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Abstract.—Balance indices that quantify the symmetry of branching events and the compactness of trees are widely used to 
compare evolutionary processes or tree-generating algorithms. Yet, existing indices are not defined for all rooted trees, are 
unreliable for comparing trees with different numbers of leaves, and are sensitive to the presence or absence of rare types. The 
contributions of this article are twofold. First, we define a new class of robust, universal tree balance indices. These indices take a 
form similar to Colless’ index but can account for population sizes, are defined for trees with any degree distribution, and enable 
meaningful comparison of trees with different numbers of leaves. Second, we show that for bifurcating and all other full m-ary 
cladograms (in which every internal node has the same out-degree), one such Colless-like index is equivalent to the normalized 
reciprocal of Sackin’s index. Hence, we both unify and generalize the two most popular existing tree balance indices. Our indices 
are intrinsically normalized and can be computed in linear time. We conclude that these more widely applicable indices have the 
potential to supersede those in current use. [Cancer; clone tree; Colless index; Sackin index; species tree; tree balance.]

Tree balance indices—most notably those credited to 
Sackin (1972) and Colless (1982)—are widely used to 
describe speciation processes, compare cladograms, 
and assert the correctness of tree reconstruction meth-
ods (Shao and Sokal 1990; Mooers and Heard 1997; 
Fischer et al. 2021). Existing tree balance indices have 
several important flaws. First, they cannot be applied 
to any tree in which any node has only one descen-
dant. Second, existing indices are unreliable for com-
paring trees with different numbers of leaves. Third, 
because they do not account for population sizes, 
these indices are sensitive to the omission or inclu-
sion of rare types. The latter issue is, for example, a 
problem in oncology (Chkhaidze et al. 2019; Scott et 
al. 2020), where methods for determining and classi-
fying evolutionary modes have clinical value (Davis 
et al. 2017; Maley et al. 2017).

Here, we develop a new class of robust, universal tree 
balance indices. Our definitions not only extend the tree 
balance concept and open up new applications but also 
unify the two main approaches to quantifying balance 
as proposed by Sackin and Colless. We describe several 
general advantages of our indices compared to those in 
current use.

Materials and Methods

Rooted Trees

We consider exclusively rooted trees in which all 
edges are oriented away from the root (which will be 
topmost in our figures). This orientation defines a natu-
ral order on the tree, from top to bottom: edges descend 

from the root to the other internal nodes and finally to 
the terminal nodes or leaves. The out-degree of a node 
i, written d+(i), is the number of direct descendants, 
ignoring any subtrees in which all nodes have zero size. 
Internal nodes have out-degree at least one, whereas 
leaves have out-degree zero. If all internal nodes have 
out-degree 1, then the tree is called linear. If all internal 
nodes have out-degree m > 1 then the tree is a full m</
mathgraphic> -ary tree, and if m = 2 then it is also called 
bifurcating (such as Fig. 1a,b).

Some other tree topologies have particular names. 
A caterpillar tree (Fig. 1a) is a bifurcating tree in which 
every internal node except one has exactly one leaf. A 
fully symmetric tree (Fig. 1b) is such that every inter-
nal node with the same depth has the same degree or, 
equivalently, for each internal node i all the subtrees 
rooted at i are identical. A star tree (Fig. 1c) is a tree 
whose leaves are all attached to the root, which is the 
only internal node.

Node Sizes, Tree Magnitudes, and Leafy Trees

Although our definitions can be applied in other 
contexts, we will assume that nodes correspond 
to biological taxa or clones, and on this basis, 
we assign non-negative node sizes. If we know (or 
care) only whether each type is extant or extinct—
as is typical in taxonomy—then we assign size 
zero to every node representing an extinct type, 
and size one otherwise. If nodes represent clones 
with known population sizes—as is often the case 
in studies of cancer and microbial evolution—then 
each node size is equal to the population size of 
the corresponding clone. The magnitude of a tree 
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or subtree is then defined as the sum of its node 
sizes (we use magnitude here because a tree’s size 
is conventionally defined as its number of nodes). 
We define a leafy tree as a rooted tree in which 
all internal nodes have size zero.

Cladograms, Taxon Trees, and Clone Trees

Tree types can also be defined in terms of what they 
represent. Following Podani (2013), we distinguish 
between two representations used in systematic biology.

We define a cladogram as a rooted tree in which inter-
nal nodes represent hypothetical extinct ancestors, 
leaves represent extant biological taxa, and edges rep-
resent evolutionary relationships. This is equivalent 
to the synchronous cladogram definition of Podani 
(2013). Every cladogram is by definition a leafy tree, 
with a magnitude equal to its number of leaves. A com-
mon conception is that only bifurcating cladograms 
can be considered fully resolved. However, the linear 
two-node cladogram is appropriate for representing 
serial anagenesis (in which each descendant replaces 
its ancestor), while budding (in which an ancestor 
produces a descendant and remains extant) can give 
rise to cladogram nodes with an out-degree greater 
than two (Podani 2013). Hence, there is no restriction 
on cladogram node degrees. An extant ancestor is rep-
resented in a cladogram by a leaf stemming from the 
internal ancestor node, in which case, as Podani notes, 
“an ancestor is identical to an extant taxon connected 
directly to it.”

Alternatively, extant or known ancestors may be 
represented uniquely by internal nodes (like in a 
genealogy with overlapping generations). Such dia-
grams are known to organismal biologists as species 
trees or taxon trees, and to oncologists as clone trees. 
We define a taxon tree as a rooted tree in which all 
nodes represent biological taxa, and edges represent 
ancestor-descendant relationships. Similarly, a clone 
tree is defined as a rooted tree in which each node 
represents a clone (a set of cells that share alterations 
of interest due to common descent), and edges repre-
sent the chronology of alterations. Both taxon tree and 

clone tree fit the achronous tree definition of Podani 
(2013). Clone tree nodes can have any out-degree, 
including d+ = 1, and each node—including internal 
nodes—can be associated with a non-negative size, as 
illustrated in Figure 1d.

When nodes are associated with sizes, the addition 
of subtrees comprising even vanishingly small nodes 
can change leaves into internal nodes and so substan-
tially change the value of existing tree balance indices. 
This behavior is unsatisfactory because relatively small 
nodes typically represent either newly created types 
that have yet to experience evolutionary forces or types 
on the verge of extinction, and in either case convey neg-
ligible information about the mode of evolution. Data 
sets may also omit rare types due to sampling error or 
because genetic sequencing methods have imperfect 
sensitivity (Turajlic et al. 2018).

The change due to the addition of terminal nodes is 
greater when the tree is a cladogram rather than a taxon 
or clone tree. For example, when a three-node, two-leaf 
tree (Fig. 2a) is augmented by adding a node j to a leaf 

Figure 1. Contrasting trees. a) Caterpillar tree with IS = 35, IS,norm = 1, IC = 21, IC,norm = 1, IΦ = 56, IΦ,norm = 1. b) Fully symmetric 
bifurcating tree with IS = 24, IS,norm ≈ 0.59, IC = IC,norm = 0, IΦ = 16, IΦ,norm ≈ 0.29. c) Star tree with IS = 8, IS,norm = 0, IC and IC,norm undefined, 
IΦ = IΦ,norm = 0. d) Clone tree of the lung tumor CRUK0065 in the TRACERx cohort (Jamal-Hanjani et al. 2017). In the clone tree, nodes 
represented by empty circles correspond to extinct clones, and the diameters of other nodes are proportional to the corresponding clone 
population sizes.

