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Abstract 

Background:  Microbiome analysis generally requires PCR-based or metagenomic shotgun sequencing, sophis-
ticated programs, and large volumes of data. Alternative approaches based on widely available RNA-seq data are 
constrained because of sequence similarities between the transcriptomes of microbes/viruses and those of the host, 
compounded by the extreme abundance of host sequences in such libraries. Current approaches are also limited to 
specific microbial groups. There is a need for alternative methods of microbiome analysis that encompass the entire 
tree of life.

Results:  We report a method to specifically retrieve non-human sequences in human tissue RNA-seq data. For cellu-
lar microbes we used a bioinformatic ’net’, based on filtered 64-mer sequences designed from small subunit riboso-
mal RNA (rRNA) sequences across the Tree of Life (the ’electronic tree of life’, eToL), to comprehensively (98%) entrap all 
non-human rRNA sequences present in the target tissue. Using brain as a model, retrieval of matching reads, re-exclu-
sion of human-related sequences, followed by contig building and species identification, is followed by confirmation 
of the abundance and identity of the corresponding species groups. We provide methods to automate this analysis. 
The method reduces the computation time versus metagenomics by a factor of >1000. A variant approach is neces-
sary for viruses. Again, because of significant matches between viral and human sequences, a ’stripping’ approach is 
essential. Contamination during workup is a potential problem, and we discuss strategies to circumvent this issue. To 
illustrate the versatility of the method we report the use of the eToL methodology to unambiguously identify exog-
enous microbial and viral sequences in human tissue RNA-seq data across the entire tree of life including Archaea, 
Bacteria, Chloroplastida, basal Eukaryota, Fungi, and Holozoa/Metazoa, and discuss the technical and bioinformatic 
challenges involved.

Conclusions:  This generic methodology is likely to find wide application in microbiome analysis including 
diagnostics.
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Introduction
There is growing interest in the role that the micro-
biome plays in health and disease. Higher organisms 
including humans have evolved in the presence of 
diverse and abundant microbial species and viruses. 
Although some are evident pathogens, others are essen-
tial for normal physiological function. In plants there 
is a symbiotic relationship between the plant host and 

*Correspondence:  richard.lathe@ed.ac.uk

2 Division of Infection Medicine, University of Edinburgh, Little France, 
Edinburgh EH16 4SB, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-022-02671-2&domain=pdf


Page 2 of 27Hu et al. BMC Microbiology          (2022) 22:317 

mycorrhizal microbes that are necessary for plant nutri-
tion. In human, the gut microbiome is a key component 
of normal physiology where it contributes to nutrition, 
physiological homeostasis, and immunity development, 
and dysregulation of the gut microbiome (dysbiosis) is 
known to contribute to multiple disorders [1, 2]. As spe-
cific examples of the beneficial roles of the microbiome, 
the human microbiome is a major source of vitamins 
[3], and dysbiosis in experimental animals and human 
is implicated in immune system deficits [4] and neuro-
cognitive disorders [5]. However, it is becoming increas-
ingly clear that tissues other than the gut have their own 
microbiomes, most notably the skin, lung, and the oro-
nasal cavities, as highlighted by the Human Microbi-
ome Project [6, 7] (https://​hmpda​cc.​org/). In addition, 
bacterial species are widely reported in blood of healthy 
individuals (reviewed in [8]), and the majority of cer-
ebrospinal fluid (CSF) samples were found to be positive 
for one or more pathogens, confirmed in most cases by 
direct culture [9]; CSF of individuals with meningitis was 
found to contain diverse microbes [10], and multiple bac-
terial species were found in CSF of control children [11]. 
Diverse viruses are also present in CSF [12]. Further-
more, analysis of normal hamster liver revealed multiple 
bacterial species, confirmed by direct microbial culture 
[13]. The kidney also appears to have its own microbiome 
[14], and the human urinary microbiome (a proxy for the 
kidney) was found to comprise multiple bacterial species 
[15], suggesting that many solid tissues may harbor their 
own individual microbiomes, some detrimental whereas 
others may potentially be beneficial. However, the exact 
spectrum of microorganisms present in important tissues 
such as brain, heart, muscle, breast, and gonads has not 
been established, and future work will be necessary to 
address this issue.

Microbiome characterization is generally based on 
three key techniques: (i) ribosomal RNA (rRNA) analy-
sis, generally assisted by PCR amplification, (ii) DNA-
based metagenomics, and (iii) RNA-seq combined with 
informatic analysis (reviewed in [16–23]), although sev-
eral hybrid methods have been used. In the first, rRNA 
(or rDNA) sequences are amplified using a suite of PCR 
primers, sequenced, and compared against the database. 
Because this depends on the use of short PCR primers, 
the method may lack specificity – risking amplification 
of non-RNA sequences in addition to missing any spe-
cies whose rRNA sequence diverges from the primers. 
Furthermore, differences in abundance require quantita-
tive PCR amplification of each sample followed by deep 
sequencing, and small differences in abundance (e.g., 
2–4-fold changes) are difficult to detect.

The second method is based on metagenomic analy-
sis through shotgun sequencing and genome assembly. 

