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Abstract

We introduce a Gaussian accelerated molecular dynamics (GaMD), Deep Learning (DL) and 

free energy prOfiling Workflow (GLOW) to predict molecular determinants and map free energy 

landscapes of biomolecules. All-atom GaMD enhanced sampling simulations are first performed 

on biomolecules of interest. Structural contact maps are then calculated from GaMD simulation 

frames and transformed into images for building DL models using convolutional neural network. 

Important structural contacts are further determined from DL models of attention maps of 

the structural contact gradients, which allow us to identify the system reaction coordinates. 

Finally, free energy profiles are calculated for the selected reaction coordinates through energetic 

reweighting of the GaMD simulations. We have also successfully demonstrated GLOW on 

characterization of activation and allosteric modulation of a GPCR, using the adenosine A1 

receptor (A1AR) as a model system. GLOW findings are highly consistent with previous 

experimental and computational studies of the A1AR, while also provide further mechanistic 

insights into the receptor function. In summary, GLOW provides a systematic approach to 

mapping free energy landscapes of biomolecules. The GLOW workflow and its user manual can 

be downloaded at http://miaolab.org/GLOW.
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GLOW integrates a Gaussian accelerated molecular dynamics (GaMD), Deep Learning (DL) 

and free energy prOfiling Workflow to predict molecular determinants and map free energy 

landscapes of biomolecules. GaMD simulations are performed on biomolecules. DL identifies 

important system reaction coordinates. Free energy profiles are finally calculated to characterize 

biomolecular dynamics.
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Introduction

Molecular dynamics (MD) is a powerful computational technique for simulating 

biomolecular dynamics at an atomistic level1. Longer and cheaper MD simulations can 

now be achieved due to remarkable advances in computing hardware (e.g., the Anton 

supercomputer and GPUs) and software developments2, 3. Even so, conventional MD 

(cMD) is typically limited to hundreds of nanoseconds to tens of microseconds3–10. Many 

biological processes of interest, however, occur over milliseconds or even longer timescales, 

due to high energy barriers (e.g., 8–12 kcal/mol)3–10. Consequently, sufficient sampling of 

different conformations and accurate calculations of free energy profiles of biomolecules 

remain challenging for cMD simulations3.

Enhanced sampling techniques have been developed to overcome the above challenges. 

Many enhanced sampling techniques have been developed during the last several 

decades11–15. Overall, these techniques greatly improve the sampling of biomolecular 

dynamics and the accuracy of free energy calculations. One class of these methods use 

predefined collective variables (CVs) or reaction coordinates (RCs), including umbrella 
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sampling16, 17, metadynamics18, 19, adaptive biasing force20, 21 and steered MD22. It is, 

however, rather challenging to define proper CVs in prior because the system needs to 

be studied in detail beforehand3. In addition, predefining CVs could significantly limit 

sampling of the conformational space during simulations. Another class of enhanced 

sampling techniques do not require predefined CVs, including replica exchange MD 

(REMD)23, 24 or parallel tempering25, self-guided Langevin MD26–28 and accelerated 

MD (aMD)29, 30. In aMD, a boost potential is added to sample different low-energy 

conformational states by smoothing the system potential energy surface and reducing the 

energy barriers29, 31. Despite the advantage of unconstrained enhanced sampling, aMD 

suffers from high energetic noise and difficulties in recovering the original statistical 

ensemble3, 32. This issue can be severe for large biomolecular systems, such as proteins 

and nucleic acids, where proper energetic reweighting has often been prohibitive33.

Gaussian accelerated molecular dynamics (GaMD) is developed based on aMD for 

simultaneous unconstrained enhanced sampling and free energy calculations of large 

biomolecules34. GaMD adds a harmonic boost potential to reduce the system energy 

barriers34. This boost potential usually exhibits a Gaussian distribution. Cumulant expansion 

to the second order (“Gaussian approximation”) can be applied to achieve proper energetic 

reweighting33. GaMD resolves the energetic noise problem encountered in the previous 

aMD method29, 35, and allows for recovery of the original free energy profiles34. GaMD 

has been successfully demonstrated on enhanced sampling of ligand binding34, 36–40, 

protein folding34, 36, protein conformational changes37, 41–43, protein-membrane44, protein-

protein41, 45, 46 and protein-nucleic acid47, 48 interactions, etc. Furthermore, GaMD has 

been combined with REMD49, 50 to further improve conformational sampling and free 

energy calculations3. Recently developed “selective GaMD” algorithms, including Ligand 

GaMD (LiGaMD)51 and Peptide GaMD (Pep-GaMD)52, have enabled repetitive binding 

and dissociation of small-molecule ligands and highly flexible peptides within microsecond 

simulations, which allow for highly efficient and accurate calculations of ligand/peptide 

binding free energies and kinetic rate constants3.

Machine Learning (ML) has been applied to enhance MD simulations and facilitate the 

simulation analysis of biomolecules53, 54, particularly G-protein-coupled receptors (GPCRs). 

GPCRs are the largest family of human membrane proteins and represent primary targets of 

~34% of currently marketed drugs55. For class A (rhodopsin-like) GPCRs, activation is often 

triggered by binding of an agonist to the orthosteric pocket located within the receptor seven 

transmembrane (TM) domain56. However, complete activation of GPCRs usually requires 

additional coupling of the intracellular G proteins. GPCR activation has been characterized 

by structural rearrangements of the TM5, TM6 and TM7 helices, notably outward tilting of 

the TM6 cytoplasmic end, inward movement of the NPxxY motif in the TM7 intracellular 

domain and close interaction of Tyr5.58 and Tyr7.53 in the G protein-coupling site57–64. 

GPCR residues are numbered according to the Ballesteros-Weinstein scheme65. In addition 

to orthosteric ligands, GPCR structural dynamics can be modulated by allosteric ligands, 

compounds that bind to topographically distant (“allosteric”) sites66–68. For example, 

binding of a positive allosteric modulator (PAM) in the M2 muscarinic receptor led to 

sidechain rotation of residue W7.35 and slight contraction of the receptor extracellular 

pocket, which was pre-formed in the active agonist-bound structure57, 69. Binding of 

Do et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a muscarinic toxin negative allosteric modulator (NAM) to the antagonist bound M1 

muscarinic receptor resulted in conformational changes in the extracellular loop 2 (ECL2), 

TM1, TM2, TM6 and TM7 extracellular domains, as well as the TM2 and TM6 intracellular 

domains70. In the free fatty acid receptor GPR40, PAM binding in a lipid-facing pocket 

induced conformational changes in the intracellular loop 2 (ICL2), TM4 and TM5 of the 

active receptor71. The ICL2 adopted a short helical conformation and the TM5 was shifted 

along its helical axis towards the extracellular side relative to the TM471. A similar allosteric 

site was identified for binding of NAMs between TM3-TM4-TM5 on the lipid-exposed 

surface of the C5a receptor72. Recently, binding of a PAM to an extrahelical lipid-facing 

pocket formed by TM1-TM6-TM7 helices of adenosine A1 receptor (A1AR) stabilized the 

receptor-G protein complex by increasing agonist binding affinity and reducing receptor-G 

protein mobility42. Notably, ECL2 has been suggested to play an important role in the 

activation and allosteric modulation of A1AR and other GPCRs42, 73–77.

Weinstein and co-workers developed an ML approach for analysis of cMD simulations to 

classify inverse, partial and full agonists of class A GPCRs and predict their molecular 

determinants78. It was based on transforming MD trajectories into image representations 

recognizable by Deep Neural Networks (DNNs). The X, Y and Z coordinates of an atom 

in each simulation frame were converted to the red, green and blue (RGB) color values 

of a pixel in an image. They also developed a Rare Event Detection (RED) protocol to 

investigate ligand-dependent conformational transitions in cMD simulations of the serotonin 

5-HT2AR receptor79. RED was able to identify rare transition events in residue contacts 

of the GPCR in response to binding of the agonist and inverse agonist. Another ML 

approach was developed to cluster MD simulations of the dopamine D3 receptor (D3R) 

for rationalizing the efficacy change induced by binding of four orthosteric ligands80. The 

analysis revealed that increase in ligand flexibility progressively destabilized the D3R, 

which was validated in experiments. Furthermore, supervised and unsupervised ML methods 

were used to create interpretable maps of important features from MD simulations to 

analyze signal transduction, ligand binding and voltage sensing of the β2-adrenoceptor81. 

ML was also combined with infrequent metadynamics simulations to predict the kinetic 

rates and mechanisms of orthosteric ligand dissociation from the μ opioid receptor (μOR)82. 

Supervised ML classifiers have been built on molecular features to distinguish active 

orthosteric ligands from the inactive or random compound and allosteric modulators from 

orthosteric ligands in the CB1 and CB2 cannabinoid receptors83. However, ML has not been 

combined with MD for modeling of GPCR allosteric modulation.

In this work, we introduce a GaMD, deep Learning and free energy prOfiling Workflow 

(GLOW) for biomolecular simulations. First, GaMD simulations are performed on 

biomolecular systems of our interest. A Deep Learning (DL) model is then trained with 

residue contact maps of GaMD trajectories transformed into image representations. The DL 

model allows us to classify the systems of interest and predict their molecular determinants, 

from which important residues will be identified by pixel-attributed backpropagation84 to 

select the system reaction coordinates (RCs). Free energy profiles of the RCs are finally 

calculated from GaMD simulations to enable detailed characterization of target biomolecular 

systems. GLOW provides a systematic approach to mapping free energy landscapes of 
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systems of interest. Furthermore, we demonstrate GLOW on characterization of both 

activation and allosteric modulation of a model GPCR.

