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Abstract 

Introduction:  Detecting safety signals attributed to a drug in scientific literature is a fundamental issue in pharma‑
covigilance. The constant increase in the volume of publications requires the automation of this tedious task, in order 
to find and extract relevant articles from the pack. This task is critical, as serious Adverse Drug Reactions (ADRs) still 
account for a large number of hospital admissions each year.

Objectives:  The aim of this study is to develop an augmented intelligence methodology for automatically identify‑
ing relevant publications mentioning an established link between a Drug and a Serious Adverse Event, according to 
the European Medicines Agency (EMA) definition of seriousness.

Methods:  The proposed pipeline, called LiSA (for Literature Search Application), is based on three independent 
deep learning models supporting a precise detection of safety signals in the biomedical literature. By combining a 
Bidirectional Encoder Representations from Transformers (BERT) algorithms and a modular architecture, the pipeline 
achieves a precision of 0.81 and a recall of 0.89 at sentences level in articles extracted from PubMed (either abstract or 
full-text). We also measured that by using LiSA, a medical reviewer increases by a factor of 2.5 the number of relevant 
documents it can collect and evaluate compared to a simple keyword search. In the interest of re-usability, emphasis 
was placed on building a modular pipeline allowing the insertion of other NLP modules to enrich the results provided 
by the system, and extend it to other use cases. In addition, a lightweight visualization tool was developed to analyze 
and monitor safety signal results.

Conclusions:  Overall, the generic pipeline and the visualization tool proposed in this article allows for efficient and 
accurate monitoring of serious adverse drug reactions from the literature and can easily be adapted to similar phar‑
macovigilance use cases. To facilitate reproducibility and benefit other research studies, we also shared a first bench‑
mark dataset for Serious Adverse Drug Events detection.

Keywords:  Adverse drug events, Assisted literature review, Deep Learning, NLP

Introduction
The development of a drug is a long road that can take 
several years. This journey involves several requests for 
approval with regulatory authorities, whether to start 
clinical trials, to actually market the drug or to modify 
some of the claims. Throughout these approval processes, 
the regulator, that carries out a public safety mission, 
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must ensure that no prior safety signal about the drug is 
known at the time or after the authorization is granted. 
This task requires the regulator to review and monitor 
both biomedical literature and surveillance reports. More 
specifically, medical reviewers have to identify portions 
of text mentioning an explicit association between a drug 
and a serious ADR. According to the EMA, a serious 
adverse event is “any untoward medical occurrence that 
at any dose:

•	 results in death,
•	 is life-threatening,
•	 requires inpatient hospitalisation or prolongation of 

existing hospitalisation,
•	 results in persistent or significant disability/incapac-

ity, or
•	 is a congenital anomaly/birth defect.”

It should be distinguished from what is called an Impor-
tant Medical Event (IME) where the outcome might not 
fall into one of these 5 categories. For example, in the 
sentence There was one treatment-related death due to 
myositis in the pembrolizumab group., the serious out-
come (death) is clearly associated with the drug (pem-
brolizumab) through the expression (treatment-related). 
Conversely, in We observed Rivaroxaban-induced rash in 
60% of the patients, the side effect mentioned cannot be 
qualified as serious. As such, it would be regarded as a 
safety issue by the regulator. Meanwhile, the tremendous 
increase of publication volume, and the number of treat-
ments that require authorization in a limited time frame 
make it practically impossible for medical reviewers to 
review all documents exhaustively. Consequently, critical 
safety-related information can be missed when applying a 
human-only process.

Even though many publications have focused on litera-
ture review assistance [1–3] or on the detection of rela-
tionship between drug and ADR [4–8], only two have 
proposed approaches to tackle the detection of serious-
ness [9, 10]. Meanwhile, in the first publication, the tar-
geted documents are FAERS reports which differ from 
biomedical literature in terms of syntax and vocabulary. 
The second one, thus tested on biomedical corpus, does 
not provide any kind of relationship between a drug and 
an adverse event.

In this paper, we present LiSA (Literature Search 
Application), an AI-based system designed to assist 
medical reviewers in their market surveillance by auto-
matically screening the biomedical literature to detect 
safety signals.

LiSA was designed to enable medical reviewers to 
monitor the publication of articles related to potential 
safety signals on medical treatments or medicines. More 

specifically, it is able to identify, filter and rank publica-
tions mentioning an established relationship between a 
specified drug and one or several serious Adverse Events 
(SAE), i.e. severe Adverse Drug Reactions (SADR). To 
meet these goals, we propose 4 contributions to the prob-
lem of pharmacovigilance information retrieval from 
open data literature: 

1.	 A deep learning pipeline for the identification of seri-
ous adverse events within biomedical literature based 
on Pub-Med. The performance achieved is respec-
tively of 81.1% in precision and 88.6% in recall.

2.	 A visualization tool designed to allow biomedical 
expert to review and monitor the results provided by 
the pipeline for specific drugs.

3.	 A modular pipeline built on pre-existing and inde-
pendent open source models (transformers) allow-
ing flexibility of usage for related use-cases in phar-
macovigilance. This approach also provides more 
explainability compared to a lone neural network 
algorithm. The pipeline, instead of creating a new 
neural network algorithm with very specific outputs, 
is composed of independent algorithms providing 
intermediate outputs. These outputs are then com-
bined to build an efficient and performing system 
aiming at qualifying and extracting the information 
corresponding to the following questions:

•	What are the monitored drugs and indication 
mentioned in the document?

•	What are the sentences that mention an estab-
lished relationship between a drug and an AE?

•	What are the entities recognized as Drug or 
Adverse Event?