This requires many-fold more data, often reaching tera-
byte (Tb) levels, and requires dedicated tools to remove 
human sequences and to assemble contigs. Moreover, 
because high sequencing depth is necessary, assembly-
based methods are restricted to highly abundant mem-
bers of the microbiome. Moreover, metagenomics does 
not easily address differential abundance. Both methods 
require extensive wet-lab work and can require machine-
learning tools to unravel the true extent of the microbi-
ome [24].

The third technique is generally based on analysis of 
RNA-seq (sometimes DNA-seq) data for exact matches 
to short k-mers (generally 31-mers) using techniques 
some as Kraken [25] and CLARK [26], but these meth-
ods require careful interpretation because the shortness 
of the sequences means that matches can be found by 
chance and, conversely, variants that differ by a single 
nucleotide can be missed.

Each of the above techniques has advantages and dis-
advantages. In addition to relatively high demands on 
data processing, and sometimes low selectivity, the dif-
ferent methodologies have often given conflicting results. 
We illustrate this through studies on the brain.

Like other tissues, the brain carries a burden of endog-
enous microbes and viruses [27], although these have 
not been well characterized, and some have questioned 
whether there is indeed a brain microbiome [28]. Bacte-
rial sequences were reported in surgical epilepsy sam-
ples of human brain, and peptidoglycan-positive bodies 
consistent with bacteria were detected by immunohisto-
chemistry and microscopy [29]; bacterial infection could 
be transmitted onwards by intracerebral inoculation of 
mice [29]. Roberts et al. reported diverse bacteria, iden-
tified by morphological criteria, upon high-resolution 
imaging of normal human brain [30], and brain of ger-
mfree mice (unlike that of conventionally reared mice) 
was reported to be devoid of microbes [30], although 
this awaits confirmation. In addition, an increasing body 
of evidence suggests that microbes readily enter the 
brain (e.g. [31]), can be detected by in situ immunohis-
tochemistry of brain [32], and that brain infection may 
play a role in neurodegenerative disorders such as Alz-
heimer disease (AD) [33]. Nevertheless, there has been 
extensive debate about which microbes (and how many) 
are present. Chronic inflammation and infection caused 
by spirochetes have been suggested to contribute to the 
slow progression of AD [34]. Chlamydia pneumoniae 
shows associations with late-onset AD [35], and other 
bacteria such as Proteobacteria, Actinobacteria, and Fir-
micutes, as well as Fungi such as Malassezia, Alternaria, 
and Candida spp., have been reported [36]. An impor-
tant PCR-based study revealed multiple bacterial species 
in AD brain [37]. Other work has focused on periodontal 
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pathogens such as Porphyromonas gingivalis [38]. Never-
theless, in other studies very few microbes of this class 
(Bacteriodetes) were found, and other key species impli-
cated such as spirochetes and Chlamydia (see above) 
were not well represented [36, 37]. Furthermore, beyond 
specific target groups, the relative abundances of these 
different species have not been established.

A major limitation is that the majority of studies to date 
have focused on select microbial groups such as bacte-
ria or fungi. Several classes of cellular microbes across 
the known Tree of Life have not been widely studied to 
date, including Archaea, Amoebozoa, Chloroplastida, 
and Eukaryota. This relative dearth of such broader anal-
ysis extends more generally beyond our current target 
tissue (the brain) to tissues analyzed in the majority of 
endeavors.

Many viruses are also present in human tissues. Her-
pes simplex virus 1 (HSV-1) sequences were discovered 
in AD brain around 30 years ago [39]. Infections with 
viruses such as HSV-1 are widespread in the population; 
these generally remain in a silent (latent) form life-long, 
but may be reactivated because of stress, inflammation, 
or other factors, leading to proliferation and localized 
damage. Other viruses, notably human herpesvirus 6A 
(HHV-6A) and 7 (HHV-7), have also been suggested to 
be associated with AD. Readhead et al. used a modified 
ViromeScan workflow [40] and found that the abun-
dance of these two viruses among 515 viral species was 
increased in the transcriptomes of AD brain in three 
of four cohorts compared to normal brain. For spe-
cific viruses, unique 31-mers were generated with Jel-
lyfish [41], RNA-seq reads that are possible human or 
bacterial sequences were filtered, and then mapped to 
the filtered 31-mers to determine viral abundance [40]. 
However, Chorlton [42] challenged these results, sug-
gesting that local alignment by Bowtie2 (http://​bowtie-​
bio.​sourc​eforge.​net/​bowti​e2/​index.​shtml) required only 
a relatively low number of matching bases, and the Best 
Match Tagger (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​agarw​
ala/​bmtag​ger/) had a 2% false negative rate when filter-
ing human-derived reads. Also, hepatitis C virus and 
eradicated variola virus were found in 100% and 97.5% 
of samples, respectively, using the modified ViromeS-
can. KrakenUniq [43], which performs efficient k-mer 
counts in metagenomics and can better identify false-
positive reads, found few HHV-6A reads and no HHV-7 
reads were detected [42]. Allnut et al. used digital drop-
let PCR (ddPCR) to amplify specific regions of HHV-6A 
and HHV-6B in 708 brain sections [44]. PathSeq [45], 
which has high specificity and sensitivity in distinguish-
ing between human and non-human sequences, was 
also used as a complementary method with RNA-seq 
data, which contained part of the cohorts also used by 

Readhead et al., to screen for pathogens from more than 
25 000 microbes, containing 118 human viruses. Neither 
of these methods found associations between HHV-6 and 
AD [44], and the true contribution of herpes and other 
viruses to human brain disease remains unknown.