Figure 2. Muller plots (left column), taxon or clone trees (middle 
column), and cladograms (right column) representing evolution by 
splitting only (a) and both splitting and budding (b). In a Muller plot, 
polygons represent proportional subpopulation sizes (vertical axis) 
over time (horizontal axis), and each descendant is shown emerging 
from its parent polygon. In the trees, nodes represented by empty 
circles correspond to extinct types.
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i (Fig. 2b), the three original nodes retain their positions 
in the clone tree (middle column of Fig. 2), but in the 
cladogram (right column) node i becomes two nodes (i1 
and i2), the larger of which is now further from the root 
(see Podani (2013) for further illustrations of this dif-
ference). As the size of the new node j is continuously 
reduced to zero, the clone tree changes continuously, 
whereas the cladogram undergoes an abrupt change 
of topology when the size of node j reaches zero. We 
conclude that the taxon tree or clone tree representa-
tion is more robust than the cladogram representation 
in the general case in which nodes are associated with 
sizes and ancestors can be extant. Also, an index that 
accounts for nonzero internal node sizes can be made 
more robust than one that does not. Accordingly, we 
will define indices for the more general domain of clone 
trees and then obtain results for cladograms as a special 
case.

Existing Tree Balance Indices

The most widely used tree balance indices are in fact 
imbalance indices, such that more balanced trees are 
assigned smaller values. These indices were introduced 
to study cladograms; they take no account of node size, 
and, even after applying standard normalizations, they 
are appropriate only for comparing trees with equal 
numbers of leaves. The most popular are Sackin’s index 
and Colless’ index.

Sackin’s index.—Let T  be a tree with a set of leaves L(T). 
For a leaf l ∈ L(T), let νl be the number of internal nodes 
between l and the root, which is included in the count. 
Then, the index credited to Sackin (1972) is

IS(T) =
∑
l∈L(T)

νl.

For two bifurcating trees with the same number of leaves, 
a less balanced tree has higher values of ν  as the tree is 
in a sense less compact (compare trees a and b in Fig. 1).

Since the value tends to increase with the number of 
nodes, Shao and Sokal (1990) proposed normalizing 
IS with respect to trees on n > 2 leaves by subtracting 
its minimum possible value for such trees and then 
dividing by the difference between the maximum and 
minimum possible values. The minimal IS is reached 
on the star tree, such as tree c in Figure 1, and hence 
minn(IS) = n. The maximum is attained on the caterpil-
lar tree, such as tree a:

maxn(IS) = n− 1+
n−1∑
ν=1

ν = n− 1+ n(n− 1)/2 = (n− 1)(n+ 2)/2.

The normalized index is then

IS,norm(T) =
IS(T)− n

(n+ 2)(n− 1)/2− n
.

This normalized index is not very satisfactory as a bal-
ance index because it fails to capture an intuitive notion 
of balance. For example, it is not obvious why a fully 
symmetric tree (b) should be considered less balanced 
than the star tree (c) in Figure 1, yet its IS,norm value 
is much larger. To address this issue, Shao and Sokal 
(1990) further suggested normalizing IS relative to its 
extremal values among trees with the same number of 
internal nodes as well as the same number of leaves. 
But even then the index remains unreliable for compar-
ing trees with different numbers of leaves. For example, 
the index is 1 for every caterpillar tree, yet long cater-
pillar trees are intuitively less balanced than short ones. 
The conventional IS normalizations are not defined for 
trees containing linear parts. Moreover, since IS does not 
account for node size, it is sensitive to the addition or 
removal of subtrees comprising relatively small nodes.

Colless’ index.—For an internal node i of a bifurcating 
tree T , define ni1 as the number of leaves of the left 
branch of the subtree rooted at i, and ni2 as the number 
of leaves of the right branch. Then, the index defined by 
Colless (1982) is

IC(T) =
∑

i∈ Ṽ(T)

|ni1 − ni2 |,

where Ṽ(T) is the set of all internal nodes of T . The 
index can be normalized for the set of trees on n > 2 
leaves by dividing by its maximal value, 

Ç
n− 1
2

å
, 

which is reached on the caterpillar tree (as in Fig. 1a).

Because Colless’ index cannot be applied to multi-
furcating trees, Mir et al. (2018) recently introduced a 
family of Colless-like balance indices, including IC as a 
special case. Each of these indices CD,f  is determined by 
a weight function f , which assigns a size to each sub-
tree as a function of its out-degree, and a dissimilarity 
function D. By definition of D, Colless-like indices are 
zero if and only if each internal node divides its descen-
dants into subtrees of equal size. But since these indices 
are normalized by dividing by the maximal value for 
trees on the same number of leaves, they are unreliable 
for comparing trees with different numbers of leaves. In 
common with Sackin’s index, the total cophenetic index 
IΦ (Mir et al. 2013) (see Appendix), and other existing 
indices (surveyed by Fischer et al. (2021)), the Colless-
like indices so far defined do not account for node sizes 
and can be applied only to trees in which all nodes have 
out-degree greater than one.

Desirable Properties of a Universal, Robust Tree Balance 
Index

Our aim is to derive a tree balance index J  that is use-
ful for classifying and comparing rooted trees that can 
have any distributions of node degrees and node sizes. 
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Here, we specify four desirable properties that such 
an index should have. The first two axioms relate to 
extrema. We will call an index universal if it is defined 
for trees with any degree distribution and obeys these 
first two axioms. An index that conforms to the other 
three axioms—which are relevant only when nodes 
can have arbitrary sizes—will be called robust.

We will begin by introducing some additional nota-
tion (see also Table 1). For a tree T , we will use V(T) to 
denote the set of all nodes of T , which we will abbrevi-
ate to V  when the identity of the tree is unambiguous. 
Let f (v) ≥ 0 denote the size of node v. Then, Ti denotes 

the subtree rooted at node i (i.e., the subtree that con-
tains node i and all its descendants); Si is the magnitude 
of Ti; and S∗i  is the magnitude of Ti excluding its root:

Si :=
∑

v∈V(Ti)

f (v); S∗i :=
∑

v∈V(Ti)
v�=i

f (v) = Si − f (i).

We will use Ṽ(T) or simply Ṽ  to denote the set of all 
internal nodes such that {i ∈ Ṽ} := {i ∈ Ṽ : S∗i > 0}.

Conventionally, a tree is considered maximally bal-
anced only if every internal node splits its descendants 
into subtrees on the same number of leaves (Shao and 
Sokal 1990). We generalize this concept by requiring 
that every internal node splits its descendants into at 
least two subtrees of equal magnitude, as in Figure 3a. 
We call this the equal splits property, and we make it a 
necessary and sufficient condition for maximal balance.

Axiom 1 (Maximum value). J(T) ≤ 1 for all trees T , and 
J(T) = 1 if and only if T  has equal splits.

Another convention is that trees with relatively 
many internal nodes are considered highly imbalanced. 
According to this convention, linear trees (i.e., trees in 
which every node i has d+(i) ≤ 1, as in Fig. 3b) should 
be considered even less balanced than caterpillar trees. 
Also, given that balance implies branching, the most 
imbalanced split is one that assigns all descendants to 
one branch and none to any other branches. Hence our 
second desirable property:

Axiom 2 (Minimum value). J(T) ≥ 0 for all trees T , and 
J(T) = 0 if and only if T  is a linear tree.

Our third desirable property ensures that our index 
is insensitive to the properties of nodes that have rela-
tively few descendants.

Axiom 3 (Insensitivity). Let T  be a tree and l be one 
of its leaves. If we create a new tree T′ from T  by add-
ing a subtree with finitely many nodes rooted at l then 
J(T′) → J(T) as S∗l /

∑
j∈ Ṽ(T′) S

∗
j → 0.