	 The identification of relevant documents regard-
ing seriousness drug adverse reaction signals is 
then performed on the basis of this information 
and meta data available in the data source (Ex: 
date, journal, type of publication, etc...).

4.	 A benchmark dataset for seriousness classification 
task based on PubMed literature sentences.

After a review of related work, we describe the LiSA 
pipeline architecture and provide a high-level perfor-
mance analysis of the proposed solution.

Related work
In most of the papers mentioned in this section, the focus 
is on Adverse Events (AE) detection and not on Adverse 
Drug Reaction (ADR), meaning that there is no specific 
detection of a drug associated with an adverse event. For 
the sake of clarity we will use, only in this part, the terms 
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Adverse Drug Events (ADR) to indifferently designate AE 
or ADR.

Adverse Drug Reaction detection plays a key role in 
drug-safety surveillance and has motivated the creation 
of various monitoring systems or databases. The FAERS 
[11] reporting system and Medwatch [12], a medical 
product for safety reporting, are the current official solu-
tions provided by the FDA. Meanwhile, these tools are 
only based on declarative reports and not on systematic 
analysis of the biomedical literature or any web-based 
source to identify potential ADRs. Several solutions have 
been proposed to perform biomedical literature monitor-
ing in order to identify, filter and rank papers related to 
a specific domain or medical concept. For example, ASE 
[13] demonstrates the value of reference management, 
statistics, natural language summarizing to interactively 
select key papers. STELLAR [3] leverages data mining 
techniques to help researcher to identify, rank and rec-
ommend reference papers for a specific literature review. 
More recently, [1] proposed ASReview, an efficient active 
learning based-tool to perform systematic literature 
review and meta-analysis.

As per today, only a small number of literature review 
systems relate to adverse drug reactions detection. 
Among them, the PV-OWL tool [2] was built to link dif-
ferent databases to obtain novel safety indicators (FAERS, 
PubMed, social media...). The semi-automated pipeline 
published by [14] supports extracting ADR pairs from 
adverse events databases using statistical BPCNN algo-
rithm for Natural Language Processing. Among other 
classical approaches commonly used in NLP, distribu-
tional semantics based on patterns of ADR co-reporting 
[15], Hidden Markov Models [16] or disproportionality 
analysis (DPA) [17] were already attempted to perform 
ADR detection. In 2012, Gurulingappa, Harsha et al. pub-
lished an open-source reference dataset and developed a 
dictionary-based algorithm for extraction of adverse drug 
events in PubMed literature [18, 19]. Following the signif-
icant advances in natural language processing with deep 
learning, more recent publications have exploited these 
technologies to improve safety signal detection. Several 
works perform ADR detection and extraction on social 
networks (e.g. Twitter) or on drugs review platforms like 
Drugs.com using deep learning techniques [4–8].

However, there is a lack of studies aimed at predict-
ing the seriousness of adverse events or any other type 
of qualification. The seriousness of an adverse event is 
nevertheless critical since it will decide whether or not to 
trigger actions from the safety surveillance agencies. We 
only found two publications related to this specific topic. 
The first one from [9] is based on FAERS report and does 
not treat biomedical literature. On the contrary, the sec-
ond provides a robust approach to detect, extract and 

categorize serious adverse events [10]. The study relies on 
three different deep learning algorithms for seriousness 
classification, seriousness categorization and seriousness 
annotation. Performance is evaluated on three datasets 
among which one is built on biomedical literature. Like 
the latter study from [10], which will also be used as the 
primary basis for performance evaluation, LiSA is capa-
ble of qualifying potential severity but differs in its ability 
to detect and extract adverse drug reaction entities and 
classify documents for display in a literature search tool 
interface.

The LiSA pipeline description
The architecture described in this section is the final 
result of a sequence of iterations aimed at improving the 
overall performance to maintain a satisfactory balance 
between precision and recall (more details are available 
in the “Results and discussion” sect.). The objective of the 
following steps is to identify and extract relevant infor-
mation in documents (drug names, Adverse Events, asso-
ciation between drug and AE, seriousness,...) to be used 
for the final ranking and filtering of articles. The docu-
ment processing pipeline is described in Fig. 1 below.

Query definition and document collection
Most of the medical publications that mention adverse 
drug reaction are published and available through Pub-
Med, a free archive of biomedical and life sciences journal 
literature and considered as a reference for biomedical 
publications. Some publications require a licensed access, 
but still provide a free version of the corresponding 
abstract. Therefore, PubMed was used as the main data 
source for literature monitoring to build the system. By 
construction, documents collection should be associated 
to a “query” which is composed of a combination search 
terms. A query contains a main drug, an optional second 
drug and optional indication. Indication should be only 
approved indication to avoid the case where indication 
and adverse events are confused. Consequently, LiSA 
collects all articles available on PubMed published on 
the last six years1 associated to a query through the Pub-
Med API. This timeframe was chosen as a good tradeoff 
between actuality of information and being sure not to 
miss a relevant signal that might have been reported a 
while ago. Only the main drug serves as keyword search 
to trigger the API. Other query terms (optional drug and 
indication) are only searched to tag the document if they 
are mentioned in it.

1  This number was chosen by experts as a good compromise between time-
liness of information and the certainty of not missing a relevant signal that 
might have been reported some time ago.



Page 4 of 16Martenot et al. BMC Medical Informatics and Decision Making          (2022) 22:338 

Fig. 1  Decision diagram of the document processing pipeline. Green color boxes represent regex-based algorithms, blue color boxes represent 
deep learning based algorithms and purple color boxes fuzzy-matching based algorithms
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Drug and indication could be expressed under various 
synonyms in biomedical literature. To ensure the com-
prehensiveness of data collection, every drug and indi-
cation term is conjointly searched with all its synonyms 
based on open-source molecule and disease classifica-
tion. For drug, we used the Chembl database [20], and for 
indications the MedDRA [21] hierarchy. Table 1 gives an 
example of a query definition.