In addition to viruses, endogenous retroviruses and 
retroelements constitute a further class of replicative ele-
ments that might also contribute to human disease.

In the present work we have devised a different 
approach to microbial identification based on the use of 
long (64-mer) probes to identify sequence matches in 
RNA-seq data. The generation of RNA-seq datasets is 
increasingly rapid and cheap and, moreover, a large num-
ber of RNA-seq datasets generated by other laboratories 
for a variety of research purposes have been filed online 
at repositories such as the National Center for Biotech-
nology Information (NCBI) sequence read archive (SRA) 
database (which now contains over 25 million Terabases 
of open-access sequence information; https://​www.​ncbi.​
nlm.​nih.​gov/​sra). The SRA repository can be searched for 
sequence matches either online or locally (see below) and 
is an increasingly important resource for microbiome 
studies.

Key objectives in the present report have been to devise 
methods that (i) extend to the entire tree of life, (ii) are 
applicable to widely available RNA-seq datasets such as 
those filed at the NCBI SRA repository, (iii) can deter-
mine both the identity and the absolute abundance of 
microbes including viruses and retroelements in human 
tissues, (iv) do not require sophisticated computer exper-
tise or dedicated computer programs other than those 
that are widely available and/or freely downloadable, and 
(v) allow pictorial representation of the microbiome that 
facilitates comparative interpretation of the results.

We report the development of two related methods. 
First, an electronic tree of life (eToL) approach based 
on a ’net’ of 16S/18S rRNA sequences across all cellu-
lar lifeforms to comprehensively retrieve all non-human 
sequences. Second, a ’stripping’ method based on viral 
genomes to unambiguously detect key viral species. In 
this methodology paper we focus on technical and bio-
informatic issues – case studies are presented that illus-
trate the versatility of the method; application of the eToL 
methodology to the human microbiome in select tissues 
will be presented elsewhere. The potential utility of the 
methodology in diagnostic applications is also discussed.

Methodology development
The methodology we have developed is centrally based 
on Basic Local Alignment Search Tool (BLAST) screen-
ing of publicly available RNA-seq libraries (~50 SRAs 
were analyzed in this work) using a suite of probes 
(64-mers for microbial rRNA and whole-genome viral 

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
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sequences) that are filtered to remove sequences with 
matches to human genomic/transcriptomic datasets. We 
present here the detailed rationale behind this approach 
and discuss relevant technical issues.

Cellular microbes: the electronic Tree of Life (eToL) 
approach
According to the three-domain system, cellular life can 
be classified into Archaea, Bacteria, and Eukaryota [46]. 
To address the full diversity of cellular lifeforms we con-
sulted the Open Tree of Life (OToL; https://​tree.​opent​

reeof​life.​org/), a National Science Foundation (NSF) col-
laborative effort across 10 institutions that synthesizes 
phylogenetic trees based on sequence and taxonomic 
data [47–49]. For completeness, alternative phylograms 
include the LifeMap NCBI Version (http://​lifem​ap-​ncbi.​
univ-​lyon1.​fr/), and we refer to this where appropri-
ate. Because OToL is not definitive on the placement of 
bacteria, we followed Schulz et al. [50] for a recent re-
evaluation of the evolutionary phylogeny of bacteria, and 
synthesized a compromise ToL that includes all taxo-
nomic groups, extending from Archaea and Bacteria to 

Fig. 1  The phylogenetic tree for cellular microbes. The phylogenetic tree was obtained from Open Tree of Life project (modified from https://tree.
opentreeoflife.org/) extended to include a recent bacterial consensus tree (main text for details)

https://tree.opentreeoflife.org/
https://tree.opentreeoflife.org/
http://lifemap-ncbi.univ-lyon1.fr/
http://lifemap-ncbi.univ-lyon1.fr/
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Fig. 2  Phylogenetic tree built with rRNA sequences for the key 120 organisms. 16S rRNA sequences for Archaea (red) and Bacteria (orange), and 
18S rRNA sequences for Chloroplastida (yellow), Amoebozoa (green), basal Eukaryota (grey blue), Fungi (blue) and Holozoa (purple). Bootstrap 
values of most of the nodes are over 70 (black), indicating strong phylogenetic support. Nodes with bootstrap values lower than 70 have weaker 
phylogenetic support and are shown in a color gradient from red (low value) to blue (high value. Note that the placements of Fungi, Chloroplastida, 
and Amoebozoa are intermingled, whereas the other groups are tightly clustered
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include Amoebozoa, Chloroplastida, Fungi, basal Eukar-
yota, and Holozoa/Metazoa (Fig. 1).