Methods

Overview of GLOW

In GLOW, GaMD and DL are integrated to identify important reaction coordinates and 

map free energy profiles of biomolecules. First, GaMD simulations were performed on 

the target biomolecules (Figure 1A). Since simulation trajectories are collections of static 

PDB snapshots, the residue contact map of each simulation frame can be calculated and 

transformed into images (Figure 1B). The specialized type of neural network for image 

classification, two-dimensional (2D) convolutional neural network (CNN), is employed to 

classify the residue contact maps of target biomolecules, from which important residue 

contacts are identified by classic gradient-based pixel attribution84 (Figure 1C). Finally, the 

free energy profiles of these RCs are calculated through reweighting of GaMD simulations 

to characterize the biomolecular systems of interest (Figure 1D). Related theories and 

application of GLOW are described in detail below.

Gaussian accelerated molecular dynamics

GaMD works by adding a harmonic boost potential to smooth the potential energy surface 

when the system potential drops below a reference energy E:

ΔV (r) =
1
2k(E − V (r))2, V (r) < E

0, V (r) ≥ E,
(1)

where k is the harmonic force constant. The two adjustable parameters E and k can 

be determined based on three enhanced sampling principles. First, for any two arbitrary 

potential values V 1( r ) and V 2( r ) found on the original energy surface, if V 1( r ) < V 2( r ), 
ΔV should be a monotonic function that does not change the relative order of the biased 

potential values; i.e., V 1*( r ) < V 2*( r ). Second, if V 1( r ) < V 2( r ), the potential difference 

observed on the smoothed energy surface should be smaller than that of the original, i.e., 

V 2*( r ) − V 1*( r ) < V 2( r ) − V 1( r ). The reference energy needs to be set in the following 

range:

V max ≤ E ≤ V min + 1
k, (2)

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure 

that equation (2) is valid, k must satisfy: k ≤ 1
V max − V min

. Let us define k ≡ k0
1

V max − V min
, 

then 0 ≤ k0 ≤ 1. Third, the standard deviation of ΔV needs to be small enough (i.e., narrow 

distribution) to ensure proper energetic reweighting33: σΔV = k(E − Vavg)σV ≤ σ0, where 

Vavg and σV are the average and standard deviation of the system potential energies, σΔV is 

the standard deviation of ΔV with σ0 as a user-specified upper limit (e.g., 10kBT) for proper 

reweighting. When E is set to the lower bound E = Vmax, k0 can be calculated as:
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k0 = min 1.0, k0′ = min 1.0, σ0
σV

V max − V min
V max − V avg

, (3)

Alternatively, when the threshold energy E is set to its upper bound E ≤ V min + 1
k , k0 is set 

to:

k0 = k0′′ ≡ 1.0 − σ0
σV

V max − V min
V max − V avg

, (4)

if k0′′ is found to be between 0 and 1. Otherwise, k0 is calculated using equation (3).

Similar to aMD, GaMD provides options to add only the total potential boost ΔVp, 

only dihedral potential boost ΔVD, or the dual potential boost (both ΔVp and ΔVD). 

The dual-boost GaMD generally provides higher acceleration than the other two types of 

simulations31.

Simulation protocol

The X-ray crystal structure of human A1AR in complex with PSB36 antagonist (PDB: 

5N2S)85 and cryo-EM structures of the A1AR bound by the adenosine (ADO) and Gi2 

protein (PDB: 6D9H)86 and A1AR bound by ADO, Gi2 protein and MIPS521 PAM (PDB: 

7LD3)42 were used to set up the simulation systems. The Gi2 protein was removed from 

the 6D9H structure to prepare the A1AR – ADO system. While GaMD simulations of the 

A1AR-ADO-Gi2, A1AR-ADO-Gi2-MIPS521 and A1AR-ADO systems were obtained from 

a previous study42, we additionally performed GaMD simulations on the A1AR-PSB36 

system. All chain termini were capped with neutral patches (acetyl and methylamide). The 

receptor was then embedded in POPC membrane lipid bilayers and complex structures 

were solvated in 0.15 M NaCl solutions. The CHARMM36m force field parameter set87 

was used for the simulations. The systems were energetically minimized for 5000 steps 

using the steepest-descent algorithm and equilibrated with the constant number, volume, 

and temperature (NVT) ensemble with 310 K. They were further equilibrated for 375 ps 

at 310 K with the constant number, pressure, and temperature (NPT) ensemble. The cMD 

simulations were then performed for 10 ns using the NPT ensemble with constant surface 

tension at 1 atm pressure and 310 K temperature. GaMD implemented in GPU version of 

AMBER 2034, 88, 89 was applied to simulate the A1AR systems. The simulation involved 

an initial short cMD of 10 ns to calculate GaMD acceleration parameters and GaMD 

equilibration of added boost potential for 40 ns. Three independent GaMD production 

simulations with randomized initial atomic velocities were performed at the “dual-boost” 

level, with one boost potential applied to the dihedral energetic term and the other to 

the total potential energetic term. 500-ns simulations were performed on the experimental 

structure complexes, and 1000-ns simulations were performed on the A1AR-ADO system. 

The reference energy was set to the lower bound, and the upper limit of the boost potential 

standard deviation, σ0, was set to 6.0 kcal/mol for both the dihedral and total potential 

energetic terms. The GaMD simulations are summarized in Table S1.
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Deep Learning

Deep learning was applied to analyze GaMD simulations of the A1AR systems. The 

residue contact map of each GaMD simulation frame was computed using Python packages 

MDTraj90 and contact map explorer90. A contact definition of ≤4.5 Å between any heavy 

atoms was used. The resulting 287 × 287 – residue contact maps were transformed into 287 

× 287 – pixel grayscale images for analysis by a 2D CNN (Figure 1B). In total, 150,000 

images were obtained for each A1AR system, 80% of which were randomly selected for 

training, while the rest were used for validation. We built our 2D CNN using the Keras 

module91 embedded in Python TensorFlow package92. The best fit model consisted of four 

convolutional layers of 3 × 3 kernel size, with 32, 32, 64 and 64 filters, respectively, 

followed by three fully connected (dense) layers, the first two of which included 512 

and 128 filters with a dropout rate of 0.5 each. The final fully connected layer was the 

classification layer. We used “ReLu” activation for all layers in the 2D CNN, except the 

classification layer, in which “softmax” activation was used. A maximum pooling layer of 2 

× 2 kernel size was added after each convolutional layer. Finally, the saliency (attention) 

map of residue contact gradients was calculated through backpropagation by vanilla 

gradient-based pixel attribution84 using the residue contact map of the most populated 

structural cluster of each A1AR system. The hierarchical agglomerative clustering algorithm 

was used to cluster snapshots of receptor conformations with all GaMD production 

simulations combined for each system.

Free energy profiling

Important residue contacts were identified from the DL model based on the following: 

(1) the contact gradients were above 0.4 in the saliency (attention) maps (see Figs. 2 

and 5, Tables S2 and S3), (2) the residue contacts were from different receptor domains, 

and (3) they showed distinct features in different forms of the simulation system. RCs 

associated with the important residues were then selected to compute free energy profiles by 

reweighting the GaMD simulations using the PyReweighting toolkit33, 34. A bin size of 0.5 

Å was used, and the cutoff was set to 500 – 1000 frames in one bin for reweighting. The 

probability distribution of selected RCs can be calculated from simulations as p*(A). Given 

the boost potential ΔV(r) of each frame in GaMD simulations, p*(A) can be reweighted to 

recover the canonical ensemble distribution, p(A), as:

p Aj = p* Aj
eβΔV (r) j

∑i = 1
M p* Ai eβΔV (r)

i
, j = 1, …, M (5)

where M is the number of bins, β = kBT and 〈eβΔV(r)〉j is the ensemble-averaged Boltzmann 

factor of ΔV(r) for simulation frames found in the jth bin. The ensemble-averaged 

reweighting factor can be approximated using cumulant expansion33, 34:

eβΔV (r) = exp ∑k = 1
∞ βk

k!Ck , (6)

where the first two cumulants are given by:
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C1 = ΔV ,
C2 = ΔV 2 − ΔV 2 = σv2 . (7)

The boost potential obtained from GaMD simulations usually shows near-Gaussian 

distribution93. Cumulant expansion to the second order thus provides a good approximation 

for computing the reweighting factor33, 34. The reweighted free energy F(A) = −kBT ln p(A) 

is calculated as:

F(A) = F*(A) − ∑k = 1
2 βk

k!Ck + Fc, (8)

where F*(A) = −kBT ln p*(A) is the modified free energy obtained from GaMD simulation 

and Fc is a constant.

Results

We obtained dual-boost GaMD simulations on four systems of the A1AR bound by the 

“Antagonist”, “Agonist”, “Agonist – Gi” and “Agonist – Gi – PAM” (Table S1). GaMD 

simulations recorded similar averages and standard deviations (SDs) of the added boost 

potentials, i.e., 15.07 ± 4.53 kcal/mol for the Antagonist – A1AR, 17.07 ± 5.01 kcal/mol for 

the Agonist – A1AR, 18.32 ± 6.29 kcal/mol for the Agonist – A1AR – Gi and 20.53 ± 6.54 

kcal/mol for the Agonist – A1AR – Gi – PAM complex, respectively. The residue contact 

map of every 10 simulation frames was extracted and transformed into an image. We then 

built a 2D CNN for each system. The saliency (attention) maps of residue contact gradients 

of the most populated structural clusters were used to infer characteristic residue contacts in 

activation and allosteric modulation of the A1AR. The complete lists of important residue 

contacts (whose gradients were ≥0.4 from pixel backpropagation) are summarized in Table 

S2 for activation and Table S3 for allosteric modulation.