Document preprocessing
This section describes the methodology applied to pre-
process documents into a suitable format for deep learn-
ing algorithms described below.

Data preparation
To structure the documents, we propose a standard 
architecture able to accommodate any type of collected 
documents or data sources and adapted to natural lan-
guage processing algorithms. As a matter of fact, raw 
documents cannot be processed directly by transformers 
and achieve a satisfying performance [22]. They should 
be split into meaning units of limited number of tokens 
like sentence or short paragraphs. This process, called 
sentence tokenization, is performed with a pre-built algo-
rithm (on common English language) from the package 
nltk and adapted with specific cases found in biomedical 
literature.

Structured data is then formatted into 3 different 
tables:

•	 Documents table: This table stores all the metadata 
and the full content of a document. This table con-
tains one line per document.

•	 Contents table: This table stores only the content of a 
document but split in different sections or paragraphs 
based on the pre-defined structuration already avail-
able in the document (e.g.: abstract, methods, results, 
conclusions...). The contents available in figures cap-
tions or tables was not collected.

•	 Meaning units table: This table stores information at 
sentence level and is built from the contents table. 
A section or paragraph is split in different sentences 
and each sentence represents one line in this table. 
During the split, if a sentence is too short (between 
4 to 10 words), it is concatenated with either the pre-
vious or the next one (only in case it is less than 20 
words long) to reduce the risk of missing an AE-Drug 
relationship. These choices were applied for two rea-
sons:

–	 Concerning the maximum length of a mean-
ing unit: BERT input size is limited to 512 tokens, 
which makes it impossible to use a whole article 

as input for prediction. Furthermore, it has been 
shown in the literature that BERT performs better 
on a limited number of tokens, therefore sentence 
as in input will be better than paragraph as in input.

–	 Concerning the minimum length of a meaning 
unit: this decision was motivated by the empirical 
observation that in case of very short sentences, 
one information was actually present in the adja-
cent sentence. The threshold number of tokens was 
selected empirically and could be optimized in fur-
ther work.

This generic structure has been designed to fit any type of 
document and serves as a basis for the visualisation tool 
presented in the “Visualisation interface” section.

Drug and indication search
The first filter applies to all meaning units found in col-
lected documents and is based on a simple keyword 
search method. We use the Aho-corasick algorithm [23], 
an efficient dictionary-matching algorithm, to search for 
a drug term and associated synonyms in every meaning 
unit. Aho-corasick was used for its computation effi-
ciency and because drug names have an invariant spelling 
in biomedical literature, there is thus no need to per-
form fuzzy-matching at this step. This association is then 
stored in the meaning units table. This step has a double 
objective:

•	 First, to isolate the meaning units associated with the 
drug of interest (since LiSA is built to monitor seri-
ous adverse events associated with a defined drug).

•	 Second, to reduce the number of meaning units to 
be used as input for the downstream deep learning 
modules that are more computationally intensive.

At the same time, a second keyword search is applied to 
identify mentions of therapeutic indications in histori-
cal documents. Unlike drug search, indication search is 
only performed at document level and is used to pro-
vide a clue of whether the document discusses about a 
drug aiming at treating a specific indication. The detec-
tion of an established relationship between a molecule 
and a disease is not performed in this pipeline. This task 
would be part of a possible improvement. The indica-
tion of interest are defined by biomedical reviewers and 
enriched with associated synonyms using the MedDRA 
hierarchy. Meanwhile, unlike drug names, indication 
terms are frequently composed of multiple tokens, which 
are not always expressed with the exact same form in the 
literature. For example the MedDRA indication “B-cell 
chronic lymphocytic leukaemia” could be found as “B-cell 
lymphocytic leukaemia” or “lymphocytic leukaemia of 
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B-cell” in published articles. Therefore a simple expres-
sion search will most likely miss some expressions associ-
ated to the same indication. To overcome this problem, 
we built a fuzzy-matching algorithm allowing permuted 
and incomplete expression of an indication to be found 
in the text, which creates a list of expressions on the basis 
of a root indication. This list is composed of all permuta-
tions of the tokens contained in the root indication, with 
a random suppression of some of them to keep at least 2 
tokens. All the expression of that list are then searched in 
the document, with the same Aho-corasick algorithm but 
allowing the presence of 20 characters between 2 con-
secutive tokens of the list. For example when searching 
for “B-cell lymphocytic leukaemia”, the expression “B-cell 
and C-cell lymphocytic leukaemia” will be accepted by 
this algorithm.

Deep learning
The three main AI modules presented in this section are 
the core of LiSA. They correspond to 3 different NLP 
tasks which are computed in parallel for all sentences 
containing a monitored drug (as described in the next 
section). Once calculated and stored in the database the 
different information are used to filter and qualify the hit 
sentences and relevant documents as depicted in Fig. 2. 
Details about the different pre-trained algorithms and 
their respective performance are provided in Table 3.

Drug‑AE relationship classification
To assess the association between a drug and an AE, we 
chose to rely on state of the art deep learning algorithms 
with attention-based mechanism (BERT). This family 
of algorithms is trained on very large corpora to build 
contextual embeddings and has been shown to perform 
extremely well in highly context-dependent prediction 
tasks, such as AE detection. The presence of a drug-AE 
causality relationship within a sentence was predicted 
with a two class (“has causality”, “has no causality”) sen-
tence classifier, as defined in the ADE-Corpus-V2 dataset 
[18] used for training. This dataset contains more than 20 
000 sentences extracted from PubMed and pre-labelled 
for drug-AE causality classification. In particular, the two 
classes are defined without prior knowledge of the enti-
ties corresponding to drug and ADRs. The ADE-Corpus-
V2 dataset was split into training, validation, and testing 
sets with the ratio of 8:1:1 and used to fine-tune several 
pre-trained algorithms and to select the most accurate 
one.