From this tree 126 species were selected that were 
judged to be equally divergent from each other as esti-
mated by their spacing/position on the tree, taking into 

account the relative diversity of Fungi in particular. Full-
length 16S/18S sequences were downloaded from NCBI. 
To address the diversity of these sequences, and poten-
tial duplications within this dataset, we built a phyloge-
netic tree using Clustal Omega (https://​www.​ebi.​ac.​uk/​

Fig. 3  eToL workflow pipeline. The probe.py was used to download primary sequences and devise probes. The probes were aligned to RNA-seq 
datasets, and the matches (reads) were filtered and counted by EDDIE_ToL.sh, Abundance_ToL.py and Abundance_count.py

https://www.ebi.ac.uk/Tools/msa/clustalo/
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Tools/​msa/​clust​alo/). After exclusion of very close rela-
tives (near-duplicates), we recompiled a list of 120 rRNA 
sequences that span the full diversity of cellular life-
forms (Table S1 in the supplementary data online). These 
sequences were then aligned using MUSCLE (v3.8.31) 
[51], and the IQTree tool (v1.6.6) was used to build a 
maximum likelihood tree with the aligned sequences 
[52]. To find the best-fit model and estimate the phylo-
genetic support of the nodes, the ModelFinder (MFP) 
option [53], and -bb option [54] with 1000 bootstrap 
replicates were chosen, respectively. The phylogenetic 
tree was modified and rooted with the outgroup bacteria 
using the iTOL tool (v6) [55], as shown in Fig. 2.

As will be noted from the figure, it is not entirely con-
sistent with current trees for cellular organisms, and 
some phylogenetically distinct classes showed inter-
mingling in their precise 16S/18S rRNA sequences. 
However, the objective of this work was not to address 
the phylogenetic relationships between the diverse spe-
cies, but instead to devise a means to detect/extract, as 
far as possible, a comprehensive compendium of non-
human sequences in human tissue. We therefore pro-
ceeded to use this collection of 120 rRNA sequences as 
a route towards evaluating the true complexity of cellular 
lifeforms.

Databases
The RNA-seq datasets (n = ~50) used in this work are 
listed in Table S2.

Probe length and specificity
Probing for microbes in RNA-seq data has generally 
exploited the fact that a typical cell contains many thou-
sands of ribosomes (Box 1), whereas housekeeping tran-
scripts are less well represented, often by a factor of 100 
or more. However, a central problem in using rRNA-
based probes to detect specific microbial matches in 
human RNA-seq data is that many, if not the majority, of 
full-length sequence probes detect significant (according 
to conventional criteria regarding the likelihood of detec-
tion by chance) matches, albeit often partial, in human 
rRNA. The problem is accentuated with long probes 
(bacterial 16S rRNA is ~1.5 kb in length, eukaryotic 18S 
rRNA is ~1.9 kb in length; for comparison, bacterial 23S 
large subunit rRNA is ~3 kb, and eukaryotic 28S rRNA 
is ~5 kb in length). As probe length increases, so too 
does the likelihood of finding matches in human rRNA 
sequences as well finding chance matches in non-rRNA 
sequences [56]. Conversely, using short sequences (in 
the range of 20–30 nucleotides) for PCR or k-mer anal-
ysis risks losing specificity, even though (at high strin-
gency) these should be unique in the human genome/

transcriptome, but this does not take into account the 
diversity of polymorphisms in the human population, 
de novo mutations, and sequencing errors. Given that in 
silico analysis by BLAST is formally equivalent to wet-
lab probing by nucleic acid hybridization, we based our 
design on previous calculations that a minimum probe 
length of 62 nt is required, at a biologically plausible/sig-
nificant level of 85% identity, to detect a unique sequence 
in a random collection of nucleotides of the size of the 
human genome (ca 3 × 10e9 nt) with a likelihood of 0.1 
of encountering a similar sequence by chance [56]. For 
simplicity, we adopted a probe length of 64 nt.

Box 1. Transcripts per microbial cell/infected host cell
Cellular microbes: ribosomal copy number 
depends on cell type and growth rate

Readcounts of rRNA provide an indicator of how 
many microbes are present, but there is no direct 
one-to-one relationship between rRNA readcounts 
and microbial cell number. The absolute abundance 
of ribosomes in each cell (ribosomes per cell, RBPC) 
depends on both growth rate and cell type/size. For 
bacteria such as Escherichia coli, RBPC values can 
be up to 70 000 during periods of rapid growth, but 
as low as a few thousand in poor growth conditions 
(http://​book.​bionu​mbers.​org/​how-​many-​ribos​omes-​
are-​in-a-​cell/). In another bacterium, Sphingomonas, 
RBPC can be as low as 200 [57] under poor growth 
conditions. We assume that bacteria in human solid 
tissues grow very slowly, and a compromise estimate 
of 2000 RBPC has been adopted. The same value has 
been assumed for Archaea because they resemble 
bacteria in terms of size.

Eukaryotic cells are generally much larger, contain 
more ribosomes, and for yeast under fast-growing 
conditions 200 000 RBPC have been reported [58, 59]. 
However, as in E. coli, ribosome content depends on 
growth rate [60]. We therefore applied a similar reduc-
tion for what we expect to be very slow-growing cells, 
giving an estimate of 10000 RBPC (fivefold greater 
than in bacteria), noting that the exact RBPC values 
will depend on the species. Although this value could 
apply to other eukaryotes, it may be an underestimate 
because, for example, some large mammalian cells 
can have over a million ribosomes [61]; however, this 
extreme high value is unlikely to be representative of 
microbes more generally.