Characterization of GPCR activation with GLOW

Classification of the A1AR bound by “Antagonist”, “Agonist” and “Agonist – Gi” by 

GLOW is depicted in Figure 2. The overall accuracy achieved on the validation set after 

15 epochs was 0.9934, while the overall loss was 0.0185 (Figure S1). Among the 30,000 

frames for validation of each system, GLOW accurately classified most of them, including 

all 30,000 frames of “Antagonist” bound A1AR, 29,997 frames of “Agonist” bound A1AR 

and 29,760 frames of “Agonist – Gi” bound A1AR, respectively. Only a marginal portion 

of the frames were inaccurately categorized. Specifically, ~0.01% (3 frames) of “Agonist” 

bound A1AR were predicted to be “Agonist – Gi” bound A1AR, and ~0.8% (240 frames) of 

“Agonist – Gi” bound A1AR were predicted to be “Agonist” bound A1AR (Figure 2A).

The pixel-attributed residue contact gradient maps of the most populated A1AR clusters 

bound by “Antagonist”, “Agonist” and “Agonist – Gi” are shown in Figures 2B – 2D, 

respectively, and S2. Overall, the characteristic residue contacts of “Antagonist” bound 

A1AR were located between TM2 – ECL2, TM3 – TM5, TM3 – TM6 and ICL2 – TM6 

(Figures 2B and S2A). The characteristic residue contacts of “Agonist” bound A1AR were 
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between TM3 – ECL2 (Figures 2C and S2B), whilst of “Agonist – Gi” bound A1AR were 

between TM1 – TM7, TM2 – ECL2, ECL1 – ECL2, TM3 – ECL2, TM3 – TM7 and TM5 

– TM6 (Figures 2D and S2C, and Table S2). We selected 5 pairs of characteristic residues 

from different receptor domains as RCs for 2D free energy profiling, including G2.67 – 

K168ECL2, Y3.21 – I167ECL2, R3.53 – E6.30, R3.50 – Y7.53 and E5.60 – Y7.53 (Figures 

3 and S3). Their distances in available experimental structures (PDB: 5N2S, 5UEN and 

6D9H)85, 86, 94 are summarized in Table S4 for reference. The time courses of characteristic 

residue contacts in the A1AR activation are plotted in Figure S4.

Free energy calculations showed that the low-energy “ECL2 – S0” conformational state 

in the A1AR bound by “Antagonist” was located at ~3–7Å distance between G2.67 – 

K168ECL2 and ~5–6Å distance between Y3.21 – I167ECL2 (Figure 3A). In the A1AR bound 

by “Agonist”, the distance between residues G2.67 – K168ECL2 sampled a broader energy 

well (Table 1). In the A1AR bound by “Agonist – Gi”, the conformational space of receptor 

ECL2 expanded significantly (Figure 3B and Table 1). One low-energy conformational state 

was identified at ~3–4Å distance between G2.67 – K168ECL2 and ~5–6Å distance between 

Y3.21 – I167ECL2, being similar to the experimental structures. A new low-energy state, 

namely “ECL2 – I1”, was uncovered at ~15–16Å distance between G2.67 – K168ECL2 and 

~5–6Å distance between Y3.21 – I167ECL2 (Figure 3C).

In addition, the “Inactive” low-energy conformational state in the A1AR bound by 

“Antagonist” was restricted at ~4–8Å distance between residues R3.53 – E6.30 and ~10–

15Å distance between residues R3.50 – Y7.53 (Figure 3D). In the A1AR bound by “Agonist 

– Gi”, the “Active” low-energy state was identified at ~20–30Å distance between R3.53 

– E6.30 and ~4–12Å distance between R3.50 – Y7.53 (Figure 3F). Upon removal of the 

Gi protein, the “Agonist” bound A1AR underwent deactivation with large conformational 

changes in the TM6 and TM7 intracellular domains. A new intermediate low-energy 

conformational state “I” was revealed at ~12Å distance between R3.53 – E6.30 and ~3–4Å 

distance between R3.50 – Y7.53 (Figure 3E).

Finally, a distance of ~22–24 Å between residues E5.60 – Y7.53 and ~15–17 Å between 

residues R3.50 – Y7.53 constituted the “Inactive” low-energy conformational state in the 

A1AR bound by “Antagonist” (Figure 3G). In the A1AR bound by “Agonist – Gi”, the 

“Active” low-energy conformational state was identified at ~17–19Å distance between 

E5.60 – Y7.53 and ~9–12Å distance between R3.50 – Y7.53 (Figure 3I). The A1AR bound 

by “Agonist” after removal of the Gi2 protein, again, transitioned towards the “Inactive” 

state (Figure 3H and Table 1). The “Active” low-energy conformational state was identified 

at ~19–21Å distance between E5.60 – Y7.53 and ~11–14Å distance between R3.50 – Y7.53.

Low-energy conformational states identified for GPCR activation

Two new low-energy conformational states, namely “ECL2 – S1” (Figure 3C) and “I” 

(Figure 3E), were uncovered for the A1AR bound by “Agonist – Gi” and “Agonist”, 

respectively. The low-energy conformational state “ECL2 – S1” was compared to the 

cryo-EM structure of active agonist – Gi – bound A1AR (PDB: 6D9H) (Figure 4A). In 

this state, the distance between residues Y3.21 – I167ECL2 was ~4 Å and comparable to the 

“Active” conformational state in the 6D9H cryo-EM structure, whilst the distance between 
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residues G2.67 – K168ECL2 increased from ~5.0 Å in the “Active” state to ~16.0 Å due 

to significant outward movement of the TM2 extracellular domain. In the intermediate 

low-energy conformational state “I” (Figure 4B), the distance between residues R3.53 – 

E6.30 decreased from ~21.5 Å in the “Active” state to ~12 Å due to inward movement of 

the TM6 intracellular domain, whereas the distance between residues R3.50 – Y7.53 only 

decreased slightly from ~6.3 Å in the “Active” state to ~4.0 Å in the intermediate state “I” 

(Figures 4B and 3E).

Characterization of the GPCR allosteric modulation with GLOW

Classification of the A1AR bound by “Agonist – Gi” and “Agonist – Gi – PAM” by 

GLOW is shown in Figure 5A. The overall accuracy and loss reached 0.9927 and 0.0178, 

respectively (Figure S1). All 30,000 frames and 29,988 frames of the A1AR bound by 

“Agonist – Gi” and “Agonist – Gi – PAM” were correctly classified, respectively. Only 12 

frames (~0.04%) of the A1AR bound by “Agonist – Gi – PAM” were wrongly predicted to 

be A1AR bound by “Agonist – Gi” (Figure 5A).

The pixel-attributed residue contact gradient maps of A1AR bound by “Agonist – Gi” and 

“Agonist – Gi – PAM” are shown in Figures 5B – 5C, respectively, and S5. In the A1AR 

bound by “Agonist – Gi”, characteristic residue contacts were identified between TM2 – 

TM3, ECL1 – ECL2, TM3 – TM4, ECL2 – ECL2, ECL2 – TM5 and TM5 – TM6 (Figures 

5B and S5A), while in the A1AR bound by “Agonist – Gi – PAM”, the characteristic residue 

contacts were located between TM2 – ECL2, ECL1 – ECL2 and TM3 – ECL2 (Figures 5C 

and S5B, and Table S3). We selected 5 characteristic residue contacts from different receptor 

domains as RCs to calculate free energy profiles from GaMD simulations, including G2.67 

– K168ECL2, Y3.21 – I167ECL2, P23.50ECL1 – K168ECL2, N148ECL2 – V152ECL2 and 

W146ECL2 – E5.36 (Figures 6 and S6). Their distances in the experimental PDB structures 

(PDB: 5N2S, 5UEN, 6D9H and 7LD3)85, 86, 94 are summarized in Table S5 for reference. 

The time courses of characteristic residue contacts in the A1AR allosteric modulation are 

plotted in Figure S7.

PAM binding greatly reduced conformational space of the agonist – Gi bound A1AR in 

2D free energy profiles of the distances between residues G2.67 – K168ECL2 and Y3.21 – 

I167ECL2 (Figures 6A and 6B, and Table 2). Two low-energy conformational states were 

observed in the A1AR bound by “Agonist – Gi”, including “ECL2 – S0” and “ECL2 – 

S1” (Figure 6A), whereas the A1AR bound by “Agonist – Gi – PAM” adopted only one 

low-energy conformational state (“ECL2 – S0”), at ~3–7Å distance between residues G2.67 

– K168ECL2 and ~5–6Å distance between residues Y3.21 – I167ECL2 (Figure 6B).

Further free energy profiling showed that the distance range between P23.50ECL1 – 

K168ECL2 decreased from the A1AR bound by “Agonist – Gi” to the A1AR bound 

by “Agonist – Gi – PAM” (Figures 6C and 6D, and Table 2). However, the distance 

range between residues N148ECL2 – V152ECL2 increased (Table 2). The low-energy 

conformational state “ECL2 – S0” was identified in the A1AR bound by “Agonist – 

Gi” and “Agonist – Gi – PAM”, respectively. Two new low-energy conformational states, 

namely “ECL2 – S2” and “ECL2 – S3”, were uncovered in the A1AR bound by “Agonist 

– Gi” and “Agonist – Gi – PAM”, respectively. The low-energy state “ECL2 – S2” of 
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the A1AR exhibited ~9Å distance between P23.50ECL1 – K168ECL2 and ~5–7Å distance 

between N148ECL2 – V152ECL2 (Figure 6C). The low-energy state “ECL2 – S3” of the 

A1AR induced by PAM binding showed ~3–5Å and ~8–9Å distances between P23.50ECL1 – 

K168ECL2 and N148ECL2 – V152ECL2, respectively (Figure 6D).