In order to further increase prediction performance, 
we performed manual data augmentation based on 
badly predicted observations of ADE-corpus-V2. Typi-
cal treated case are sentences including a negation form, 
containing an unspecified adverse effect (“AEs”, “TRAEs”, 

“Serious adverse effects”) or related to specific lexical 
fields. The score threshold to predict a sentence as posi-
tive was chosen at 0.2. This value offers the highest pos-
sible recall and keep precision higher than 0.9 (threshold 
determination was manually performed based on a pre-
cision-recall curve) In the production version of LiSA, 
every meaning units predicted class and score are stored 
in the meaning units table.

Named Entity Recognition (NER)
LiSA is also supposed to identify the different entities 
found in a relevant document corresponding to a drug or 
an Adverse Drug Reaction. For this task, we used Named 
Entity Recognition (NER) pre-trained algorithms within 
the same family of algorithms built on BERT architec-
ture. Using the same open source corpus, we fine-tuned 
and bench-marked several models for the task of identi-
fying two different entities: drug and ADR.

The NER task was built as defined in the 
ADE − corpus − V 2dataset [19]: find spans associated 
to 2 types of entities: DRUG and AE. No distinction was 
made between beginning, inside and outside tokens of a 
selected entity.

In the final pipeline, the entity detection is only applied 
on meaning units that successfully passed the drug-AE 
causality prediction with a score higher than the defined 
threshold (the standard threshold value 0.5 was used). 
This pre-filtering step was made to reduce the inference 
computation time. As for the previous step, detected 
entities and associated scores are stored in the mean-
ing units database. The NER step was also applied after 
Drug-AE relationship classification since it reduces the 
computation time without major change in terms of per-
formance. Inference time remains the most time-con-
suming task in the LiSA pipeline, which is critical for the 
system to be used in production.

Seriousness score prediction
According to the European Medicines Agency [24], an 
adverse event can be qualified of serious of the consecu-
tive reaction to a treatment:

•	 results in death
•	 is life-threatening
•	 requires inpatient hospitalisation or prolongation of 

existing hospitalisation
•	 results in persistent or significant disability/incapac-

ity
•	 is a congenital anomaly/birth defect.

This definition clearly underlines the fact that the seri-
ousness of an ADR is measured according to the outcome 
that it produces, whose expression in a document, is 
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here again, highly context-dependent. BERT-like archi-
tecture based on contextual embeddings is once more a 
very promising solution. The same training framework 
applied in the two previous NLP tasks was applied here. 
We fine-tuned several pre-trained models on a sentence 
classification task. Unlike common ADR detection, we 
did not found an open access dataset to train the serious-
ness detection algorithm. This problem was overcome 
by labelling 7776 sentences extracted from PubMed in 
three categories: “serious”, “important medical event”, 
“none” (a “serious” sentence being an “important medi-
cal event” sentence with a serious outcome). The label-
ling process was performed by medical reviewers and 
based on examples extracted from positive examples of 
the ADE − corpus − V 2 dataset [18]. The third class 
“important medical event” was only added to have a 
more detailed labelled dataset for possible additional 
application in ADR detection. The ADR entities were 
not provided to the expert during annotation to force the 
annotator to take into account the full sentence and not 
only part of it (like extacted ADR) to make his decision. 
In addition, we performed data augmentation by semi-
automatically building sentence examples to address 
some weaknesses of the algorithm in specific contexts or 
syntax (negation, cancer, etc..), that were also annotated 
by medical experts before being included in the training 
set. 917 sentences were used as a testing test and allowed 
to reach a performance at the state of the art. More con-
cretely, this models yields a class and a score and is only 
calculated on meaning units that contains at least one 
drug entity and one ADR entity from the NER module.

Post‑processing for performance improvement
Although the performances obtained by the previous 
pipeline on average matches the level reached in recent 
publications [10, 19] (more details in the “Results” Sect.), 
it appeared that some specific cases were relatively badly 
predicted. A typical encountered issue was a random 
detection of non specific adverse events correspond-
ing to expressions like “AE”, “adverse effects”, “TRAEs”,... 
To address those issues, different strategies were imple-
mented in addition to the improvement of the three pre-
vious deep learning algorithms by data augmentation.

The first strategy implemented was the use of regu-
lar expressions that by themselves indicate the presence 
of an adverse event in sentence. A few example of these 
are “side/adverse event(s)/effect(s)/reaction(s)” or “(TR)
AE(s)”. The same method is applied to the case of non 
specific serious adverse events with regular expressions 
such as “serious adverse event(s)/effect(s)/reaction(s)”, 
“grade 4/5 reaction(s)” or “SAE(s)”. This double search is 

applied on all meaning units containing an drug of inter-
est since they are computationally light.

The second strategy used is specifically designed to 
catch serious adverse outcomes based on a list of terms 
built together with biomedical experts. That list con-
tains expressions of diseases or reactions that are always 
associated with a serious outcome (death, hospitaliza-
tion, infirmity, congenital, life-threatening). This is for 
example the case for “pneumonia”, “ventricular fibril-
lation”, “intracranial bleeding”,“teratogenic effects”. The 
same fuzzy-matching approaches as the one described 
in the previous section is applied in this case, since we are 
considering multiple-tokens expressions. Unlike regular 
expressions search, the fuzzy-matching is only applied to 
meaning units that were rejected by the seriousness score 
algorithm to optimize the computation time.