Virus-infected cells
The problem in estimating how many genomes are 

present per host cell becomes more acute for viruses 
because we must distinguish between latent/quiescent 
infection, where viral transcript counts are expected 
to be similar to those of endogenous housekeeping 

https://www.ebi.ac.uk/Tools/msa/clustalo/
http://book.bionumbers.org/how-many-ribosomes-are-in-a-cell/
http://book.bionumbers.org/how-many-ribosomes-are-in-a-cell/
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genes, and virulent replication, where there can be 
thousands of genomes/transcripts per cell. For this 
reason detection of viral sequences in RNA-seq data 
is likely to detect highly replicative viruses, but could 
potentially miss low-level latency-related transcripts 
from quiescent viruses. This point is discussed in 
more detail in Box 2.

rRNA hypervariable or constant regions
rRNA genes of bacteria and fungi, in particular, are 
known to contain hypervariable regions [62, 63] as well 
as conserved regions. Although the use of hypervariable 
regions has the advantage that it can identify exact spe-
cies (or groups of species), the drawback is that probes 
based exclusively on hypervariable regions are likely to 
miss other species that have a slightly different sequence, 
arguing against pre-selection. By contrast, probes based 
entirely on conserved regions may detect species irre-
spective of their class. As a further argument against 
pre-selection of regions, rRNAs contain a high degree 
of secondary structure that can (unpredictably) impede 
reverse transcriptase-mediated copying into cDNA, 
and some pre-designed probes may find few matches in 
RNA-seq archives. To illustrate, the number of RNA-seq 
reads matching different regions of E. coli 16S rRNA in a 
test dataset differed by a factor of 100 (not presented). As 
a working compromise, we generated probe sequences 
without any pre-selection based on knowledge of the tar-
get sequence (e.g., of variable versus conserved regions). 
Probe redundancy (a potential outcome of random 
design) is addressed in the sections below.

Probe generation and nomenclature
We generated 64-mer probes from the 120 rRNA 
sequences (~10 per kb, noting that not all available 
sequences are complete). The non-overlapping 64-mer 
sequences were devised as probes by semi-random 
selection using probe.py script. The version of python 
was v3.6.3 [64]. This generated a list of 1323 probes. In 
naming the probes we aimed to devise a simple, but eas-
ily remembered, nomenclature. Probes were therefore 
prefixed by a single letter for each of the major domains 
as follows: A, Archaea; B, Bacteria; C, Chloroplastida 
(algae and plants), D, Amoebozoa; E0, basal Eukaryota 
(that may constitute a clade of their own); F, Fungi; and 
H, Holozoa/Metazoa. Group G was not allocated, and 
may be retained should any new branches of lifeforms 
to be discovered (if there are any). We use the term 
Chloroplastida to denote all organisms containing chlo-
roplast-related organelles in preference to the term Vir-
idiplantae because the latter implies that algae are plants 
[65]. Probes were thus named >X (code of ToL domain 

and number)_abridged species name_rRNA (16S or 
18S)_probe number, for example, A_Hsalinarum_16S1.

BLAST analysis
Analysis is based on the basic local sequence alignment 
search tool, BLAST/BLAST+ [66, 67], that is now widely 
accepted as the gold standard for detecting significant 
sequence similarities. Sequence searching employed a 
series of publicly available SRA databases (Table S2), and 
nucleotide BLAST (BLASTn) was run either online at 
NCBI (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi?​PROGR​
AM=​blast​n&​BLAST_​SPEC=​GeoBl​ast&​PAGE_​TYPE=​
Blast​Search) or locally at the Edinburgh Compute and 
Data Facility (ECDF) Linux Compute Cluster (http://​
www.​ecdf.​ed.​ac.​uk/) (’EDDIE’) at the University of Edin-
burgh using BLAST+ downloaded from NCBI (https://​
www.​ncbi.​nlm.​nih.​gov/​guide/​howto/​run-​blast-​local/). 
In this work we carefully explored different settings for 
similarity detection, including wordsize (default = 28), 
match/mismatch parameters (default = 1,−2), and gap 
costs (linear), and in no case did this improve selectiv-
ity. We acknowledge that the default settings for evalu-
ating sequence similarity have been carefully optimized 
by NCBI staff and their advisers, and we identified no 
obvious improvements. The basic settings (optimize 
for highly similar sequences) are that BLAST detects 
64-mer sequences with 4 mismatches (94% identity), but 
also detects 28-mer sequences with no mismatches and 
38-mer sequences with a single mismatch (which could 
be as low as 50% identity over the full length of the probe; 
values correct at time of writing, October 2021; these 
settings may evolve with updates of the NCBI website), 
although these shorter matches have lower overall scores. 
Nevertheless, coverage (length of the region of homol-
ogy) for the majority of matches detected (80–90%) 
were generally in the range 70–100% and, because a sec-
ond screening step is applied, the default settings were 
retained. Cut-off scores are discussed in the sections 
below.