Table 1. Notation used throughout this article

Properties of a node     

d+(i) Out-degree
C(i) Set of children
v(i) Depth
f(i) Size
Ti Subtree rooted at 
ni Number of leaves of 
Si Magnitude of (sum of node sizes)
S∗i Magnitude of excluding its root
gi Importance factor
pij , where 
Wi Balance score
Wq

i Balance score based on 
hi Nonroot dominance factor
Sets of nodes   
V All nodes
Ṽ Internal nodes such that 
L Leaves
Entropies and tree balance indices
qH Generalized entropy with parameter 
1Hb Shannon entropy with base 
IS Sackin’s index
IC Colless’ index
Iφ Total cophenetic index
CD,f Colless-like index
IS.gen Generalized Sackin’s index
IC.gen Generalized Colless’ index
Jq Tree balance index based on 
JS Normalized inverse Sackin index
J1c A conservative tree balance index

Figure 3. a) A tree in which each internal node has null size and splits its descendants into subtrees of equal magnitude, and hence J = 1. This 
tree can be considered balanced only according to an index that accounts for node size. b) A linear tree, for which J = 0. c–e) A robust, universal 
tree balance index J is insensitive to the addition of a subtree of arbitrarily small magnitude if it is added to a leaf (a) or a nonroot node with out-
degree 1 (b), but not necessarily if the subtree is added to a nonroot node with greater out-degree (c).
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Our fourth axiom ensures that a linear section of a 
tree is regarded as a maximally unequal split.

Axiom 4 (Linear limit). Let T  be a tree and i ∈ Ṽ(T) 
with d+(i) = 1. Let i1 be the unique child of i. If we cre-
ate a new tree T′ from T  by adding additional subtrees 
with finitely many nodes rooted at i then J(T′) → J(T) 
as Si1/S

∗
i → 1.

Lastly, we require continuity with respect to vary-
ing node size:

Axiom 5 (Continuity). Suppose we create a new tree T′ 
by selecting a node of tree T  and changing the node’s 
size from x to x′. Then J(T′) → J(T) as x′ → x.

Alternative axioms are considered in the Appendix.

Sensitivity to Changes in Out-degree of Nonroot Nodes

By design, our definition of a robust tree balance 
index does not require insensitivity to the addition 
or removal of rare types in all cases. To see why, sup-
pose we transform a tree T  into T′ by adding one or 
more subtrees of arbitrarily small magnitude, attached 
to a nonroot node i ∈ V(T). As illustrated in Figure 
3c–e, there are three topologically distinct cases to 
consider. If i is a leaf of T  (Fig. 3c) or d+(i) = 1 in T  
(Fig. 3d) then J(T′) → J(T) due to Axioms 3 or 4. In the 
first case, i is an unimportant node, which we define 
to mean that S∗i /

∑
j∈ Ṽ S

∗
j → 0. In the second case, if 

i is not an unimportant node in T  then Ti must have 
a dominant branch, meaning that i has a child i1 such 
that Si1/S

∗
i → 0 . The third case, when d+(i) ≥ 2 in T  

(Fig. 3e), is more complicated. If i is an unimportant 
node in T  then J(T′) → J(T) as S∗i /

∑
j∈ Ṽ S

∗
j → 0 in T′

, by Axiom 3. If Ti in T  has a dominant branch Ti1 in T  
then J(T′) → J(T) as Si1/S

∗
i → 1$] in T′, by Axiom 4. But 

if neither of those conditions hold then our axioms do 
not specify the size of the effect on J .

Although we could modify Axiom 4 so that J 
is always insensitive to the addition of relatively 
low-magnitude subtrees—thus increasing the index’s 
robustness—we argue that this would undermine its 
utility as a tree balance index. The balance of a node 
can be conventionally defined as the extent to which it 
splits its descendants into multiple subtrees of equal 
magnitude. By this definition, the attachment of a 
new, relatively low-magnitude subtree to a perfectly 
balanced node will create an imbalance even as—in 
fact especially as—the magnitude of this new sub-
tree, relative to the magnitude of the node’s pre-ex-
isting descendants, approaches zero. Therefore, it is 
desirable for a tree balance index to be sensitive to 
certain changes in node degree, such that in the third 
scenario considered above, J(T′) → J(T) if and only if 
i is an unimportant node or Ti has a dominant branch 
(Fig. 3e).

Results

General Definition of Universal, Robust Tree Balance 
Indices

Our general definition depends on two continuous 
functions of subtree magnitudes:

• An importance factor g : R>0 → R>0 with 
g(x) → 0 as x → 0;

• A balance score  W that assigns Wi ∈ [0, 1] to 
each internal node i such that Wi = 0 if and only 
if d+(i) = 1, and Wi = 1 if and only if i splits 
its descendants into at least two equal-magnitude 
subtrees.

To allow us to define W more rigorously, let S  denote 
the set of vectors with positive components that sum to 
unity:

S := ∪k≥1{(x1, . . . , xk)|x1, . . . , xk > 0, x1 + . . .+ xk = 1}.

Then, W : S → [0, 1] is such that, for all (x1, . . . , xk) ∈ S
:

• (Associativity) For every permutation π, 
W(x1, . . . , xk) = W(xπ(1), . . . , xπ(k)) ;

• (Maximum value) W(x1, . . . , xk) = 1 if and only if 
k > 1 and x1 = . . . = xk;

• (Minimum value) W = 0 if and only if 
max(x1, . . . , xk) = 1;

• (Continuity) W is a continuous function with 
respect to each of its arguments.

We then define a balance index in terms of subtree 
magnitudes as

J :=
1∑

k∈ Ṽ gk

∑
i∈ Ṽ

giWi, (1)

where Wi = W(Si1/S
∗
i , . . . , Sip/S

∗
i ), gi = g(S∗i /

∑
j∈ Ṽ S

∗
j ), 

and i1, . . . , ip are the children of node i (see Table 1 
for a recap of notation). A short proof that this type 
of index  satisfies our five axioms for robustness 
and  universality (Axioms 1–5) is presented in the 
Appendix.

The balance score W  in Equation 1 measures the 
extent to which an internal node splits its descen-
dants into equal-magnitude subtrees. The impor-
tance factor g assigns more weight to nodes that are 
the roots of large subtrees. In biological terms, this 
means giving more weight to types that have more 
descendants. Sackin’s and Colless’ indices simi-
larly assign more weight to nodes that have more 
descendant leaves or are closer to the root. Mooers 
and Heard (1997) have argued that it is reasonable 
to put more weight on nodes deeper within the tree 
because “those nodes are the most informative, as the 
subclades they define are older and therefore sample 
longer periods of evolutionary time.”



SYSTEMATIC BIOLOGY2022 1215

A Specific Index Based on the Shannon Entropy

In defining a specific index, we start by opting for the 
simplest importance factor function: g(x) = x. The role of 
the balance score function W is to quantify the extent to 
which a set of objects (specifically subtrees) have equal 
magnitude. A well-known index that satisfies the neces-
sary conditions is the normalized Shannon entropy.

Assume a population is partitioned into n ∈ N 
types, with each type i accounting for a proportion pi.  
Then, the Shannon entropy with base b is defined as 

1Hb := −
n∑
i=1

pilogbpi. If all types have equal frequencies 

pi = 1/n, then 1Hb = logbn. If the types have unequal 
sizes, then 1Hb < logbn. And if the abundance is mostly 
concentrated on one type j, such that pj → 1, then 
1Hb → 0.

Let C(i) denote the set of children (immediate descen-
dants) of a node i, and for j ∈ C(i) let pij := Sj/S∗i  denote 
the relative magnitude of subtree Tj compared to all 
subtrees attached to i.