Document filtering and ranking
LiSA is built to provide a curated list of documents to the 
user, as well as the sentences where safety signals (called 
“hits”) are detected, and the recognized entities (drug and 
ADR). The decision process depicted in Fig. 1 is used to 
select and filter the documents to be finally displayed to 
the final user. It can appear counter-intuitive that the AE-
drug relationship classification results are used before the 
entity recognition. This order showed the best perfor-
mance and was selected after different experiments that 
are not detailed in this paper.

A rule-based system was also implemented to calcu-
late a ranking score based on some information extracted 
from documents (sentence hit scores, number of hits per 
document,...). This score is then used by the user to rank 
the relevant papers in the visualisation interface.

Visualisation interface
Visualizing and exploring the results is key to ensure 
user adoption. Depending of the query definition, the 
pipeline can return a relatively large number of docu-
ments (volume of some example queries are provided 
on Fig.  5) indeed. In order to prevent users from being 
overwhelmed by a mass of articles to review, and in order 
for them to monitor results over time, we propose a sim-
ple exploration interface built with PowerBI, a powerful 
and cost-effective data visualisation tool. Captures of the 
two main interfaces are presented on Fig. 3,  4. First the 
QUERY DEFINITION interface allows a user to create or 
join search queries containing one or several search cri-
teria, as defined above. Second, the RESULTS interface 
displays documents found in the literature, with at least 
one hit mentioning a serious drug adverse reaction. On 
the left side, a series of filtering options (publication date, 
indication found, AR Frequency, Route of administra-
tion, etc...) are available to help the user refine displayed 
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results. These filters are fed by information already 
extracted by the pipeline, and by results from keyword 
searches performed by powerQuery (PowerBI’s data 
preparation engine). The results can be explored at a doc-
ument/sentence level (high level results) showing only 
information down to the sentence and document, and 
at a more detailed level (detailed results) which includes 
ADR entities detected in the text.

Results and discussion
The following section is dedicated to:

•	 Describing the obtained results and justify the need 
for the use of a new benchmark dataset for evaluating 
the task of serious ADR detection.

•	 Discussing the limits of the current pipeline and pave 
the way for future work.

Results
Performance assessment was performed with two 
strategies:

•	 Evaluate the results based on a train/test approach 
on different datasets for different tasks. The perfor-
mance of the tested models is displayed in Table 3.

•	 Evaluate the performance of LiSA from the perspec-
tive of medical reviewers (end users).

Implementation details
For individual NLP tasks evaluation, we used a spe-
cific test dataset for each task. This test set was created 
by selecting 10% of available labeled data that remained 
unseen by the algorithm. For AE-drug relationship clas-
sification as well as NER, we used the ADE-corpus-v2 
dataset. For seriousness classification, the test set was 
carved out of the manually labelled dataset mentioned in 
subsection. Training was systematically performed with 

a learning rate of 3E-5, using the Adam optimizer and a 
batch size equal to 16. The pre-trained language model 
used in the evaluation are detailed in Table 2.

Evaluation metrics
We choose to first evaluate the performance separately 
at task level and select the best performing algorithm 
according to results displayed in Table  3. Meanwhile, a 
good performance of each independent algorithm does 
not necessary imply a good performance of the whole 
pipeline. This could especially be the case if the decision 
process that narrows down the scope of relevant sen-
tences with successive filters becomes too restrictive. In 
addition to that, the performance of each independent 
algorithm is calculated at the meaning units level and 
not at the document level, which is a more representa-
tive metric for the intended use-case of LiSA. Nonethe-
less, performance evaluation at document level is difficult 
since it requires to find a sample corpus of relevant pub-
lications in the literature. That sample should have the 
same ratio of relevant and irrelevant documents available 
in PubMed. However it is almost impossible to estimate 
that ratio unless going through hundreds of articles for 
every single drug.

Instead, we propose two methods to measure the 
global performance of the pipeline. First, we calculate the 
precision and recall at sentence level only, with a sam-
ple dataset extracted from PubMed. Second, we propose 
to evaluate LiSA with a simple keyword search-based 
method to perform safety monitoring literature review.

Dataset‑based performance evaluation
Sentence level evaluation of LiSA

To assess the performance at sentence level, we chose 
to use the classic performance metric for binary classifi-
cation: precision, recall and f1-score. To calculate those 
metrics, we retrieved all documents associated with a 
list of drugs, as described in “The LiSA pipeline descrip-
tion” section. The list of selected drugs was selected to 

Table 1  Example of a query definition used as input to LiSA

Drug 1 (main) Drug 1 synonyms Drug 2 Drug 2 synonyms [20] Indications

DEBIO 1143 AT-406
D-1143
DEBIO-1143
IAP INHIBITOR AT-406
SM-406
Xevinapant

Cisplatin NSC-131558
Platinol
SM-406
Platinol-AQ

Squamous 
cell carci‑
noma
of head and 
neck
Squamous 
cell carci‑
noma
of head and 
neck
metastatic
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Fig. 2  Schematized machine learning architecture of the LiSA pipeline and its three main modules. Unlike other post processing tasks, the serious 
regex search task  is performed before deep learning inference and is not represented on the schema



Page 10 of 16Martenot et al. BMC Medical Informatics and Decision Making          (2022) 22:338 

demonstrate how LiSA performs with new preparations, 
named with labcodes, and with established tradenames 
and comprise compounds for which certain signals were 
known to the experts in order to check whether they had 
been found accordingly (the list is available in “Appen-
dix”). All documents were then fed into the LiSA pipeline 
to detect all positives sentences (hits) and their parent 
articles. The volume of documents and meaning units 
after every successive filter is available in Fig. 5.