Removal of probes matching human sequences
Although 64-mer probes based on rRNA are less 
likely (because of their length) than full-length rRNA 
sequences to find matches in human databases by chance, 
rRNA is relatively conserved across species, and many 
of the probes found matches in human sequences. The 
64-mers were therefore screened for probes that were 
significantly similar to human sequences (default megab-
last task and -entrez_query "Homo sapiens {Organism}") 
by BLASTn v2.11.0+ with nt database [68]. About 300 
probes found matches in human sequence databases 
(default parameters), and these probes were discarded. 
The final list of probes (N = 1017) without matches in 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch
http://www.ecdf.ed.ac.uk/
http://www.ecdf.ed.ac.uk/
https://www.ncbi.nlm.nih.gov/guide/howto/run-blast-local/
https://www.ncbi.nlm.nih.gov/guide/howto/run-blast-local/
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the human database was generated in Fasta format and 
is given in Table S3. An important aspect of our analy-
sis has been to determine whether this list is sufficiently 
comprehensive (discussed further below).

Determining the number of matching reads in SRAs
A script was devised to count the number of matches 
in NCBI RNA-seq SRA datasets to each probe accord-
ing to our selection criteria (see also below). Read-
counts after filtering can also be determined by 
accessing the hit table csv file and using the COUN-
TIF function of Microsoft Excel in the format 
=COUNTIF(A1:A5000,"probename"), a similar function 
is available in Apache Open Office (https://​www.​openo​
ffice.​org/​welco​me/​credi​ts.​html) and other widely acces-
sible spreadsheet programs.

Refiltering is necessary: sequence similarity does 
not follow the transitive law
A central issue encountered in this work is that sequence 
similarity, as assessed by BLAST, does not follow the tran-
sitive law of mathematics and logic. The law dictates that, if 
A = B, and B = C, then A = C; also that if A > B, and B > C, 
then A > C. This rule does not apply to similarity between 
nucleotide (or protein) sequences. If sequence A is signifi-
cantly similar (σ) to sequence B, i.e., A σ B, and B σ C, one 
may not conclude that A σ C. Conversely, if A is not simi-
lar (/σ) to B, and B σ C, one may not conclude that A /σ C. 
This is because, in three sequences A–C, sequence A (e.g., 
the probe) may not be similar to B (e.g., human sequence), 
but there may be an intermediate sequence C that is signif-
icantly similar to both A and B. For this reason, in search-
ing human RNA-seq data with filtered probes, although 
most human sequences have been removed, many BLAST 
matches retrieved from human tissue are still of human 
origin. Second-round filtering of all matches detected is 
therefore necessary. In addition, representative human 
genome(s) and transcriptomes at NCBI do not encompass 
the full diversity of polymorphic variants that are present 
across the human population, and variant sequences may 
be encountered that achieve a threshold significant match 
with a filtered (i.e., no matches in human) probe despite 
being of human origin.

All matches retrieved from human RNA-seq libraries 
were therefore revalidated to exclude human sequences. 
This involves (i) retrieving the matching sequences, (ii) 
searching again for homologies to the downloaded human 
nucleotide database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/; 
accessed 20 May 2021). Because the sequences retrieved 
are endogenous to the SRA that harbors them (and are 
therefore generally longer than the 64 nt probe length), 
they automatically generate higher similarity scores for 
a given extent of homology, and the threshold score for 

significance must therefore be adjusted according to 
the mean readsize in each dataset. The adjusted cutoffs 
were as follows. If the bitscore is >160 (MSBB) or >100 
(Miami) or >126 (Rockefeller), the sequence was consid-
ered to be human in origin, and was discarded. For other 
datasets (liver, skin, and 17 brain samples a cutoff of >150 
was applied; cutoffs for other databases were >160 for the 
Mount Sinai Brain Bank and >150 for the Edinburgh Brain 
Bank, not presented). Three scripts were generated for 
this step, EDDIE_ToL.sh, Abundance_ToL.py and Abun-
dance_count.py. Finally, duplicate reads detected with dif-
ferent probes (if any) were filtered to allocate reads to a 
single probe showing the highest sequence similarity, and 
the number of confirmed non-human reads were counted 
for each probe (Abundance_count.py).

Computational demands of different methods: eToL is fast
BLAST is the gold-standard method for comparing 
two nucleotide sequences. However, next-generation 
sequencing (NGS) of tissue samples for microbiome anal-
ysis, including both RNA-seq and DNA-based metagen-
omic sequencing, generates very large amounts of data. 
An obligatory first step is to remove all human sequences, 
and this requires that the sequence library is compared 
to the human genomic/transcriptomic databases. Never-
theless, BLAST is too slow for routine NGS analysis, and 
’end-to-end processing times, even on multicore com-
putational servers, can take several days to weeks’ [69]. 
Faster algorithms such as SNAP [70] and SeqAlto [71] 
and workflows such as SURPI [69] are a little faster, but 
still require hours or more of computation time. eToL 
significantly reduces the computation time required; a 
brief analysis is presented below.