A balance score based on the normalized Shannon 
entropy is then

W1
i =

∑
j∈C(i)

W1
ij, with W1

ij =





−pijlogd+(i)pij if pij > 0
and d+(i) ≥ 2,

0 otherwise. (2)

For every internal node i, the number of frequen-
cies pij is equal to d+(i), and if all these frequencies are 
equal then −

∑n
i=1 pijlogbpij = logbd

+(i), for any base b.  
Changing the base of the logarithm from b to d+(i) 
is equivalent to dividing the sum by logbd

+(i), which 
implies that −

∑n
i=1 pijlogd+(i)pij = 1 when all the pij are 

equal. From aforementioned properties of the Shannon 
entropy, it then follows that W1

i ∈ [0, 1], with W1
i = 0 if 

and only if d+(i) = 1, and W1
i = 1 if and only if i splits 

its descendants into at least two equal-magnitude sub-
trees. Therefore, the following specific balance index 
satisfies our robustness and universality axioms:

J1 :=
1∑

k∈ Ṽ S
∗
k

∑

i∈ Ṽ

S∗i W
1
i .

(3)

The calculation of J1 is illustrated in Figure 4a.
The definition simplifies when we restrict the 

domain to the set of multifurcating leafy trees in which 
all leaves have equal size f0 . This includes cladograms 
in which internal nodes represent extinct ancestors and 
leaves correspond to equally important extant types. 
For all internal nodes i in such trees, S∗i = Si = f0ni, 
where ni is the number of leaves of the subtree rooted 
at node i. The general definition of Equation 1 can then 
be expressed in terms of node balance scores and leaf 
counts:

Figure 4. a) An example calculation of J1. Numbers shown inside nodes are the node sizes. b) All multifurcating leafy trees on six leaves 
without linear parts and with equally sized leaves, sorted and labelled by J1 value.
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J =
1∑

k∈ Ṽ nk

∑

i∈ Ṽ

niWi,
(4)

and the specific definition of Equation 

J1 =
−1∑
k∈ Ṽ nk

∑

i∈ Ṽ

∑
j∈C(i)

njlogd+(i)
nj
ni
.

(5)

For example, Figure 4b shows the J1 values of all 
leafy trees on six equally sized leaves without linear 
parts. Unlike Sackin’s and Colless’ indices, J1 does not 
consider the caterpillar tree the least balanced of these 
trees.

There are of course many alternative options for W. 
For example, Colless’ index can be generalized to define 
a robust, though not universal, tree balance index on 
the domain of bifurcating trees (see Appendix). Since 
the Shannon entropy belongs to families of generalized 
entropies (Rényi 1961; Chao et al. 2014) parameter-
ized by q > 0, the above reasoning can be generalized 
to define a balance score Wq, and hence a robust, uni-
versal balance index Jq, for every q > 0 (see Appendix). 
Other candidates for W include one minus the variance 
of the proportional subtree magnitudes or one minus 
the mean deviation from the median (Mir et al. 2018). 
We prefer W1 mostly because, as we shall show, it is the 
only function for which Equation 4 is a generalization 
of the normalized inverse Sackin index.

Relationship with Colless’ Index

Like Colless’ index and Colless-like indices as pre-
viously defined, our new family of tree balance indi-
ces is based on the intuitive idea of assigning a value 
to each internal node, summing these values, and then 
normalizing the sum. A Colless-like index in the sense 
of Mir et al. (2018) depends on a function f : N → R≥0
, which assigns node sizes, and a dissimilarity score 
D : R → R≥0, where R is the set of non-null real vec-
tors. Before normalization, such an index has the form

CD,f =
∑

i∈ Ṽ

D(δf (Ti1), . . . , δf (Tik)),

where {i1, . . . , ik} are the children of node i. The func-
tion δf  assigns a size to each subtree by summing the 
node sizes: δf (T) =

∑
j∈V(T) f (d

+( j)). Neglecting the ini-
tial normalizing factor, our general definition (Equation 
1) has a similar form and can be considered Colless-like 
in only a slightly broader sense. Our definition never-
theless differs in two important ways.

First, whereas the unbounded dissimilarity index D 
measures both node imbalance and importance and 
is undefined for nodes with out-degree one, we split 
these two roles into a normalized balance score W and 
an unbounded importance factor g, and we assign a W 
value (specifically zero) to nodes with out-degree one. 
This difference enables us to extend the balance index 
definition to trees with any degree distribution. It also 
makes it easy to normalize our indices for any tree, 

simply by dividing by the sum of the important factors. 
Furthermore, our normalization is universal, rather 
than being based on comparison with other trees with 
the same number of leaves. For example, our Jq indi-
ces judge long caterpillar trees less balanced than short 
ones (Fig. 5a), whereas Sackin’s index, Colless’ index, 
and the total cophenetic index consider all caterpillar 
trees on more than two leaves equally imbalanced.

Second, instead of assigning a size to each node as 
a function of its out-degree, we associate a node’s size 
with the size of the biological population it represents. 
This ensures that our indices can be made reliably 
robust by including population size data.

Relationship with Sackin’s Index

The sum 
∑

k∈ Ṽ nk is just another way of express-
ing Sackin’s index (summing over internal nodes 
instead of leaves). Therefore, J in Equation 4 is essen-
tially a weighted Sackin index (with each term in the 
sum weighted by the balance score W) divided by the 
unweighted Sackin index. In the special, important case 
of full m -ary leafy trees (including full m-ary clado-
grams), the weighted sum in J1 (Equation 5) simplifies 
yet further. Let T ∗

n,m denote the set of all trees on n leaves 
such that all internal nodes have the same out-degree 
m > 1, every internal node has null size, and all leaf 
sizes are equal. Then, we obtain a remarkably simple 
relationship between J1 and Sackin’s index:

Proposition 6. Let T  be a tree on n leaves with 
d+(i) = m > 1 and f (i) = 0 for every internal node i. 
Then

J1(T) =
1Hm(T)S(T)
IS,gen(T)

,

where 1Hm(T) is the Shannon entropy (base m) of the 
proportional node sizes, S(T) is the magnitude of T , and 
IS,gen(T) :=

∑
i∈ Ṽ(T) S

∗
i . If additionally all leaves of T  have the 

same size (so T ∈ T ∗
n,m) then

J1(T) =
minn,mIS
IS(T)

=
nlogmn
IS(T)

,
(6)

where minn,mIS is the minimum IS value of trees in T ∗
n,m.

The above result is somewhat surprising as it uni-
fies our Colless-like index, which can be viewed as a 
weighted average of internal node balance scores, and 
Sackin’s index, which is the sum of all leaf depths. 
A short proof of Proposition 6 is presented in the 
Appendix. The converse result, which is also proved in 
the Appendix, justifies our choice of W1 instead of alter-
native balance score functions:

Proposition 7. Let J be a tree balance index such that

J(T) =
1∑

k∈ Ṽ nk

∑

i∈ Ṽ

niW
Å
ni1
ni

, . . . ,
nip(i)
ni

ã
,
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where i1, . . . , ip(i) are the children of node i, and W is a 
balance score satisfying the conditions stated before Equation 
1. Suppose that for all trees T ∈ T ∗

n,m, J(T) = nlogmn/IS(T). 
Then,W = W1 .

