predicting MTHCC in the entire patients. The “treat all line” assumes all lesions are MTHCC, and the “treat none” line assumes all lesions are 
non-MTHCC. The DCA of model 1 in training (a) and validation sets (b); the curve has a higher net benefit than treat-all strategies at a low threshold 
probability of 10%; (c) the decision curve comparison between models 1 (blue), 2 (red), and 3 (green) for all patients
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Fig. 6  Development of nomogram (a) and calibration curves (b, c) for model 1. It incorporates alpha-fetoprotein levels (AFP), tumor heterogeneity, 
non-peripheral washout, and corona enhancement. AFP: 0, 1, and 2 represent serum AFP levels of < 20 ng/ml, 20–400 ng/ml, and > 400 ng/ml, 
respectively. Tumor heterogeneity: 0 and 1 represent homogenous and heterogenous tumor appearance, respectively. 0 represents absence, and 
1 represents the presence of washout and APE, respectively. The calibration curves in training (b) and validation (c) cohorts show the calibration of 
the nomogram. The diagonal gray dotted line represents the true MTHCC rates, while the blue line demonstrates the predictive performance of the 
nomogram
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