In the absence of a benchmark dataset to evaluate the 
performance of serious ADR detection, we created the 
SADR dataset with the help of medical reviewers with 
the following procedure. We first collected all documents 
freely available on Pubmed that contains a drug in the 
list available in “Appendix ”, and only kept the sentences 
that explicitly contains one of the drugs (since its absence 
would inevitably make the sentence irrelevant). These 
sentences were passed to the pipeline to get a predic-
tion regarding the presence of a serious ADR. Then we 
asked medical experts to review the sentences and check 
whether the prediction was correct or not. In total, 1231 
sentences from 988 unique documents were analyzed, 

among which 275 are abstracts only and 713 also pro-
vide main text. Tables and figures were not analyzed, as 
well as references. In that sample, LiSA reached a perfor-
mance of 88.6 % in recall, 81.1 % in precision and 84,7% 
in F1-score. We observed better results on abstracts sen-
tences with 89.7 % in recall, 81.4 % in precision and 85.3% 
in F1-score than on documents other parts (TITLE, 
INTRO, METHODS, RESULTS, DISCUSS, CASE, 
CONCL). More details is provided in Table 4.

The achieved performance makes LiSA a state of the art 
system in terms of safety signal detection for the use-case 
considered in as much as it is closed to the performance 
obtained in [10]. Meanwhile, the task evaluated in this 
paper differs from the case of LiSA. Especially, there is 
no mention of a drug-AE relationship classification task. 
In addition there is no code available neither benchmark 
dataset from [10] that could have been used for direct 
comparison. For benchmark purpose, we provide the test 
dataset used to assess LiSA’s performance at sentence 
level, in supplementary materials.

The performance is higher for recall than for precision. 
This was designed on purpose, since there is a stronger 

Fig. 3  Screenshot of the “QUERY DEFINITION” tab of the interface. (1) Drug and indication dictionaries drop-down lists (2) Query preview (3) 
Summary of previously-created queries
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Fig. 4  Screenshot of the “RESULTS” tab of the visualisation interface. (1) Query browser to select a set of results (2) Filtering tab to refine query 
results (3) High-level results table containing general information about results associated to the selected queries (4) Detailed results which provide 
additional information for every article selected in the high-level results table (5) Histogram of results volume of publication by year for the selected 
queries

Table 2  The different pre-trained language models considered in the evaluation, their version in the HuggingFace repository and the 
type of pre-training

Pre-trained Language model Version Corpus Pre-training

UMLSBert_ENG [25] Pubmed + UMLS Continual pretraining

+ weight adjustement

biobert-base-cased-v1.1 [26] PubMEd Continual pretraining

bluebert_pubmed_uncased Pubmed + MIMIC III notes Continual pretraining

_L-12_H-768_A-12 [27]

scibert_scivocab_uncased [28] Semantic Scholar From scratch

Bio_clinicalBERT [29] MIMIC III notes Continual pretraining

BERT-base-uncased [30] Wikipedia From scratch

BiomedNLP-PubMedBERT-base- Pubmed From scratch

uncased-abstract-fulltext [31]
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need to not miss safety signals publication than achiev-
ing a higher precision. This optimization towards recall 
was especially enabled by the additional post processing 
modules described previously.

As far as the total number of collected documents and 
meaning units is concerned, as displayed in Fig. 5, LiSA 
is able to perform a very imbalanced prediction task with 
a high precision. Indeed with more than 53k documents 
and 3.8 millions meaning units to filter, there are only 
0.2% of meaning units that should be considered as rel-
evant, for about 10% of all collected documents.

Document level evaluation of LiSA
As mentioned before, evaluating the performance at 
document level is quite challenging. We can calculate 
the precision using the benchmark dataset available in 
“Appendix”. Over the 988 documents contained in the 
benchmark dataset, we found a precision of 78.5%.

Meanwhile, we are not in capacity to provide a good 
estimation of LiSA document recall. For that purpose, 
we should be able to measure to which extent the system 
is able to avoid missing relevant articles in the literature, 
which would require to label a corpus of at least a few 
thousand documents (which corresponds to about 80 000 

sentences in total). This is an extremely time consuming 
task and is not immune to potential bias during the docu-
ment selection phase to build the sample corpus.

User‑based performance evaluation
To further assess the ability of LiSA to perform an effi-
cient and comprehensive literature review on safety 
issues, we compare the results obtained by an expert 
medical reviewer using LiSA and using a simple keyword 
based search on PubMed. This type of evaluation is com-
mon in other systems for assisted literature [32].

For that purpose, we selected one drug, chosen for its 
relatively low number of associated papers found in the 
literature, making an exhaustive safety survey difficult. 
The goal is to compare the number of relevant articles 
that a manual search would yield to a LiSA-assisted 
search. On the one hand, a medical reviewer was 
asked to perform keyword search on PubMed with the 
expression “drug” + “serious adverse events” to review 
as much papers as possible within 2 h and retrieve the 
relevant papers and sentence hits only relatively to the 
presence of a serious adverse event. Some examples 
of queries used for this work are “sildenafil adverse 
events”, “emtricitacine serious adverse effects”. On the 
other hand, a second medical reviewer was asked to 
do the same literature review based on LiSA interface, 
within the same time frame. We also performed the 
same work for a drug notoriously known for its serious 
adverse drug effects: Azetolizumab. Due to the large 
number of papers mentioning serious ADRs in the lit-
erature (a few hundreds), the comparative performance 
between LiSA and a manual search is not significant. 
Time frame was limited because LiSA aims at speeding 
up drug monitoring process. Providing unlimited time 
to medical reviewer is not realistic regarding their daily 
work. In addition, the two reviews were performed by 
a different reviewers in order to ensure that the results 
of the second review will not be influenced by the first 