BLASTn and related methods generally employ itera-
tive comparisons. The basic algorithm is to start with 
local identities and determine whether these can be 
extended across the two sequences that are being com-
pared. To simplify mathematical analysis of the num-
ber of comparisons required by these methods, we first 
define a sequence ’unit’ as 100 nt, and we consider that a 
probe in the eToL method (64 nt) and a single read gener-
ated by short-read RNA-seq (100 to 150 nt) are approxi-
mately the same size (i.e., 1 unit). Second, we introduce 
the concept of a ’block’ (BL) that roughly represents the 
number of comparisons required to determine whether 
a probe sequence (1 unit in size) is related to a target 
sequence of the same size. In other words, 1 BL is the 
amount of computation required for a single 100 nt x 100 
nt comparison. Comparing a typical RNA-seq library (a 
little over 10e10 nt = 10e8 units) to the human genome 
(10e9 nt, or a transcriptome of a similar size = 10e7 
units) using BLASTn thus involves 10e8 × 10e7 BL, i.e., 
10e15 BL or 10e6 GBL. This approximates the number of 

https://www.openoffice.org/welcome/credits.html
https://www.openoffice.org/welcome/credits.html
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computations necessary to identify non-human reads in 
an NGS library using BLASTn.

The eToL method differs from the above because the 
probes are prefiltered to remove human sequences. 
BLASTn using 1000 probes, and screening a typical 
RNA-seq library, involves 10e3 × 10e8 BL, i.e., 10e11 
BL, or 10e2 GBL, in the first instance. This is a very 
considerable saving. However, refiltering is necessary 
because some of the sequence matches detected will 
be human. In a typical eToL analysis ~10% of probes 
(100 units) find matches, and each ’positive’ probe finds 
in the order of 100 matches, generating 10e4 units of 
sequence. These must now be compared against the 
human genome or transcriptome (10e7 units), in other 
words 10e4 x 10e7 = 10e11 BL, 10e5 MBL, or 10e2 
GBL. Although these are approximate ’rule of thumb’ 
calculations, the entire eToL analysis requires 2 x 10e2 
GBL of comparisons, whereas 10e6 GBL of compari-
sons are necessary for direct NGS versus human com-
parison, in other words a computation reduction by 
a factor of 5000, thus requiring 5000-fold less time. 
In support, eToL analysis of a single RNA-seq library 
(online at NCBI) takes only 1–5 minutes to retrieve all 
non-human microbial sequences.

The issue of rRNA depletion in RNA‑seq libraries
Ribosomal RNA represents ~80% of the total RNA in 
each cell. Because most SRA studies in the data reposi-
tories have focused on endogenous human transcripts 
rather than on exogenous microbes, it is commonplace 
to use protocols to deplete rRNA. Precipitation with 
LiCl and/or selection of poly(A)+ RNA using immobi-
lized oligo(dT) are widely used, but rarely remove more 
than 50–80% of rRNA. To address this we probed differ-
ent datasets based on raw RNA-seq versus selection for 
poly(A)+ RNA before sequencing. As shown in Fig. 5A, 
there was no clear difference in the abundance of micro-
bial rRNA transcripts between raw and poly(A)+ SRA 
datasets. Because poly(A) selection is often not per-
formed, we could only analyze a small number of SRAs; 
however, we report this result because it suggests that 
poly(A)+ selection is not necessarily fatal for microbi-
ome analysis, and this is likely to reflect (i) inefficiency of 
rRNA removal, (ii) different kits are likely to have differ-
ent efficiencies of removal, and (iii) the extent of variation 
is comparable to that seen when the same tissue is worked 
up using alternative protocols in different laboratories. 
Although poly(A)+ datasets represent a increasingly 
small fraction of SRAs, we recommend careful checks on 
poly(A)+ datasets to determine the abundance of non-
poly(A)+ RNA species before microbiome analysis. In 
addition, poly(A)+ datasets may be problematic for inter-
nal normalization to determine absolute abundances.

An alternative approach is to specifically deplete host 
rRNA in a sample through hybridization to specific 
complementary oligonucleotides [72]. This method can 
achieve >90% removal of host (e.g., human) rRNA but 
does not remove other rRNAs such as those of exogenous 
microbes. No adjustment for rRNA removal was there-
fore performed.

Normalization: housekeeping transcripts
Because different tissue samples contain different 
amounts of RNA, sometimes partially degraded, and dif-
ferent RNA-seq protocols have different efficiencies of 
conversion to cDNA for sequencing, we normalized the 
number of readcounts obtained to the amount of biologi-
cal material in the SRA. For this purpose we relied on 
three different housekeeping genes: phosphoglycerate 
kinase (PGK1), hydroxymethyl-CoA reductase (HMGCR​
), and neuron-specific enolase (NSE). An earlier study 
accurately determined the number of transcripts per cell 
of PGK1-driven GFP is 46–64 transcripts per cell [73] 
(Box  2). We found no significant differences between 
PGK1 and NSE levels in these datasets, whereas HMGCR​ 
expression was lower. Importantly, different target tis-
sues will require their own panel of housekeeping gene 
probes. Of note, the expression levels of PGK1 and NSE1 
in human brain appear to be constant as a function of age 
(https://​hbatl​as.​org/​pages/​devel​opment).

As before, 64-mer probes were devised, and BLAST 
searching was employed to determine the number of host 
cells that each SRA corresponds to. To minimize statisti-
cal fluctuation, the mean of PGK (two probes) and NSE1 
(two probes) was adopted for normalization. The number 
of host cells thus equals the mean readcounts of PGK1 
and NSE probes divided by 50, and in each case the raw 
readcount was normalized to the number of microbe 
transcripts per host cell by dividing the by the estimated 
number of host cells. Other tissue types will require dedi-
cated housekeeping gene probes (discussed in Box 2).