Finally, the distance range between W146ECL2 – E5.36 increased upon PAM binding 

(Figures 6E and 6F, and Table 2). Besides the low-energy conformational state “ECL2 – 

S0”, new low-energy states “ECL2 – S4” and “ECL2 – S5” were revealed in the A1AR 

bound by “Agonist – Gi” and “Agonist – Gi – PAM”, respectively. The low-energy state 

“ECL2 – S0” showed ~6–9Å and ~2.5–3.5Å distances between W146ECL2 – E5.36 and 

N148ECL2 – V152ECL2, respectively, in the A1AR bound by “Agonist – Gi” and “Agonist 

– Gi – PAM”. In the A1AR bound by “Agonist – Gi”, the low-energy state “ECL2 – 

S4” showed ~13–14Å and ~2.5–3Å distances between residues W146ECL2 – E5.36 and 

N148ECL2 – V152ECL2, respectively (Figure 6E). The “ECL2 – S3” state of the A1AR 

bound by “Agonist – Gi – PAM” (Figure 6D) showed ~8–9Å distance between W146ECL2 – 

E5.36 and ~8–9Å distance between N148ECL2 – V152ECL2 (Figure 6F). While the distance 

between residues N148ECL2 – V152ECL2 remained similar, the distance between residues 

W146ECL2 – E5.36 increased to ~17–20 Å in the “ECL2 – S5” state of the A1AR induced by 

PAM binding (Figure 6F).

Low-energy conformational states relevant to GPCR allosteric modulation

Apart from the “ECL2 – S1” conformational state shown in Figure 4A, four additional 

low-energy states of the ECL2 were found relevant to allosteric modulation of the A1AR, 

including “ECL2 – S2” (Figure 6C), “ECL2 – S3” (Figure 6D), “ECL2 – S4” (Figure 6E) 

and “ECL2 – S5” (Figure 6F). In the absence of PAM, the receptor was able to sample 

the “ECL2 – S1”, “ECL2 – S2” and “ECL2 – S4” conformational states (Figures 6A, 6C 

and 6E). Binding of the MIPS521 PAM, however, biased the receptor to sample distinct 

conformational states, including the “ECL2 – S3” and “ECL2 – S5” (Figures 6D and 

6F). These conformations were compared to the 6D9H cryo-EM structure of agonist – Gi 

bound A1AR and 7LD3 cryo-EM structure of agonist – Gi – PAM bound A1AR (“ECL2 

– S0”) in Figure 7. In the “ECL2 – S2” state of the A1AR bound by “Agonist – Gi”, the 

receptor ECL1 and ECL2 exhibited significant conformational changes relative to the 6D9H 

structure. The distance between residues P23.50ECL1 – K168ECL2, N148ECL2 – V152ECL2 

and W146ECL2 – E5.36 shifted to ~9 Å, ~6 Å and ~7 Å, respectively (Figure 7A). In the 

“ECL2 – S3” state induced by PAM binding, the distance between residues P23.50ECL1 – 

K168ECL2 and W146ECL2 – E5.36 were comparable to those in the “ECL2 – S0” structure, 

whereas the distance between N148ECL2 – V152ECL2 increased to ~9 Å (Figures 7B and 

6D). In the “ECL2 – S4” state of the A1AR without PAM, the distances between P23.50ECL1 

– K168ECL2 and N148ECL2 – V152ECL2 were similar to those in the 6D9H PDB structure, 

but the distance between W146ECL2 – E5.36 increased to ~13 Å (Figures 7C and 6E). 

In the “ECL2 – S5” state of the A1AR with PAM bound, the distances between residues 

P23.50ECL1 – K168ECL2 and N148ECL2 – V152ECL2 were the same as in the “ECL2 – S3” 

state, but the distance between residues W146ECL2 – E5.36 increased to ~19 Å (Figures 7D 

and 6F). Therefore, the highly flexible ECL2 appeared to play an important role in allosteric 

modulation of the A1AR.

Do et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In this study, we have presented GLOW – a workflow that integrated GaMD and DL for free 

energy profiling of biomolecules. The residue contact maps of GaMD trajectories have been 

successfully classified by DL to identify RCs for mapping free energy profiles. In addition, 

we have demonstrated the ability of GLOW to characterize both activation and allosteric 

modulation of a GPCR. GLOW has, for the first time, enabled combining ML and MD 

for modeling of GPCR allosteric modulation. GLOW has allowed us to map free energy 

landscapes and identify important low-energy conformational states of the A1AR model 

system.

We performed two additional, independent Deep Learning analyses, where residue contact 

maps were randomly selected for model training and validation of each A1AR system to 

determine the precision of GLOW. GLOW classified most of the simulation frames in 

validation of each system with closely similar accuracies in the two new models (“Model 

2” and “Model 3”) compared with the original “Model 1”. For the characterization of 

the A1AR activation, GLOW accurately classified 100% of the simulation frames of the 

A1AR bound by “Antagonist” in all three models. For the A1AR bound by “Agonist”, the 

corresponding accuracies were 99.99%, 99.91% and 99.87% in the three DL models. The 

accuracies were 99.20%, 99.73% and 96.73% for the A1AR bound by “Agonist-Gi-PAM”. 

For the characterization of the A1AR allosteric modulation, GLOW accuracies were 100%, 

100% and 99.99% for the A1AR bound by “Agonist-Gi”, and 99.96%, 99.90% and 99.69% 

for the A1AR bound by “Agonist-Gi-PAM” (Figure S8). The saliency (attention) maps of 

residue contact gradients obtained from the three independent DL models were also mostly 

similar for each A1AR system (Figure S8), despite certain variations in attention maps 

of the “Agonist” and “Agonist-Gi” bound A1AR due to residue conformational changes 

during GaMD simulations of these systems (Figures S4 and S7). Therefore, independent DL 

analyses with random assignment of residue contact maps to training and validation datasets 

does not result in significantly different model accuracies and attention maps.

Removal of the Gi2 protein from the A1AR bound by “Agonist – Gi protein” led to 

the deactivation of the A1AR. The intracellular halves of TM3, TM5, TM6 and TM7 

underwent significant conformational changes. TM6 drew closer to TM3, while TM7 

moved away from TM3 and TM5 (Figures 3E – 3F and 3H – 3I). The receptor TM5 

and TM6 intracellular domains and helix 8 also became more flexible in the absence 

of Gi2 protein (Figure S9). Furthermore, an intermediate state “I” was sampled during 

deactivation, being consistent with previous studies of activation and deactivation of class 

A GPCRs43, 59, 95–98. Deactivation of the class A GPCR upon removal of the G protein 

was found to involve conformational changes of TM6, the R3.50 – E6.30 ionic lock and 

the NPxxY motif in the TM7 intracellular domain96. This was consistent with previous 

MD simulation findings43, 59, 95–98. The intermediate state “I” of “Agonist” bound A1AR 

revealed by GLOW was only different from the 6D9H cryo-EM structure in the position of 

TM6 intracellular end, which shifted inwards by ~12 Å (Figures 4B and 3E). Replacement 

of the “Agonist” with “Antagonist” in A1AR led to the complete closure of the intracellular 

pocket, in which TM3 formed intracellular residue contacts with TM6 with the R3.53 – 
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E6.30 distance reduced to ~5 Å, and the NPxxY motif in TM7 moved away from TM3 and 

TM5 (Figures 3D and 3G).

The ligand-binding extracellular domains and intracellular G-protein binding domains were 

found to be loosely coupled in GPCR activation59. The ECL2 was revealed to be flexible 

in the active “Agonist – Gi” bound A1AR and played an important role in activation of 

the A1AR73, 74, 77, 99 (Figure 3C). A1AR even sampled a more “open” conformational state 

(“ECL2 – S1”) of the extracellular mouth in the “Agonist-Gi” bound system during GaMD 

simulations, due to mostly increased flexibility of the ECL1 and ECL2 (Figure S9). The 

“ECL2 – S1” conformation was similar to the cryo-EM structure of “ECL2 – S0” state, with 

the difference of ~11Å outward movement of the TM2 extracellular domain (Figures 4A and 

3C). In comparison, removal of the Gi2 protein from the Agonist-Gi-A1AR complex reduced 

conformational space of the receptor ECL2 (Figure 3B). Finally, replacement of “Agonist” 

by “Antagonist” stabilized ECL2 in a narrow energy well corresponding to the X-ray and 

cryo-EM structures of the A1AR (Figure 3A).