Table 3  Measured Precision, Recall and F1-score performances on the three NLP tasks implemented in the pipeline on test sets

The best value per column is in bold. ThFor the drug/AE entity recognition task, the displayed metrics only concern the AE class. The best model was selected for each 
task, PubMedBERT for NER and seriousness classification, UMLSBERT for AE-Drug relationship classification

AE-Drug relationship classification Named Entity Recognition Seriousness classification

P R F1 P R F1 P R F1

UMLSBERT 0.94 0.93 0.93 0.94 0.96 0.95 0.89 0.87 0.88

bioBERT 0.91 0.93 0.92 0.96 0.95 0.95 0.89 0.90 0.89
blueBERT 0.93 0.89 0.91 0.96 0.93 0.94 0.73 0.83 0.78

sciBERT 0.94 0.92 0.93 0.95 0.95 0.95 0.92 0.81 0.86

Bio_ClinicalBERT 0.94 0.92 0.93 0.97 0.92 0.94 0.68 0.93 0.79

BERT 0.90 0.89 0.90 0.95 0.92 0.93 0.76 0.74 0.75

PubMedBERT 0.95 0.90 0.92 0.96 0.95 0.96 0.87 0.91 0.89

Table 4  Measured performances at sentence level across 
publications section types

Section Recall Precision F1-score Volume

TITLE 0.91 0.91 0.91 34

ABSTRACT​ 0.81 0.90 0.85 448

INTRO 0.80 0.90 0.85 226

METHODS 1.00 0.88 0.93 88

RESULTS 0.85 0.85 0.85 203

DISCUSS 0.75 0.86 0.80 183

CASE 0.67 1.00 0.80 25

CONCL 0.86 1.00 0.92 24
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one if the same reviewer was doing both of them. Inter-
rater Reliability between reviewers was measured on 
other molecules and was superior to 95

For a survey based on the drugs “Emtricitabine” and 
“Aflibercept”, the results achieved were as follows:

Emtricitabine:

7 articles were found with the keyword-based search
18 articles were found with the LiSA-assisted search.

Aflibercept:

8 articles were found with the keyword-based search
17 articles were found with the LiSA-assisted search.

The use of LiSA therefore makes it possible to largely 
increase the volume of relevant papers found during a 
defined search time (by a factor 2.5), especially when 
serious ADRs mentions are rare in the literature.

Fig. 5  Volume of documents ( Ndocs ) and meaning units ( Nmu ) after all decision steps in the LiSA pipeline. The volume corresponds to the 
documents collected with the drug list available in “Appendix”
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Discussion
Comparison with state of the art models
The comparative analysis of pre-trained language models 
has shown different behaviors depending on the task:

•	 for AE-Drug relationship, no major differences were 
observed between the 7 selected models. This is most 
probably linked to the nature itself of the task which 
consists in detecting an association/causality relation-
ship. This will not depends on specific biomedical 
vocabulary but rather on grammatical forms used to 
link a drug to an adverse event. This is probably why 
non-biomedical models like BERT and sciBERT also 
obtained good results. UMLSBERT provided the best 
baseline in terms of F1-score and was then selected.

•	 For Named Entity Recognition, the ability of a model 
to properly identify entities highly depends on the 
vocabulary learned by the model. On Table  3, the 
F1-score levels largely hide subtle differences in per-
formance for specific biomedical sub-domain. Espe-
cially, we observed that UMLSBERT and PubMed-
BERT performed better on text related to oncology 
where there is a subtle difference between Adverse 
Events and drug effects related to drug mechanisms 
(that could be destructive). The specific pre-training 
of these algorithms might explain their superior-
ity over other models used in the benchmark. We 
choose PubMedBERT as the best performing model.

•	 For seriousness classification, the vocabulary mas-
tered by the model also highly matters. Indeed, many 
serious adverse events expressed with technical 
terms are by essence considered as serious (Stevens 
Johnson Syndrom, Rhabdomyolysis, Agranulocyto-
sis...) and are better captured with specialized models 
like PubMedBERT, BioBERT and UMLSBERT. Pub-
MedBERT was selected in this case.

The lack of extensive work on seriousness detection 
of Adverse Drug Reactions in the literature makes the 
comparison difficult to perform. In addition to that, the 
only publication [10] that tackles the problem does not 
provide any code implementation. Thus, apart from 
re-implementing the solution, there is no possibility to 
compare our algorithm with the one of this publication. 
Meanwhile, on a corpus extracted from Medical Litera-
ture, our pipeline reached a higher performance up to 
0.81 in precision and 0.88 in recall (respectively com-
pared to 0.83 and 0.82 [10]. Even if the dataset are not 
strictly comparable, we can conclude that our pipeline 
reached a state of the art performance on the specific 
task of seriousness classification.

Besides, the calculated overall performance of the 
pipeline at document level relies on a reduced number 

of documents (988). The statistical significance of the 
conclusion might be arguable since we cannot cover all 
the variety of semantic fields available in PubMed. Mean-
while, we believe that the global performance remains 
valid, especially since it is added to the already good per-
formance achieved at sentence level, and calculated over 
a larger volume of examples.