The right-hand side of Equation 6 incidentally pro-
vides an alternative way of normalizing Sackin’s index 
on full m-ary leafy trees, including the bifurcating 
cladograms on which the index was originally defined. 
This normalized inverse Sackin index, which we can 
define as JS := nlogmn/IS, provides a more satisfactory 
way of comparing trees that differ in their node degrees 
or leaf counts. JS = 1 if and only if the tree has mini-
mal depth given m, which is equivalent to being fully 
symmetric, and so JS is a sound tree balance index in 
the sense defined by Mir et al. (2018) (see Appendix for 
a proof). For m > 1, we have JS > 0 but min JS → 0 as 
n → ∞, which makes sense because trees with more 
leaves can be made less balanced. In particular, when T  
is a caterpillar tree on n ≥ 2 leaves,

JS(T) =
2nlog2n

(n− 1)(n+ 2)
,

as illustrated in Figure 5a. The definition of JS can 
be naturally extended to the case m ≤ 1 by setting 
JS(T) := 0 if T  is linear or has only one node. From 

this point of view, J1 (a Colless-like index) is a gener-
alization of JS (the normalized reciprocal of Sackin’s 
index) to the domain of trees with arbitrary degree 
distributions and arbitrary node sizes.

Distributions under the Yule and Uniform Models

An immediate corollary of Proposition 6 is that J1 can 
be used to test whether a set of full m-ary cladograms 
is consistent with a particular tree-generating model, 
with exactly the same sensitivity as Sackin’s index. For 
example, Figure 5a,b shows J1 distributions for random 
bifurcating trees in T ∗

n,2 generated from the Yule and 
uniform models. These two distributions have insignif-
icant overlap when the trees have at least a few dozen 
leaves.

Kirkpatrick and Slatkin (1993) showed that the expec-
tation of IS for the Yule model is

EYule(IS) = 2n
n∑
i=2

1
i
= 2n ln n+ (2γ − 2)n+ o(n),

where γ  is Euler’s constant and n is the number of 
leaves. Mir et al. (2013) have shown that the expectation 
of IS for the uniform model is

Figure 5. a) J1 values for caterpillar trees and random trees generated from the Yule and uniform models (1000 trees per data point). All 
internal nodes have null size and all leaves have equal size. Solid black curves are the means; dashed curves are the 5th and 95th percentiles; 
and gray curves are nlog2n divided by the corresponding expectation of IS (where n is the number of leaves). b) J1 distributions for random 
trees on 64 leaves generated from the Yule and uniform models (1000 trees per model). c) J1 values for 100 random trees on 16 leaves, before 
and after applying a 1% sensitivity threshold. These random trees were generated from the alpha-gamma model with α ∼ Unif(0, 1) and 
γ ∼ Unif(0,α). d) IS,norm values for the same set of random trees. e) Absolute change in normalized index values due to applying a 1% sensitivity 
threshold. Results are based on 100 random trees for each number of leaves, generated as in (c) and (d). CD,f  here is the Colless-like index with 
f (n) = ln(n+ e) and D is the mean deviation from the median, as recommended by Mir et al. (2018). f) Values of J1c versus J1 for random 
multifurcating trees on 16 leaves, with node sizes drawn from a continuous uniform distribution. The dashed reference line has slope 1.
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EUnif (IS) = n
Å
(2n− 2)!!
(2n− 3)!!

− 1
ã
= n
Å
(2n− 2)(2n− 4) . . . (4)(2)
(2n− 3)(2n− 5) . . . (3)(1)

− 1
ã
,

which approaches 
√
πn3/2 as the number of leaves 

n approaches infinity (Blum et al. 2006; King and 
Rosenberg 2021). Consistent with Proposition 6, we 
find that for random trees in T ∗

n,2 generated by either the 
Yule or the uniform model, a good approximation to the 
J1 mean is nlog2n divided by the corresponding expec-
tation of IS (gray curves in Fig. 5a). As n → ∞, these 
approximations approach 1/(2 ln 2) ≈ 0.72 and zero for 
the Yule and uniform models, respectively.

Robustness when Applied to Random Trees

To test the robustness of J1, we generated random 
multifurcating trees with node sizes drawn from a 
continuous uniform distribution and then compared 
J1 values for these trees before and after applying a 
1% sensitivity threshold. In the latter case, whenever 
the combined frequency of a clone and its descendants 
was below 1%, we merged the corresponding subtree 
with the clone’s parent, to simulate imperfect detec-
tion of rare types. As expected, the J1 values for the 
two sets of trees were highly similar, with a median 
absolute difference of only 0.01 for trees that initially 
had 16 leaves (Fig. 5c). In contrast, the median abso-
lute difference in the normalized Sackin’s index for the 
same two sets of trees (after resolving any linear parts 
in the manner of Fig. 2) was 0.20 (Fig. 5d), confirm-
ing that J1 is much more robust to the omission of rare 
types.

As the number of leaves per tree increases, indices 
such as Sackin’s index and the Colless-like index rec-
ommended by Mir et al. (2018) become more robust to 
the removal of rare types (Fig. 5e). Like J1, these previ-
ously defined indices give more weight to nodes nearer 
the root. In larger trees, the nodes near the root tend 
to have large numbers of descendant leaves. It follows 
that removing a random sample of nodes from near the 
tips of the tree is likely to have only a modest effect on 
balance, as the tree’s core structure is preserved. In our 
results, this effect outweighs an increase in the propor-
tion of nodes removed (a median of 7%, 19%, and 24% 

of nodes were removed from trees that originally had 
16, 32, and 48 leaves, respectively, by applying the 1% 
sensitivity threshold). Therefore the robustness benefit 
of J1 is more pronounced in trees with fewer leaves.

Comparison with a Conservative Tree Balance Index

We additionally investigated the robustness of an 
alternative new tree balance index J1c, defined as

J1c :=
1∑

k∈ Ṽ S
∗
k

∑

i∈ Ṽ

S∗i
S∗i
Si
W1

i .

J1c—which we denoted J1 in a previous paper (Noble 
et al. 2022)—conforms to an alternative set of axioms 
that define what we call a conservative tree balance 
index. This index is maximal not for all trees with equal 
splits, but only for leafy trees with equal splits (see 
Appendix for details).

An advantage of J1c is that, unlike J1, it is always 
insensitive to adding relatively low-magnitude sub-
trees to the root of the tree. Nevertheless, as the num-
ber of nodes increases, the difference between J1 and 
J1c rapidly diminishes, unless the root node is dispro-
portionately large (Fig. 6). For example, when J1 and 
J1c are applied to random multifurcating trees on 16 
leaves, with node sizes drawn from a continuous uni-
form distribution, the linear correlation between the 
two indices is 0.998 ( J1c is approximately 10% smaller 
than J1 in this case; Fig. 5f). Accordingly, we find that 
J1c is only slightly more robust than J1 to the removal 
of rare types when applied to reasonably large random 
trees (Fig. 5e). For most practical purposes, we see no 
strong reason to favor J1c over the simpler index J1.

Resolution Power

Mir et al. (2013) have argued that a useful tree bal-
ance index should have good resolution power, mean-
ing a low probability of assigning the same value to 
two trees with the same number of leaves, chosen uni-
formly at random. Proposition 6 implies that, when 
applied to full m-ary leafy trees with equally sized 
leaves, J1 has the same resolution power as Sackin’s 
index.