The focus of this study was to determine conformational changes of the A1AR during 

activation and allosteric modulation. Therefore, we included only residues from the receptor 

in the contact maps for analysis, not the ligands such as the PAM. The PAM interacting 

residues apparently formed similar contacts with the surrounding receptor residues in the 

absence and presence of the PAM, and thus were not picked in the ML model. Notably, 

binding of the PAM did not change the structure of agonist-Gi-bound A1AR as shown 

in the previous study42. Structural dynamics of the GPCR-G protein interface has been 

analyzed in our previous study42. With the DL analyses, characteristic residue contacts 

such as T2.39-D3.49 (“Model 1”), A12.49ICL1-Y3.51, R12.51ICL1-R3.53, D2.37-R3.50, 

A2.38-D3.49, T2.39-T4.38 (“Model 2”) and T2.39-R3.53 (“Model 3”) were also identified 

in the intracellular domains at the G protein-coupling interface of the A1AR during allosteric 

modulation (Figures 5 and S8). In addition, GLOW showed that ECL2 played a critical 

role in the allosteric modulation of A1AR, being consistent with previous mutagenesis, 

structure and molecular modeling studies42, 73–76. Structural analysis alone could not tell 

the differences in this region between the A1AR bound by “Agonist – Gi” and “Agonist 

– Gi – PAM” (Table S5 and Figure 6). GLOW revealed that the binding of a PAM to 

the agonist-Gi-A1AR complex biased the receptor conformational ensemble, especially in 

the ECL2 and ECL1 regions (Figures 6 and 7). Indeed, mutations in ECL2 were found 

to influence binding affinity and efficacy of both the orthosteric and allosteric ligands, as 

well as their binding and functional cooperativities42, 73–77. PAM binding stabilized agonist 

binding within the orthosteric pocket of A1AR, thus leading to the observed confined states 

of the extracellular mouth. Furthermore, PAM binding was able to disrupt the N148ECL2 

– V152ECL2 α-helical hydrogen bond and distort this portion of the ECL2 helix. The 

tri-alanine mutation of NLL(147–149)ECL2 by Peeters et al.74 increased the EC50 of an 

agonist by more than 100 folds, suggesting the critical role of this particular region in the 

activation and allosteric modulation of A1AR. Nguyen et al.75 also found that mutation of 

N148ECL2 significantly changed the binding affinity and efficacy of an allosteric ligand to 

A1AR. The distortion of ECL2 helix resulted in formation of the “ECL2 – S3” and “ECL2 

– S5” conformational states (Figures 6D and 6F). These two states were similar to each 

other, with the only difference in the relative position of ECL2 to the TM5 extracellular 
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domain. Whilst the receptor sampled a complete closure of the extracellular mouth in the 

“ECL2 – S3” state with ECL2 in proximity with TM5 extracellular domain76 (Figures 7B 

and 6D), a small pocket was formed in the ECL2 – TM5 – ECL3 region because of the 

conformational change of ECL2 in the “ECL2 – S5” state (Figures 7D and 6F). These 

observations were consistent with the finding by Nguyen et al.75 that mutation of W146ECL2 

decreased the cooperativity between the allosteric and orthosteric ligands, illustrating the 

importance of this particular residue in the allosteric modulation of A1AR. A number of 

other “intermediate” low-energy conformational states, including “ECL2 – S1”, “ECL2 

– S2” and “ECL2 – S4, were also identified by GLOW. The “intermediate” low-energy 

conformational states identified from free energy profiles appeared to result from binding of 

Gi2 protein and MIPS521 to the A1AR. As described in the previous study42, binding of the 

MIPS521 PAM to the extrahelical lipid-facing pocket formed by TM1-TM6-TM7 helices of 

the A1AR stabilized the receptor-G protein complex by increasing agonist binding affinity 

and reducing receptor-G protein mobility42. Furthermore, since ECL2 was previously 

suggested to play an important role in agonist binding and allosteric modulation of A1AR, 

the “intermediate” states identified from this study have provided further mechanistic 

insights into the functional mechanism of ECL2. In general, GLOW findings were consistent 

with previous experimental and computational studies, while also provided further insights 

into the mechanisms of activation and allosteric modulation of a model GPCR.

In summary, we have integrated GaMD enhanced sampling and DL in GLOW, a workflow 

that enables calculations of free energy profiles for DL-predicted RCs with high accuracy. 

The GLOW workflow and its user manual can be downloaded at http://miaolab.org/GLOW. 

GLOW provides a systematic approach to mapping free energy landscapes of biomolecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Anh Nguyen and Lauren May for valuable discussions. This work used supercomputing resources 
with allocation award TG-MCB180049 through the Extreme Science and Engineering Discovery Environment 
(XSEDE), which is supported by National Science Foundation grant number ACI-1548562, and project M2874 
through the National Energy Research Scientific Computing Center (NERSC), which is a U.S. Department of 
Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231, and the Research 
Computing Cluster at the University of Kansas. This work was supported in part by the National Institutes of Health 
(R01GM132572) and the startup funding in the College of Liberal Arts and Sciences at the University of Kansas.

References

1. Karplus M; McCammon JA, Molecular dynamics simulations of biomolecules. Nature Structural 
Biology 2002, 9 (9), 646–652. [PubMed: 12198485] 

2. Hollingsworth S; Dror R, Molecular dynamics simulation for all. Neuron 2018, 99, 1129–43. 
[PubMed: 30236283] 

3. Wang J; Arantes P; Bhattarai A; Hsu R; Pawnikar S; Huang Y.-m.; Palermo G; Miao Y, Gaussian 
accelerated molecular dynamics: principles and applications. WIREs Computational Molecular 
Science 2021, e1521. [PubMed: 34899998] 

4. Henzler-Wildman K; Kern D, Dynamic personalities of proteins. Nature 2007, 450, 964–72. 
[PubMed: 18075575] 

Do et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://miaolab.org/GLOW


5. Harvey MJ; Giupponi G; Fabritiis GD, ACEMD: accelerating biomolecular dynamics in the 
microsecond time scale. Journal of Chemical Theory and Computation 2009, 5, 1632–9. [PubMed: 
26609855] 

6. Johnston JM; Filizola M, Showcasing modern molecular dynamics simulations of membrane 
proteins through G protein-coupled receptors. Current Opinions in Structural Biology 2011, 21, 
552–8.

7. Shaw DE; Maragakis P; Lindorff-Larsen K; Piana S; Dror RO; Eastwood MP; Bank JA; Jumper 
JM; Salmon JK; Shan Y; Wriggers W, Atomic-level characterization of the structural dynamics of 
proteins. Science 2010, 330, 341–6. [PubMed: 20947758] 

8. Lane TJ; Shukla D; Beauchamp KA; Pande VS, To milliseconds and beyond: challenges in the 
simulation of protein folding. Current Opinions in Structural Biology 2013, 23, 58–65.

9. Vilardaga J-P; Bünemann M; Krasel C; Castro M; Lohse MJ, Measurement of the milisecond 
activation switch of G protein-coupled receptors in living cells. Nature Biotechnology 2008, 21, 
807–12.

10. Miao Y; Ortoleva PJ, Viral structural transitions: an all-atom multiscale theory. Journal of 
Chemical Physics 2006, 125, 214901. [PubMed: 17166043] 

11. Spiwok V; Sucur Z; Hosek P, Enhanced sampling techniques in biomolecular simulations. 
Biotechnology Advances 2015, 33, 1130–40. [PubMed: 25482668] 

12. Gao YQ; Yang LJ; Fan YB; Shao Q, Thermodynamics and kinetics simulations of multi-timescale 
processes for complex systems. International Reviews in Physical Chemistry 2008, 27, 201–227.

13. Liwo A; Czaplewski C; Oldziej S; Scheraga HA, Computational techniques for efficient 
conformational sampling of proteins. Current Opinion in Structural Biology 2008, 18, 134–139. 
[PubMed: 18215513] 

14. Christen M; van Gunstere W, On searching in, sampling of, and dynamically moving through 
conformational space of biomolecular systems: a review. Journal of Computational Chemistry 
2008, 29, 157–66. [PubMed: 17570138] 

15. Miao Y; McCammon JA, Unconstrained enhanced sampling for free energy calculations of 
biomolecules: a review. Molecular Simulation 2016, 42, 1046–55. [PubMed: 27453631] 

16. Torrie G; Valleau J, Nonphysical sampling distributions in Monte Carlo free-energy estimation: 
umbrella sampling. Journal of Computational Physics 1977, 23, 187–199.

17. Kumar S; Rosenberg J; Bouzida D; Swendsen R; Kollman P, THE weighted histogram analysis 
method for free-energy calculations on biomolecules. I. THE method. Journal of Computational 
Chemistry 1992, 13, 1011–21.

18. Laio A; Gervasio F, Metadynamics: a method to simulate rare events and reconstruct the free 
energy in biophysics, chemistry and material science. Reports on Progress in Physics 2008, 71, 
126601.

19. Besker N; Gervasio F, Using metadynamics and path collective variables to study ligand binding 
and induced conformational transitions. In Computational drug discovery and design, Berlin: 
Springer: 2012; pp 501–13.

20. Darve E; Rodriguez-Gomez D; Pohorille A, Adaptive biasing force method for scalar and vector 
free energy calculations. Journal of Chemical Physics 2008, 128, 144120. [PubMed: 18412436] 

21. Darve E; Wilson M; Pohorille A, Calculating free energies using a scaled-force molecular 
dynamics algorithm. Molecular Simulation 2002, 28, 113–44.

22. Isralewitz B; Baudry J; Gullingsrud J; Kosztin D; Schulten K, Steered molecular dynamics 
investigations of protein function. Journal of Molecular Graphics and Modelling 2001, 19, 13–25. 
[PubMed: 11381523] 

23. Sugita Y; Okamoto Y, Replica-exchange molecular dynamics method for protein folding. Chemical 
Physics Letters 1999, 314, 141–51.

24. Okamoto Y, Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and 
molecular dynamics simulations. Journal of Molecular Graphics and Modelling 2004, 22, 425–39. 
[PubMed: 15099838] 

25. Hansmann U, Parallel tempering algorithm for conformational studies of biological molecules. 
Chemical Physics Letters 1997, 281, 140–50.