Pipeline flexibility and portability
One important objective of the study was to build a sys-
tem with a flexible architecture to enable the use of the 
pipeline on related use cases. For example, we could 
replace the seriousness classification by seriousness cat-
egorization (Death, Hospitalization, IME, Disability, 
Congenital anomaly [10]) or adverse events grade classi-
fication (Grade 1 to 5). This adjustment would of course 
require to train a new algorithm (for seriousness cat-
egories or adverse events grades classification) but with 
no impact of the 2 other modules. This is made possible 
by the independence of the three algorithms, them not 
being chained. They can then perform inference on the 
same type of input (a sentence containing at least one 
monitored drug). This approach is likely to introduce an 
overlap between the 3 NLP tasks that could be criticized, 
but allows a full flexibility in the combination of their 
outputs to build the required decision process.

limitations of the proposed system
A first type of limitation of our systel is related to relation 
extraction. Indeed, the proposed pipeline does not pre-
dict a direct relationship between an adverse event and a 
drug as defined, for example, in relation extraction tasks 
in NLP. As a matter of fact, the AE-drug relationship clas-
sifier is only trained to categorize meaning units into 2 
categories “states a relationship” or “does not state a rela-
tionship”. Therefore, if two AEs and two drugs are coex-
isting in the same meaning unit, the pipeline is not able 
to separate and identify the possible multiple AE-drug 
relationships. Meanwhile, due to the relatively reduced 
length of meaning units (25 tokens on average and max 
80–100 tokens) this situation remains very rare and has 
low impact on the performance.

Another limitation is related to the very assessment of 
the recall. Indeed, one of the main difficulty in assessing 
the performance of such systems lies in evaluating the pro-
portion of documents existing in the literature, that are 
actually missed by the system. As mentioned during the 
results presentation, this would require the extraction of 
a test sample with the same distribution of relevant docu-
ments available in the literature. Unfortunately, except 
with a comprehensive work consisting of reviewing hun-
dreds of articles and a strict control of bias during article 
selection, it is very difficult to get a correct and unbiased 
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estimation of the recall. Instead, we chose to evaluate the 
recall only within relevant documents at sentence level.

Conclusion
In this paper, we presented the LiSA approach, a deep 
learning based pipeline for Adverse Drug Reaction moni-
toring in the biomedical literature. To our knowledge, our 
work is the first one to rely on a modular architecture of 
open-source fine-tuned models and providing access to 
multilevel outputs (AE/Drug relationship, AE and Drug 
entities, ADR Seriousness monitoring). We evaluated 
the performance of the system at two levels a) predictive 
performance based on a benchmark dataset labeled by 
medical reviewer and made available for future research 
and b) user-based performance where ADR monitoring 
with LiSA is compared with a semi-manual work based 
on keyword search on PubMed search engine. We have 
shown that based on LiSA user interface, a medical 
reviewer is able to retrieve 2.5 times more relevant docu-
ments than with a simple semi-manual search. Assisted 
literature monitoring with deep learning has proved to 
be a viable an extremely efficient approach to address the 
current challenges in pharmacovigilance. Future research 
could move toward assessing relationships across the 
boundaries of single units of meaning, attempting to 
combine the benefits of the deep learning described here 
with traditional language models, which would expand 
the application areas of the pipeline described here for 
other pharmacovigilance tasks.

Appendix

Preferred name Synonyms used when available

Fluticasone Fluticasone furoate FLUTICASONE FUROATE/ GSK 685 
698/ GSK685968/ GSK-685968/ 
GW685698X/ GW-685698X

PEMBROLIZUMAB KEYLYNK-010 COMPONENT PEM‑
BROLIZUMAB/ LAMBROLIZUMAB/ 
MK-3475/ PEMBROLIZUMAB/ 
PEMBROLIZUMAB COMPONENT OF 
KEYLYNK-010/ SCH-900475

BAY2327949

NIVOLUMAB NIVOLUMAB/ ONO-4538/ MDX-
1106/ BMS-986298/ BMS-936558

IPILIMUMAB BMS-734016/ MDX-CTLA-4/ MDX-
101/ MDX-CTLA4/ MDX-010

METAMIZOLE SODIUM DIPYRONE/ METAMIZOLE SODIUM/ 
METAMIZOLE SODIUM MONOHY‑
DRATE/ METHAMPYRONE/ NORA‑
MIDOPYRINE METHANESULFONATE 
SODIUM/ NSC-73205/ SULPYRINE/ 
SULPYRINE HYDRATE

Preferred name Synonyms used when available

IFOSFAMIDE IFOSFAMIDE/ MJF 9325/ MJF-9325/ 
NSC-109724/ Z4942/ Z-4942/ Ifex/ 
Ifsofamide/ MITOXANA

MK-8931

Darboepoetin alfa

EPOETIN ALFA

INGENOL MEBUTATE AGN 204332/ INGENOL MEBUTATE/ 
PEP005/ PEP-005

Cisplatin NSC-131558/ TRANSPLATIN/ Cispl‑
atin/ Platinol/ Platinol-AQ

DEBIO 1143 DEBIO 1143/ AT-406/ D-1143/ 
DEBIO-1143/ IAP INHIBITOR AT-406/ 
SM-406/ XEVINAPANT

REMDESIVIR GS 5734/ GS-5734/ REMDESIVIR

RIVAROXABAN BAY 59-7939/ BAY-59-7939/ 
JNJ39039039/ JNJ-39039039/ 
RIVAROXABAN

Atezolizumab ATEZOLIZUMAB/ Anti-PDL1/ Anti-
PD-L1/ MPDL3280A/ MPDL-3280A/ 
RG7446/ RG-7446/ TECENTRIQ

FINGOLIMOD Fingolimod/ FINGOLIMOD/ FTY-720/ 
FINGOLIMOD HYDROCHLORIDE/ 
FTY720/ FTY-720 HYDROCHLORIDE/ 
TY720 HYDROCHLORIDE

Abbreviations
NLP:: Natural language processing; NER:: Named entity recognition; ADR:: 
Adverse drug reaction; AR:: Adverse reaction; SADR:: Severe adverse drug reac‑
tion; AE:: Adverse effect; ADE:: Adverse drug effect; SAE:: Serious adverse effect.
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