Figure 6. Example values of J1 versus the conservative tree balance index J1c. The latter index takes account of the size of each internal 
node, relative to the sum of its descendant node sizes.
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Correlations with Pre-existing Indices

To compare J1 to Sackin’s index, a Colless-like 
index, and the total cophenetic index (defined in the 
Appendix) on a diverse set of trees, we generated 2000 
random multifurcating leafy trees on 100 equally sized 
leaves using the alpha-gamma model (Chen et al. 2009) 
via the R package CollessLike (Mir et al. 2018). As shown 
in Figure 7, our new balance index correlates nega-
tively with the previously defined imbalance indices 
on this set of random trees, indicating that it captures 
a similar notion of balance. The strongest correlation is 
between J1 and the total cophenetic index (Spearman’s 
ρ = −0.84 for all trees, and ρ = −0.97 for trees with a 
mean out-degree greater than 3). The marginal histo-
grams in Figure 7 additionally show that more than 
85% of these random trees have balance values less 
than 0.25 according to the previously defined indices, 
whereas J1 values are more evenly distributed between 
zero and one, with mean and median approximately 
equal to 0.6.

Sensitivity to Certain Changes in Node Degree

As explained in the Methods section, we consider 
it desirable for tree balance indices to be sensitive to 
certain changes in node degree. In J1 this sensitivity 
arises because, in the calculation of the node balance 
score, the node out-degree features as the base of the 
logarithm. For example, consider a star tree T  with 
l > 1 leaves each of size f0 > 0. Suppose we add to the 
root another n− l leaves, each of size x > 0. If x = f0 
then J1(T) = 1 since all the leaves have the same size. 
Otherwise

J1(T ) = −[l
f0

lf0 + (n− l)x
logn

Å
f0

lf0 + (n− l)x

ã

+(n− l)
x

lf0 + (n− l)x
logn

Å
x

lf0 + (n− l)x

ã
].

As x decreases from f0 towards zero, J1(T) decreases 
monotonically to account for the growing loss of bal-
ance. And as x → 0, so J1(T) → lognl. If we then remove 
these vanishingly small leaves, the value of J1(T) will 
jump from lognl back to 1 because the remaining leaves 
are of equal size. The sensitivity of J1 to such changes in 
node degree is thus a straightforward consequence of 
the conventional notion of node balance. The size of the 
jump in J1 is at most 1− log32 ≈ 0.37, and it approaches 
zero as l/n → 1 (i.e., when the new nodes are relatively 
few). The analyses shown in Figure 5e,f show that such 
discontinuities do not compromise the overall robust-
ness of J1 to the removal of rare types.

Implementation and Algorithmic Complexity

Assuming the identity of the root is known, our new 
indices can be computed from an adjacency matrix in 
O(N) time, where N  is the number of nodes (or the 
number of edges plus one). Subtree magnitudes are 
computed via depth-first search, which takes linear 
time, and the computation of the balance index takes 
at most 

∑N
i=1 |Adj(i)| = N − 1 steps, where Adj(i) is the 

adjacency list of node i. Efficient R code for calculating 
Jq is shared in an online repository (Noble and Lemant 
2021).

Discussion

Here, we have defined a new class of tree balance 
index that unifies, generalizes, and in various ways 
improves upon previous definitions. Even when 
restricted to the tree types on which pre-existing indices 
are defined, our indices enable a more meaningful com-
parison of trees with different degree distributions or 
different numbers of leaves. Due to these advantages, 
our indices have the potential to supersede those in cur-
rent use.

Figure 7. Scatter plots of J1 versus normalized Sackin’s, Colless-like, and total cophenetic indices for 2000 random multifurcating leafy 
trees with 100 equally sized leaves. Histograms in the margins show the marginal distributions. Dashed reference curves in the first panel are 
obtained by substituting IS,norm into Equation 6 with n = 100 and m = 2 (upper curve) or m = 100 (lower curve). We use the Colless-like index 
with f (n) = ln(n+ e) and D the mean deviation from the median, as recommended by Mir et al. (2018). Normalization of each index other 
than J1 depends only on the number of leaves and so does not affect correlations. Trees were generated from the alpha-gamma model with 
α ∼ Unif(0, 1) and γ ∼ Unif(0,α).
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Our indices also enable important new applications. A 
challenge in comparing simulated phylogenies and trees 
inferred from data is that the former are exact, whereas 
the latter are often incomplete (Scott et al. 2020). In oncol-
ogy, for example, it has been shown that whether or not a 
rare tumor clone is detected depends on both methodol-
ogy and chance (Turajlic et al. 2018). Our balance indices 
largely solve this problem as they are insensitive to the 
omission of rare types, as demonstrated briefly here and 
more comprehensively in a companion paper (Noble et al. 
2022).

Because of its unique relationship with Sackin’s index, 
we especially recommend J1—a weighted average of the 
normalized entropies of the internal nodes—as defined in 
general by Equation 3 and more simply for cladograms by 
Equation 5. Given that Sackin’s index has been well stud-
ied, it is convenient that J1 inherits some of the proper-
ties of that index when applied to full m-ary cladograms, 
including its relatively high sensitivity in distinguishing 
between alternative tree-generating models (Kirkpatrick 
and Slatkin 1993; Agapow and Purvis 2002). Within our 
framework, Sackin’s index is seen not as a general balance 
index but rather as a normalizing factor, which works as 
a balance index only in the special case of full m-ary leafy 
trees (for which the numerator of J1 is independent of tree 
topology).

Proposition 6 implies that determining the precise 
moments of J1 for a model that generates full m-ary leafy 
trees is equivalent to determining the moments of the 
reciprocal of Sackin’s index. Figure 7 suggests that J1 has 
interesting relationships with other indices such as the 
total cophenetic index. These are promising areas for fur-
ther investigation.
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Appendix

 Definition of the Total Cophenetic Index

The cophenetic value φ(k, l) of a pair of leaves (k, l) 
is the depth of their lowest common ancestor. The total 
cophenetic index (Mir et al. 2013) is then the sum of the 
cophenetic values over all pairs of leaves:

IΦ(T) =
∑

N−n+1≤k<l≤n

φ(k, l),

where N  is the number of nodes and n the number 
of leaves. As in Sackin’s index, the principle is that an 
unbalanced tree stretches more than a balanced tree. 
Being explicitly defined for all multifurcating trees, the 
total cophenetic index permits meaningful comparison 
of any two multifurcating trees on the same number of 
leaves.

For trees on n > 2 leaves, the minimum of the total 
cophenetic index is reached on the star tree, with 
minn(IΦ) = 0. The maximum is attained on the caterpil-
lar tree:

maxn(IΦ) =
n−1∑
k=2

k−1∑
l=1

m =
n−1∑
k=2

1

2
k(k − 1)

=
1

2

Å
(n− 1)n(2n− 1)

6
− n(n− 1)

2

ã

=
n(n− 1)(n− 2)

6
=

Ç
n

3

å
.

Hence, a normalized version of the total cophenetic 

index is IΦ,norm(T) = IΦ(T)/

Ç
n
3

å
. This normalized 

imbalance index is not minimal for all fully symmet-
ric trees. For example, the cophenetic value of the two 
leftmost leaves of the fully symmetric tree in Figure 1b 
is two, and so both the un-normalized and normalized 
cophenetic indices of this tree will be nonzero.

Conservative Tree Balance Indices

Our axioms permit J to change discontinuously 
when we add rare types to the root. This is because 
Axioms 3 and 4 consider the addition of subtrees that 
have vanishingly small magnitude relative to other 
subtrees excluding their roots, whereas the relative size 
of the root of the entire tree is immaterial. For example, 
consider a two-node linear tree T  in which the nonroot 
node has size δ, relative to the size of the root. Then 

J(T) = 0 by Axiom 4. But if we add another child to the 
root of T , also of relative size δ, then the J value of the 
new tree will be 1 (by Axiom 1), even as δ → 0. To make 
our index robust in such cases, we can add another 
axiom:

Axiom A.1 (Root limit). Let T  be a tree with root r. 
Then, J(T) → 0 as S∗r /Sr → 1.