Do et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Wu X; Brooks B, Self-guided Langevin dynamics simulation method. Chemical Physics Letters 
2003, 381, 512–8.

27. Wu X; Brooks B; Vanden-Eijnden E, Self-guided Langevin dynamics via generalized Langevin 
equation. Journal of Computational Chemistry 2016, 37, 595–601. [PubMed: 26183423] 

28. Wu X; Wang S, Self-guided molecular dynamics simulation for efficient conformational search. 
Journal of Physcial Chemistry B 1998, 102, 7238–50.

29. Hamelberg D; Mongan J; McCammon JA, Accelerated molecular dynamics: a promising and 
efficient simulation method for biomolecules. Journal of Chemical Physics 2004, 120, 11919–
11929. [PubMed: 15268227] 

30. Voter AF, Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events. Physical 
Review Letters 1997, 78, 3908.

31. Hamelberg D; de Oliveira CAF; McCammon JA, Sampling of slow diffusive conformational 
transitions with accelerated molecular dynamics. J Chem Phys 2007, 127 (15), 155102. [PubMed: 
17949218] 

32. Shen TY; Hamelberg D, A statistical analysis of the precision of reweighting-based simulations. J 
Chem Phys 2008, 129 (3), 034103. [PubMed: 18647012] 

33. Miao Y; Sinko W; Pierce L; Bucher D; Walker RC; McCammon JA, Improved reweighting 
of accelerated molecular dynamics simulations for free energy calculation. Journal of Chemical 
Theory and Computation 2014, 10, 2677–2689. [PubMed: 25061441] 

34. Miao Y; Feher VA; McCammon JA, Gaussian accelerated molecular dynamics: unconstrained 
enhanced sampling and free energy calculation. Journal of Chemical Theory and Computation 
2015, 11, 3584–3595. [PubMed: 26300708] 

35. Shen T; Hamelberg D, A statistical analysis of the precision reweighting-based simulations. 
Journal of Chemical Physics 2008, 129, 034103. [PubMed: 18647012] 

36. Pang Y; Miao Y; McCammon JA, Gaussian accelerated molecular dynamics in NAMD. Journal of 
Chemical Theory and Computation 2017, 13, 9–19. [PubMed: 28034310] 

37. Bhattarai A; Pawnikar S; Miao Y, Mechanism of ligand recognition by human ACE2 receptor. 
Journal of Physcial Chemistry Letters 2021, 12, 4814–4822.

38. Tang Z; Akhter S; Ramprasad A; Wang X; Reibarkh M; Wang J; Aryal S; Thota S; Zhao J; 
Douglas J; Gao P; Holmstrom E; Miao Y; Wang J, Recognition of single-stranded nucleic acids by 
small-molecule splicing modulators. Nucleic Acids Research 2021, 49 (14), 7870–7883. [PubMed: 
34283224] 

39. Do H; Akhter S; Miao Y, Pathways and Mechanism of Caffeine Binding to Human Adenosine 
A2A Receptor. Frontiers in Molecular Biosciences 2021, 8, 242.

40. Pawnikar S; Miao Y, Pathway and Mechanism of Drug Binding to Chemokine Receptors Revealed 
by Accelerated Molecular Simulations. Future Medicinal Chemsitry 2020, 12 (13), 1213–1225.

41. Bhattarai A; Devkota S; Bhattarai S; Wolfe MS; Miao Y, Mechanisms of gamma-secretase 
activation and substrate processing. ACS Central Science 2020, 6 (6), 969–983. [PubMed: 
32607444] 

42. Draper-Joyce C; Bhola R; Wang J; Bhattarai A; Nguyen A; Cowie-Kent I; O’Sullivan K; 
Venugopal H; Valant C; Thal D; Wootten D; Panel N; Carlsson J; Christie M; Scammells P; 
May L; Sexton P; Danev R; Miao Y; Glukhova A; Wendy L; Christopoulos A, Positive allosteric 
mechanisms of adenosine A1 receptor-mediated analgesia. Nature 2021, In Press.

43. Miao Y; McCammon JA, Graded activation and free energy landscapes of a muscarinic G-protein–
coupled receptor. Proc Natl Acad Sci 2016, 113 (43), 12162–12167. [PubMed: 27791003] 

44. Bhattarai A; Wang J; Miao Y, G-protein-coupled receptor-membrane interactions depend on 
the receptor activation state. Journal of Computational Chemistry 2020, 41, 460–471. [PubMed: 
31602675] 

45. Miao Y; McCammon JA, Mechanism of the G-protein mimetic nanobody binding to a muscarinic 
G-protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States 
of America 2018, 115, 3036–3041. [PubMed: 29507218] 

46. Wang J; Miao Y, Mechanistic insights into specific G protein interactions with adenosine receptors. 
Journal of Physcial Chemistry B 2019, 123, 6462–6473.

Do et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Ricci CG; Chen JS; Miao Y; Jinek M; Doudna JA; McCammon JA; Palermo G, Deciphering Off-
Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics. ACE Central Science 
2019, 5 (4), 651–662.

48. East KW; Newton JC; Morzan UN; Narkhede YB; Acharya A; Skeens E; Jogl G; Batista VS; 
Palermo G; Lisi GP, Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and 
Molecular Dynamics. Journal of American Chemical Society 2020, 142 (3), 1348–1358.

49. Huang Y.-m.; McCammon JA; Miao Y, Replica exchange Gaussian accelerated molecular 
dynamics: improved enhanced sampling and free energy calculation. Journal of Chemical Theory 
and Computation 2018, 14, 1853–64. [PubMed: 29489349] 

50. Oshima H; Re S; Sugita Y, Replica-exchange umbrella sampling combined with Gaussian 
accelerated molecular dynamics for free-energy calculation of biomolecues Journal of Chemical 
Theory and Computation 2019, 15, 5199–208. [PubMed: 31539245] 

51. Miao Y; Bhattarai A; Wang J, Ligand Gaussian accelerated molecular dynamics (LiGaMD): 
characterization of ligand binding thermodynamics and kinetics. Journal of Chemical Theory and 
Computation 2020, 16, 5526–47. [PubMed: 32692556] 

52. Wang J; Miao Y, Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): enhanced 
sampling and free energy and kinetics calculations of peptide binding. Journal of Chemical 
Physics 2020, 153, 154109. [PubMed: 33092378] 

53. Noe F; Tkatchenko A; Muller KR; Clementi C, Machine Learning for Molecular Simulation. Annu 
Rev Phys Chem 2020, 71, 361–390. [PubMed: 32092281] 

54. Wang Y; Lamim Ribeiro JM; Tiwary P, Machine learning approaches for analyzing and enhancing 
molecular dynamics simulations. Curr Opin Struct Biol 2020, 61, 139–145. [PubMed: 31972477] 

55. Hauser AS; Chavali S; Masuho I; Jahn LJ; Martemyanov KA; Gloriam DE; Babu MM, 
Pharmacogenomics of GPCR Drug Targets. Cell 2018, 172 (1–2), 41–54. [PubMed: 29249361] 

56. Ye L; Van Eps N; Zimmer M; Ernst OP; Prosser RS, Activation of the A2A adenosine G-protein-
coupled receptor by conformational selection. Nature 2016, 533, 265–268. [PubMed: 27144352] 

57. Kruse AC; Ring AM; Manglik A; Hu J; Hu K; Eitel K; Hubner H; Pardon E; Valant C; Sexton 
PM; Christopoulos A; Felder CC; Gmeiner P; Steyaert J; Weis WI; Garcia KC; Wess J; Kobilka 
BK, Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 2013, 504 
(7478), 101–106. [PubMed: 24256733] 

58. Nygaard R; Zou Y; Dror RO; Mildorf TJ; Arlow DH; Manglik A; Pan AC; Liu CW; Fung JJ; 
Bokoch MP; Thian FS; Kobilka TS; Shaw DE; Mueller L; Prosser RS; Kobilka BK, The dynamic 
process of β2-adrenergic receptor activation. Cell 2013, 152, 532–542. [PubMed: 23374348] 

59. Dror RO; Arlow DH; Maragakis P; Mildorf TJ; Pan AC; Xu H; Borhani DW; Shaw DE, Activation 
mechanism of the β2-adrenergic receptor. Proceedings of the National Academy of Sciences of the 
United States of America 2011, 108 (46), 18684–18689. [PubMed: 22031696] 

60. Miao Y; Nichols SE; Gasper PM; Metzger VT; McCammon JA, Activation and dynamic network 
of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United 
States of America 2013, 110, 10982–10987. [PubMed: 23781107] 

61. Hilger D; Kumar KK; Hu H; Pedersen MF; O’Brien ES; Giehm L; Jennings C; Eskici G; Inoue A; 
Lerch M; Mathiesen JM; Skiniotis G; Kobilka BK, Structural insights into differences in G protein 
activation by family A and family B GPCRs. Science 2020, 369 (6503), eaba3373. [PubMed: 
32732395] 

62. Zhou Q; Yang D; Wu M; Guo Y; Guo W; Zhong L; Cai X; Dai A; Jang W; Shakhnovich EI; Liu 
Z-J; Stevens RC; Lambert NA; Babu MM; Wang M-W; Zhao S, Common activation mechanism of 
class A GPCRs. eLife 2019, 8, e50279. [PubMed: 31855179] 

63. Do H; Haldane A; Levy R; Miao Y, Unique Features of different classes of G-protein-coupled 
receptors revealed from sequence coevolutionary and structural analysis. Proteins 2021, 1–14.

64. Hauser AS; Kooistra AJ; Munk C; Heydenreich FM; Veprintsev DB; Bouvier M; Babu 
MM; Gloriam DE, GPCR activation mechanisms across classes and macro/microscales. Nature 
Structural and Molecular Biology 2021, 28, 879–888.

65. Ballesteros JA; Weinstein H, Integrated methods for the construction of three-dimensional models 
and computational probing of structure-function relations in G protein-coupled receptors. In 

Do et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods in Neurosciences, Stuart CS, Ed. Academic Press: New York, 1995; Vol. Volume 25, 
pp 366–428.

66. Christopoulos A, Allosteric binding sites on cell-surface receptors: Novel targets for drug 
discovery. Nat Rev Drug Discov 2002, 1 (3), 198–210. [PubMed: 12120504] 

67. Jeffrey Conn P; Christopoulos A; Lindsley CW, Allosteric modulators of GPCRs: a novel 
approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009, 8 (1), 41–54. [PubMed: 
19116626] 

68. Thal D; Glukhova A; Sexton P; Christopoulos A, Structural insights into G-protein-coupled 
receptor allostery. Nature 2018, 559, 45–53. [PubMed: 29973731] 

69. Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK, Structures of the M1 and M2 muscarinic 
acetylcholine receptor/G-protein complexes. Science 2019, 364 (6440), 552–557. [PubMed: 
31073061] 

70. Maeda S; Xu J; FM NK; Clark MJ; Zhao J; Tsutsumi N; Aoki J; Sunahara RK; Inoue A; 
Garcia KC; Kobilka BK, Structure and selectivity engineering of the M1 muscarinic receptor toxin 
complex. Science 2020, 369 (6500), 161–167. [PubMed: 32646996] 

71. Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Di Salvo J, Thomas-
Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, 
Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, 
Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, 
Soisson SM, Structural basis for the cooperative allosteric activation of the free fatty acid receptor 
GPR40. Nature Structural and Molecular Biology 2017, 24 (7), 570–577.

72. Liu H; Kim HR; Deepak R; Wang L; Chung KY; Fan H; Wei Z; Zhang C, Orthosteric and 
allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol 2018, 25 (6), 472–481. 
[PubMed: 29867214] 

73. Avlani V; Gregory K; Morton C; Parker M; Sexton P; Christopoulos A, Critical role for the second 
extracellular loop in the binding of both orthosteric and allosteric g protein-coupled receptor 
ligands. Journal of Biological Chemistry 2007, 282 (35), 25677–25686. [PubMed: 17591774] 

74. Peeters M; Wisse L; Dinaj A; Vroling B; Vriend G; IJzerman A, The role of the second and 
third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation. 
Biochemical Pharmacology 2012, 84 (1), 76–87. [PubMed: 22449615] 

75. Nguyen A; Vecchio E; Thomas T; Nguyen T; Aurelio L; Scammells P; White P; Sexton P; Gregory 
K; May L; Christopoulos A, Role of the Second Extracellular Loop of the Adenosine A1 Receptor 
on Allosteric Modulator Binding, Signaling, and Cooperativity. Molecular Pharmacology 2016, 90 
(6), 715–725. [PubMed: 27683013] 

76. Miao Y; Bhattarai A; Nguyen A; Christopoulos A; May L, Structural Basis for Binding of 
Allosteric Drug Leads in the Adenosine A1 Receptor. Scientific Reports 2018, 8 (1), 16836. 
[PubMed: 30442899] 

77. Nguyen AT; Baltos JA; Thomas T; Nguyen TD; Munoz LL; Gregory KJ; White PJ; Sexton 
PM; Christopoulos A; May LT, Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key 
Role in Orthosteric Ligand Affinity and Agonist Efficacy. Mol Pharmacol 2016, 90 (6), 703–714. 
[PubMed: 27683014] 

78. Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H, A Machine Learning Approach for the 
Discovery of Ligand-Specific Functional Mechanisms of GPCRs. Molecules 2019, 24 (11).

79. Plante A; Weinstein H, Ligand-Dependent Conformational Transitions in Molecular Dynamics 
Trajectories of GPCRs Revealed by a New Machine Learning Rare Event Detection Protocol. 
Molecules 2021, 26 (10).

80. Ferraro M; Decherchi S; De Simone A; Recanatini M; Cavalli A; Bottegoni G, Multi-target 
dopamine D3 receptor modulators: Actionable knowledge for drug design from molecular 
dynamics and machine learning. Eur J Med Chem 2020, 188, 111975. [PubMed: 31940507] 

81. Fleetwood O; Kasimova M; Westerlund A; Delemotte L, Molecular Insights from Conformational 
Ensembles via Machine Learning. Biophysical Journal 2019, 118, 765–780. [PubMed: 31952811] 

82. Lamim Ribeiro JM; Provasi D; Filizola M, A combination of machine learning and infrequent 
metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants 

Do et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of drug dissociation from G protein-coupled receptors. J Chem Phys 2020, 153 (12), 124105. 
[PubMed: 33003748] 

83. Bian Y; Jing Y; Wang L; Ma S; Jun JJ; Xie XQ, Prediction of Orthosteric and Allosteric 
Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers. Mol 
Pharm 2019, 16 (6), 2605–2615. [PubMed: 31013097] 

84. Kotikalapudi R Keras-Vis, GitHub: 2017.

85. Cheng R; Segala E; Robertson N; Deflorian F; Dore A; Errey J; Fiez-Vandal C; Marshall F; Cooke 
R, Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants 
of Selectivity Structure 2017, 25 (e4), 1275–1285. [PubMed: 28712806] 

86. Draper-Joyce CJ; Khoshouei M; Thal DM; Liang YL; Nguyen ATN; Furness SGB; Venugopal 
H; Baltos JA; Plitzko JM; Danev R; Baumeister W; May LT; Wootten D; Sexton PM; Glukhova 
A; Christopoulos A, Structure of the adenosine-bound human adenosine A1 receptor-Gi-complex. 
Nature 2018, 558, 559–563. [PubMed: 29925945] 

87. Huang J; Rauscher S; Nawrocki G; Ran T; Feig M; de Groot BL; Grubmuller H; MacKerell AD 
Jr, CHARMM36m: an improved force field for folded and intrinscially disordered proteins. Nature 
Methods 2017, 14, 71–73. [PubMed: 27819658] 

88. Salomon-Ferrer R; Gotz AW; Poole D; Le Grand S; Walker RC, Routined microsecond molecular 
dynamics simulations with AMBER on GPUs. 2. Explicit solvent Particle Mesh Ewald. Journal of 
Chemical Theory and Computation 2013, 9, 3878–3888. [PubMed: 26592383] 

89. Case DA; Aktulga HM; Belfon K; Ben-Shalom IY; Brozell SR; Cerutti DS; Cheatham TE I.; 
Cruzeiro VWD; Darden TA; Duke RE; Giambasu G; Gilson MK; Gohlke H; Goetz AW; Harris R; 
Izadi S; Izmailov SA; Jin C; Kasavajhala K; Kaymak MC; King E; Kovalenko A; Kurtzman T; Lee 
TS; LeGrand S; Li P; Lin C; Liu J; Luchko T; Luo R; Machado M; Man V; Manathunga M; Merz 
KM; Miao Y; Mikhailovskii O; Monard G; Nguyen H; O’Hearn KA; Onufriev A; Pan F; Pantano 
S; Qi R; Rahnamoun A; Roe DR; Roitberg A; Sagui C; Schott-Verdugo S; Shen J; Simmerling CL; 
Skrynnikov NR; Smith J; Swails J; Walker RC; Wang J; Wei H; Wolf RM; Wu X; Xue Y; York 
DM; Zhao S; Kollman PA Amber 2021, University of California, San Francisco: 2021.

90. McGibbon RT; Beauchamp KA; Harrigan MP; Klein C; Swails JM; Hernandez CX; Schwantes 
CR; Wang L-P; Lane TJ; Pande VS, MDTraj: A Modern Open Library for the Analysis of 
Molecular Dynamics Trajectories. Biophysical Journal 2015, 109 (8), 1528–1532. [PubMed: 
26488642] 

91. Gulli A; Pal S, Deep Learning with Keras. Packt Publishing Ltd: 2017.

92. Abadi M; Barham P; Chen J; Chen Z; Davis A; Dean J; Devin M; Ghemawat S; Irving G; Isard 
M; Kudlur M; Levenberg J; Monga R; Moore S; Murray DG; Steiner B; Tucker P; Vasudevan V; 
Warden P; Wicke M; Yu Y; Zheng X In TensorFlow: A System for Large-Scale Machine Learning, 
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation 
(OSDI’ 16), 2016; pp 265–283.

93. Miao Y; McCammon JA, Gaussian Accelerated Molecular Dynamics: Theory, Implementation and 
Applications. Annu Rep Comp Chem 2017, 13, 231–278. [PubMed: 29720925] 

94. Glukhova A; Thal DM; Nguyen ATN; Vecchio EA; Jorg M; Scammells PJ; May LT; Sexton 
PM; Christopoulos A, Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype 
Selectivity. Cell 2017, 168 (e13), 867–877. [PubMed: 28235198] 

95. Niesen M; Bhattacharya S; Vaidehi N, The Role of Conformational Ensembles in Ligand 
Recognition in G-Protein Coupled Receptors. Journal of American Chemical Society 2011, 133 
(33), 13197–13204.