But this new axiom conflicts with Axiom 1, which we 
must then modify, such that equal splits are no longer 
sufficient for maximal balance:

Axiom A.2 (Alternative maximum value). J(T) ≤ 1 
for all trees T , and J(T) = 1 only if T  has equal splits. 
Furthermore, if T  has equal splits and is a leafy tree 
then J(T) = 1.

We will call a tree balance index conservative if it con-
forms to these two alternative axioms in addition to 
Axioms 2, 3, 4, and 5. This name is appropriate because 
Axiom A.1 implies that a tree will be considered imbal-
anced unless there is strong evidence to the contrary (in 
the form of a relatively small root node). Every conser-
vative index is both universal and robust.

One way to define a class of conservative indi-
ces is to add to Equation 1 a nonroot dominance factor 
h : R>0 × R>0 → (0, 1] with h(x1, x2) → 0 as x1/x2 → 0, 
and h(x1, x2) = 1 if and only if x1 = x2. We then obtain

J :=
1∑

k∈ Ṽ gk

∑

i∈ Ṽ

gihiWi,

with hi = h(S∗i , Si). The role of h is to quantify the 
extent to which a node should be considered a leaf 
(which does not contribute to the index’s value) as 
opposed to an internal node (which does). Adding this 
factor has no effect on the balance values assigned to 
leafy trees, including cladograms, because if an internal 
node i has zero size then hi = 1. Setting h(x1, x2) = x1/x2, 
we can modify Equation 3 to obtain the specific conser-
vative index

J1c :=
1∑

k∈ Ṽ S
∗
k

∑

i∈ Ṽ

S∗i
S∗i
Si
W1

i .

We previously used J1 instead of J1c to denote the 
above index (Noble et al. 2022).

Alternative Axioms Proposed by Fischer et al. (2021)

Shortly after we posted a preprint version of the 
current article, Fischer et al. (2021) posted a preprint 
in which they proposed two alternative axioms for 
nonrobust, nonuniversal tree balance indices, such as 
Sackin’s and Colless’ indices. In these axioms, BT ∗

n  
denotes the set of rooted bifurcating trees with n leaves, 
T ∗
n  is the set of all rooted trees with n leaves such that 
d+(i) > 1 for all internal nodes i, and the tree balance 
index is denoted t.

Axiom A.3 (Fischer et al. minimum value). The cat-
erpillar tree with n leaves is the unique tree minimiz-
ing t on T ∗

n  (if t is defined on multifurcating trees) or 
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on BT ∗
n  (if t is defined only on bifurcating trees) for all 

n ≥ 1.

Axiom A.4 (Fischer et al. maximum value). The fully 
symmetric bifurcating tree with n leaves is the unique 
tree maximizing t on BT ∗

n  for all n = 2h with h ∈ N≥0.
These axioms can be compared with our axioms if we 

consider only leafy trees in which all leaves have equal 
size (such as cladograms). Axiom A.4 is then just a spe-
cial case of our more general Axiom 1 because the fully 
symmetric bifurcating tree with n leaves is the only tree 
in BT ∗

n  that has equal splits. But Axiom A.3 is not neces-
sarily consistent with our Axiom 2. In particular, as shown 
in Figure 4b, our index J1J1 does not comply with Axiom 
A.3 in the case of multifurcating leafy trees. We can resolve 
this incompatibility with the following simplification:

Axiom A.5 (Alternative Fischer et al. minimum 
value). The caterpillar tree with n leaves is the unique 
tree minimizing on BT ∗

n  for all n ≥ 1 (whether or not t 
is defined on multifurcating trees).

J1 is consistent with Axiom A.5 because, when we 
consider only bifurcating leafy trees in which all leaves 
have equal size, J1 is equal to JS (by Proposition 6), 
which is inversely proportional to IS by definition, and 
the caterpillar tree is the unique bifurcating tree that 
maximizes IS (Fischer et al. 2021). Although Axiom 1 
does not necessarily imply Axiom A.5, it is reasonable 
to expect useful universal tree balance indices to satisfy 
both conditions.

Proof that the Index of Equation 1 Satisfies Our Five 
Axioms

Proof. (Axiom 1 (Maximum value): We have J ≤ 1 
since g and W lie between zero and one by definition. 
Also if any internal node j of tree T  does not split its 
descendants into at least two equal-magnitude subtrees 
then Wj < 1 by definition and so

∑

i∈ Ṽ

giWi <
∑

i∈ Ṽ

gi ⇒ J(T) < 1.

Now, let T  be a tree such that every internal node 
splits its descendants into at least two equal-magnitude 
subtrees. Then Wi = 1 for all i ∈ Ṽ by definition. Hence,

J(T) =
1∑

k∈ Ṽ gk

∑

i∈ Ṽ

gi = 1.

Axiom 2 (Minimum value): We have J ≥ 0 since g 
and W are always non-negative by definition. Also if 
T  is a linear tree then Wi = 0 for all i ∈ Ṽ by definition, 
and hence J(T) = 0. Conversely, if some internal node j 
has d+( j) > 1 then Wj > 0 by definition and, because gj 
must be positive by definition, we must have J(T) > 0.

Axiom 3 (Insensitivity): Adding a subtree to a leaf 
l changes the tree balance value via the contributions 
of two sets of nodes: the internal nodes of Tl (includ-
ing l), and all other internal nodes. For each inter-
nal node, i ∈ Ṽ(Tl), as S∗l /

∑
j∈ Ṽ(T′) S

∗
j → 0 so also 

S∗i /
∑

j∈ Ṽ(T′) S
∗
j → 0 (because S∗i ≤ S∗l ), which implies 

gi → 0 by definition, and hence all such contributions 
approach zero. The contribution of all other internal 
nodes also approaches zero because g and W are con-
tinuous by definition.

Axiom 4 (Linear limit): Let i ∈ Ṽ(T) with d+(i) = 1. 
Without loss of generality, let i1 denote the original child 
of i, and i2, . . . , ip denote the newly added children of i
. Adding subtrees to i changes the tree balance value 
via the contributions of the newly added nodes and of 
node i. As Si1/S

∗
i → 1, so Sik/S

∗
i → 0 for all k ∈ {2, . . . , p}

. This implies that Sik/
∑

j∈ Ṽ(T′) S
∗
j → 0 and hence 

gik → 0 by definition for all k ∈ {2, . . . , p}. Therefore, the 
first contribution approaches zero. Also as Si1/S

∗
i → 1, 

we have max(Si1/S
∗
i , . . . , Sip/S

∗
i ) → 1, and so Wi → 0 

by definition. Therefore, the second contribution also 
approaches zero.

Axiom 5 (Continuity): The continuity of J follows 
immediately from the continuity of g and W. □

New Generalizations of Sackin’s and Colless’ Indices

The number of distinct subtrees that contain a given 
leaf l is equal to its number of ancestors, which is the 
same as νl, the depth of l. Hence, Sackin’s index is equiv-
alent to the sum of the leaf counts of the subtrees rooted 
at each internal node. By extension, we can define a 
new, more general form of Sackin’s index that accounts 
for node sizes:

IS,gen(T) :=
∑

i∈ Ṽ(T)
S∗i ,

where S∗i  is the magnitude of the subtree rooted at 
node i, excluding the root. In the special case of leafy 
trees in which all leaves have size one, we recover 
IS,gen = IS. This new index is not very useful for assess-
ing tree balance because it increases with the total 
tree magnitude, but in our framework, it performs an 
important role as a normalizing factor.

If we let Si1 denote the magnitude of the left branch of 
the subtree rooted at i, and Si2 denote the magnitude of 
the right branch, then we can generalize Colless’ index 
to account for node sizes in bifurcating trees:

IC,gen(T) :=
∑

i∈ Ṽ(T)

|Si1 − Si2 | =
∑

i∈ Ṽ(T)

S∗i |pi1 − pi2 |,

where pij = Si1/S
∗
i . This definition reduces to IC in the 

case of leafy trees in which all leaves have size one. The 
right-hand expression above clarifies that the contribution 
of each node to Colless’ index is the product of the node’s 
importance (i.e., its number of descendants) and its bal-
ance (the degree to which the node splits its descendants 
into two equal-magnitude subtrees). We further see that 
IC,gen(T) ≤ IS,gen(T) for all trees T (because |pi1 − pi2 | ≤ 1 
for all i1, i2), which suggests the normalization

IC,gen,norm :=
IC,gen
IS,gen

=
1∑

k∈ Ṽ S
∗
k

∑

i∈ Ṽ(T)

S∗i |pi1 − pi2 |.
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This new generalization of Colless’ index is more 
robust than the conventional form, in the sense that its 
value is insensitive to the addition or removal of rel-
atively small nodes. IC,gen,norm also enables meaningful 
comparison of trees with different numbers of leaves. 
But, the problem remains that IC,gen,norm applies only to 
bifurcating trees.

Other Balance Indices Based on Generalized Entropies

As defined by Chao et al. (2014), generalized entro-
pies for q ≥ 0, q �= 1 are

qH :=
1

q− 1

(
1−

P∑
i=1

pqi

)
.

Parameter q determines the sensitivity to the type fre-
quencies. 0H is simply the richness (minus 1) of the pop-
ulation, which corresponds to ignoring the frequencies 
and just counting the types. For 0 < q < 1, rare types 
are given more weight than implied by their propor-
tion, whereas for q > 1 abundant types matter more. 2H 
is the Gini–Simpson coefficient. In the limit q → 1, we 
recover the Shannon entropy 1He.

For q > 0, qH attains its maximum value if and only if 
all types have equal frequency pi = 1/m:

max (
qH) =

1
q− 1

Å
1− 1

mq−1

ã
=

mq−1 − 1
mq−1(q− 1)

.

We can therefore define a normalized balance score 
Wq

i  for q > 0, q �= 1 and i ∈ Ṽ:

Wq
i :=





d+(i)q−1

d+(i)q−1−1

Ç
1−

∑
j∈C(i)

pqij

å
if d+(i) ≥ 2

0 otherwise.

Similarly, one can define Wq
i  for q > 0, q �= 1 based on 

the entropy defined by Rényi (1961):

Wq
i :=





1
(1−q) log d+(i) log

Ç ∑
j∈C(i)

pqij

å
if d+(i) ≥ 2

0 otherwise.

In either case, a balance index Jq satisfying our axi-
oms is

Jq :=
1∑

k∈Ṽ
S∗k

∑

i∈Ṽ

S∗i W
q
i ,

for any q > 0. And in either case, Jq → J1 as q → 1.

Proof of Proposition 6

Proof. By definition of J1, if T  is a tree on n leaves with 
d+(i) = m > 1$] and f (i) = 0 for every internal node i 
then

J1(T) =
−1∑

k∈Ṽ
Sk

∑

i∈Ṽ

∑
j∈C(i)

Sjlogm
Sj
Si
.

The sum of subtree magnitudes over the set of all 
internal nodes is equal to the sum of νl multiplied by 
leaf size over the set of all leaves:

IS,gen :=
∑

k∈Ṽ

Sk =
∑
k∈L

νkf (k).

Summing first over the internal nodes and then over 
their children gives the same result:

∑

i∈Ṽ

∑
j∈C(i)

Sj =
∑

i∈Ṽ

Si =
∑
i∈L

νif (i) =
∑
i∈L

f (i)
νi∑
j=1

1.

Let a(i, j) denote the ancestor of node i at distance j, 
with a(i, 0) = i  and a(i, νi) = r (the root) for all i. Then 
by extension,

∑

i∈Ṽ

∑
j∈C(i)

Sjθ(Si, Sj) =
∑
i∈L

f (i)
νi∑
j=1

θ(Sa(i,j), Sa(i,j−1)),

for any function θ. In particular, we have

∑

i∈Ṽ

∑
j∈C(i)

Sjlogm
Sj
Si

=
∑
i∈L

f (i)
νi∑
j=1

logm
Sa(i,j−1)

Sa(i,j)
.

Substituting this result into the expression for J1, we 
find

J1(T) =
−1∑
k∈ Ṽ Sk

∑
i∈L

νi∑
j=1

f (i)logm
Sa(i,j−1)

Sa(i,j)

=
−1∑
k∈ Ṽ Sk

∑
i∈L

f (i)
νi∑
j=1

(logmSa(i,j−1) − logmSa(i,j)).

The right-hand sum is a telescoping series that col-
lapses to give

J1(T) =
−1∑
k∈ Ṽ Sk

∑
i∈L

f (i)(logmSa(i,0) − logmSa(i,νi)).

Now since i is a leaf, logmSa(i,0) = logmSi = logmf (i). 
Also logmSa(i,νi) = logmSr = logmS(T). Hence,

J1(T) =
−1∑
k∈Ṽ Sk

∑
i∈L

f (i)(logmf (i)− logmS(T))

=
−1∑
k∈Ṽ Sk

∑
i∈L

f (i)logm
f (i)
S(T)

=
1Hm(T)S(T)∑

k∈V̄ Sk
=

1Hm(T)S(T)
IS,gen(T)

.

If additionally all leaves i of T  have the same 
size f (i) = f0 then S(T) = nf0, 1Hm(T) = logmn, and 
IS,gen(T) = f0IS(T), which implies J1(T) = nlogmn/IS(T). 
□

Proof of Proposition 7

Proof. Since 
∑

k∈ Ṽ nk = IS(T), the conditions are 
equivalent to
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IS(T)J(T) =
∑

i∈ Ṽ

niWi = nlogmn,

with Wi = W
Å
ni1
ni

, . . . ,
nip(i)
ni

ã
,

where ni1 , . . . np(i) are the children of i. Let T  be a tree 
in T ∗

n,m and i be an internal node of T . Then, Ti ∈ T ∗
ni,m 

and Tj ∈ T ∗
nj,m for every child j of i. Therefore

IS(Ti)J(Ti) = niWi +
∑
j∈C(i)

J(Tj) = niWi +
∑
j∈C(i)

njlogmnj.

Also, IS(Ti)J(Ti) = nilogmni, so we have

niWi +
∑
j∈C(i)

njlogmnj = nilogmni

⇒ Wi = logmni −
∑
j∈C(i)

nj
ni
logmnj.

Since 
∑

j∈C(i)
nj = ni, this implies

Wi =
∑
k∈C(i)

nk
ni
logmni −

∑
j∈C(i)

nj
ni
logmnj = −

∑
j∈C(i)

nj
ni
logm

nj
ni

= W1
i .

Proof that JS is a Sound Tree Balance Index

Proof. By the definition of Mir et al. (2018), a sound 
tree balance index J  is such that J(T) is maximal if 
and only if T  is fully symmetric. The fully symmet-
ric full m-ary tree on n leaves is the unique tree that 
minimizes IS among full m-ary trees on n leaves. 
This minimum value is minn,mIS = nlogmn (since 
every leaf l has the same depth νl = logmn). Because 
JS := nlogmn/IS  is defined only on full m-ary trees, if 
follows that JS(T) is maximal if and only if T  is fully 
symmetric. □