96. Shan J; Khelashvili G; Mondal S; Mehler E; Weinstein H, Ligand-Dependent Conformations and 
Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven 
Oligomerization Properties. PLOS Computational Biology 2012, 8 (4), e1002473. [PubMed: 
22532793] 

97. Li J; Jonsson A; Beuming T; Shelley J; Voth G, Ligand-Dependent Activation and Deactivation 
of the Human Adenosine A2A Receptor. Journal of American Chemical Society 2013, 135 (23), 
8749–8759.

Do et al. Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



98. Provasi D; Artacho M; Negri A; Mobarec J; Filizola M, Ligand-Induced Modulation of the Free 
Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques. 
PLOS Computational Biology 2011, 7 (10), e1002193. [PubMed: 22022248] 

99. Peeters M; Li Q; van Westen G; IJzerman A, Three “hotspots” important for adenosine A(2B) 
receptor activation: a mutational analysis of transmembrane domains 4 and 5 and the second 
extracellular loop. Purinergic Signalling 2012, 8 (1), 23–38. [PubMed: 21818573] 

Do et al. Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Overview of the Gaussian accelerated molecular dynamics (GaMD), Deep Learning 
(DL) and Free Energy PrOfiling Workflow (GLOW).
(A) With structures of our interest, GaMD simulations are applied for enhanced sampling 

of the system dynamics. (B) DL models are then built with GaMD trajectories of residue 

contact maps transformed into image representations. (C) The DL analysis allows us to 

identify important residue contacts and system reaction coordinates (RCs). (D) Free energy 

profiles of the RCs are finally calculated through reweighting of GaMD simulations to 

characterize the system dynamics.
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Figure 2. Demonstration of GLOW on characterization of GPCR activation using adenosine A1 
receptor (A1AR) as a model system.
(A) Classification of different A1AR systems bound by the “Antagonist”, “Agonist” and 

“Agonist – Gi”. (B-D) Saliency (attention) maps of residue contact gradients of the 

A1AR bound by (B) “Antagonist”, (C) “Agonist” and (D) “Agonist – Gi”. The seven 

transmembrane helices are labeled from I to VII. The gradient of each residue contact is 

shown in a 0.15 (blue) to 0.45 (red) color scale.
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Figure 3. 2D free energy profiles of characteristic residue contacts in the A1AR activation.
(A-C) 2D free energy profiles of the distance between residue G2.67 atom O and residue 

K168ECL2 atom NZ and distance between residue Y3.21 atom O and residue I167ECL2 

atom N of the A1AR bound by (A) “Antagonist”, (B) “Agonist” and (C) “Agonist – Gi”. 

(D-F) 2D free energy profiles of the distance between charge centers of residue R3.53 

(atom CZ) and residue E6.30 (atom CD) and distance between residue R3.50 atom CZ and 

residue Y7.53 atom OH of the A1AR bound by (D) “Antagonist”, (E) “Agonist” and (F) 

“Agonist – Gi”. (G-I) 2D free energy profiles of the distance between residue E5.60 atom 

CA and residue Y7.53 atom CA and distance between residue R3.50 atom CA and residue 

Y7.53 atom CA of the A1AR bound by (G) “Antagonist”, (H) “Agonist” and (I) “Agonist 

– Gi”. The low-energy ECL2 conformational state corresponding to the 5N2S, 5UEN, 

6D9H and 7LD3 PDB structures is labeled “ECL2-S0”. The low-energy TM intracellular 

state corresponding to the inactive 5N2S and 5UEN PDB structures is labeled “Inactive” 

and “Active” for the active 6D9H and 7LD3 PDB structure. New low-energy receptor 

conformational states are labeled “ECL2-S1” in (C) and “I” in (E). The 5N2S, 5UEN, 6D9H 

and 7LD3 PDB structures of the A1AR are mapped to the free energy surface as star, 

hexagon, circle and rectangle, respectively.
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Figure 4. Low-energy conformational states of the A1AR during activation uncovered by GLOW.
(A) Low-energy conformational state “ECL2 – S1” (Figure 3C) compared to the active 

6D9H PDB structure. The distance between residues G2.67 and K168ECL2 is ~16Å, and 

~4Å between residues Y3.21 and I167ECL2. (B) Low-energy conformational state “I” 

(Figures 3E) compared to the active 6D9H PDB structure. The distance between residues 

R3.53 and E6.30 is ~12Å, and ~4Å between residues R3.50 and Y7.53. The A1AR bound 

by “Agonist” and “Agonist – Gi” are colored orange and green, respectively, and the 6D9H 

PDB structure is colored gray.
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Figure 5. Demonstration of GLOW on characterization of GPCR allosteric modulation using 
adenosine A1 receptor (A1AR) as a model system.
(A) Classification of different A1AR systems bound by the “Agonist – Gi” and “Agonist – 

Gi – PAM”. (B-C) Saliency (attention) maps of residue contact gradients of the A1AR bound 

by (B) “Agonist – Gi” and (C) “Agonist – Gi – PAM”. The seven transmembrane helices are 

labeled from I to VII. The gradient of each residue contact is shown in a 0.15 (blue) to 0.45 

(red) color scale.
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Figure 6. 2D free energy profiles of characteristic residue contacts in A1AR allosteric 
modulation.
(A-B) 2D free energy profiles of the distance between residue G2.67 atom O and residue 

K168ECL2 atom NZ and distance between residue Y3.21 atom O and residue I167ECL2 atom 

N of the A1AR bound by (A) “Agonist – Gi” and (B) “Agonist – Gi – PAM”. (C-D) 2D free 

energy profiles of the distance between residue P23.50ECL1 atom O and residue K168ECL2 

atom N and distance between residue N148ECL2 atom O and residue V152ECL2 atom N of 

the A1AR bound by (C) “Agonist – Gi” and (D) “Agonist – Gi – PAM”. (E-F) 2D free 

energy profiles of the distance between residue W146ECL2 atom CA and residue E5.36 atom 

CA and distance between residue N148ECL2 atom O and residue V152ECL2 atom N of the 

A1AR bound by (E) “Agonist – Gi” and (F) “Agonist – Gi – PAM”. The low-energy ECL2 

conformational state corresponding to the 5N2S, 5UEN, 6D9H and 7LD3 PDB structures is 

labeled “ECL2-S0”. New low-energy receptor conformational states are labeled “ECL2-S1” 

in (A), “ECL2-S2” in (C), “ECL2-S3” in (D and F), “ECL2-S4” in (E), and “ECL2-S5” in 

(F). The 5N2S, 5UEN, 6D9H and 7LD3 PDB structures of the A1AR are mapped to the free 

energy surface as star, hexagon, circle and rectangle, respectively.
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Figure 7. Low-energy conformational states of the A1AR induced by PAM binding uncovered by 
GLOW.
(A) Low-energy conformational state “ECL2 – S2” (Figure 6C) compared to the active 

6D9H PDB structure. The distance between residues P23.50ECL1 and K168ECL2 is ~9Å, 

~6Å between residues N148ECL2 and V152ECL2, and ~7Å between residues W146ECL2 

and E5.36. (B) Low-energy conformational state “ECL2 – S3” (Figures 6D and 6F) 

compared to the active 7LD3 PDB structure. The distance between residues P23.50ECL1 

and K168ECL2 is ~5Å, ~9Å between residues N148ECL2 and V152ECL2, and ~9Å between 

residues W146ECL2 and E5.36. (C) Low-energy conformational state “ECL2 – S4” (Figure 

6E) compared to the active 6D9H PDB structure. The distance between residues P23.50ECL1 

and K168ECL2 is ~5Å, ~3Å between residues N148ECL2 and V152ECL2, and ~13Å between 

residues W146ECL2 and E5.36. (D) Low-energy conformational state “ECL2 – S5” (Figure 

6F) compared to the active 7LD3 PDB structure. The distance between residues P23.50ECL1 

and K168ECL2 is ~5Å, ~9Å between residues N148ECL2 and V152ECL2, and ~19Å between 

residues W146ECL2 and E5.36. The A1AR bound by “Agonist – Gi” and “Agonist – Gi – 

PAM” are colored green and red, and the 6D9H and 7LD3 PDB structure are colored gray 

and silver, respectively.
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Table 1.

Distances between selected characteristic residue pairs in the A1AR bound by “Antagonist”, “Agonist” and 

“Agonist-Gi” for the A1AR activation.

Residue contacts “Antagonist” (Å) “Agonist” (Å) “Agonist-Gi” (Å)

G2.67 – K168ECL2 2 – 10 2 – 15 2 – 17

Y3.21 – I167ECL2 4 – 7 3 – 7 3 – 11

R3.53 – E6.30 2 – 8 8 – 30 18 – 30

R3.50 – Y7.53 sidechains 9 – 15 2 – 16 3 – 12

R3.50 – Y7.53 backbone 14 – 19 7 – 16 9 – 14

E5.60 – Y7.53 20 – 25 15 – 25 15 – 24
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Table 2.

Distances between selected characteristic residue pairs in the A1AR bound by “Agonist-Gi” and “Agonist-Gi-

PAM” for the A1AR allosteric modulation.

Residue contacts “Agonist-Gi” (Å) “Agonist-Gi-PAM” (Å)

G2.67 – K168ECL2 2 – 17 2 – 10

Y3.21 – I167ECL2 3 – 11 3 – 7

P23.50ECL1 – K168ECL2 2 – 13 3 – 7

N148ECL2 – V152ECL2 2 – 9 2 – 11

W146ECL2 – E5.36 5 – 18 4 – 21
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