Box 2. Normalization to endogenous transcripts 
and detection limits
A key question concerns the extent of coverage of 
each sequence read archive (SRA). To address this 
we used PGK1 probes to normalize RNA-seq data. 
PGK1 stands out because Kempe et al. [73] carefully 
measured the level of expression of PGK1-driven 
GFP and accurately measured 46–64 transcripts per 
cell. In support, it is estimated that ~12 000 genes are 
expressed per typical cell, and between 360 000 and 
106 mRNAs are present: the average number of tran-
scripts, per gene, is thus in the range 30–83, strictly 
comparable to the estimate of ca 50 PGK1 transcripts 
per cell determined by Kempe et al.

https://hbatlas.org/pages/development
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Screening of RNA-seq libraries revealed that PGK1 
match numbers are in the general range of 10 to over 
250 per library, with a median of 152, arguing that 
each sequence library roughly equates to the sequence 
content of ~3 cells, although more recent RNA-seq 
datasets appear to be a little larger (10 cells). This 
conclusion is substantiated by considerations of SRA 
file sizes (3–10 gigabytes, GB). Very approximately, 
an uncompressed file containing 1 megabyte (MB) 
of information contains 1 megabase of nucleotides, 
and a file containing 1 GB of information contains ~1 
gigabase of nucleotides. The entire transcriptome of a 
cell, at 600 000 mRNAs per cell, and average mRNA 
length = 2.2 kb, equates to 1 320 000 000 nucleotides 
(1.3 GB of data). However, rRNA removal is usually far 
from complete and, in addition, 1/3 of the information 
in a typical SRA file is not sequence data (each entry 
contains details of the specific read in question). To 
cover the (non-rRNA) transcriptome of a single cell 
therefore requires a minimum of 2.5 GB of informa-
tion in FASTA format. Although they may be partly 
compressed in some formats, consideration of SRA 
file size (3–10 GB) is consistent with the interpreta-
tion that a single SRA equates to the transcriptome of 
a small number of cells. A legitimate concern is there-
fore that poorly abundant (but biologically relevant) 
microbes/viruses may not be detected (see below).

Another consideration is that rRNAs tend to con-
tain regions of secondary structure that reverse tran-
scriptase (RT) may find difficult to copy into cDNA 
(Methodology Development). However, this is unpre-
dictable, and we have made no explicit allowance for 
this factor.

Average read length is a further consideration. Using 
64-mer probes, if the mean read length is 150 nt, then 
(if mRNAs are randomly sampled) some 40% of reads 
will not sufficiently overlap with the probe, but this 
falls to ~30% for 250 nt reads. However, this factor is 
identical for housekeeping genes and for microbial 
transcripts, and does not affect normalization.

Although our normalization is based on PGK1 tran-
scripts at 50 per host cell, even using two independ-
ent probes for PGK1 we observed some statistical 
fluctuation. To dampen this effect we considered two 
other genes. The first, hydroxymethyl glutaryl-CoA 
reductase (HMGCR​) is another housekeeping gene, 
but transcript levels were on average fivefold lower, 
making it unsuitable. Instead we turned to a neuron-
specific housekeeping gene, neuron-specific enolase 
(NSE, also known as ENO2). It can legitimately be 
argued that, because NSE is neuron-specific, it is not 
entirely representative of our target tissue (brain) 

where neurons only constitute a little over one half of 
all host cells. However, we saw excellent agreement 
between NSE and PGK1 transcripts, and for simplic-
ity our results are presented following normalization 
to the mean number of PGK1 and NSE transcripts per 
cell (or per 100 host cells), assuming that 1 host cell 
= (mean {PGK1 and NSE1})/50. Although this probe 
combination is probably useful for normalizing RNA-
seq data from brain, in other tissues it will be neces-
sary to carefully choose the most appropriate panel 
of housekeeping genes for designing normalization 
probes.

Calculated detection sensitivity
If current sequence libraries represent circa 10 cells 

(above), and cellular microbes contain 2000 ribo-
somes (Box 1), then detection of a single rRNA tran-
script (detection limit) means that the corresponding 
microbe is present at a level of 0.0005 microbial cells 
per 10 host cells, which is very sensitive. For lytic 
viruses, where 1000+ transcripts per infected cell may 
be present, a similar level of detection (0.0005 infected 
cells per 10 host cells) is likely to apply. The excep-
tion is for latent viruses. For example, herpes viruses 
express latency transcripts of various types (LAT in 
the case of HSV-1), and the abundance of such tran-
scripts is assumed to be low, possibly comparable to 
the level of housekeeping gene expression (50 tran-
scripts per cell). If the RNA-seq dataset represents the 
transcriptome of at most 10 cells, then the detection of 
a single LAT transcript would represent 0.02 infected 
cells per 10 host cells, and this is likely to constitute 
the lower level of detection. However, multiple viruses 
are present in human tissues at low levels, where they 
persist throughout a lifetime [27], and it remains to be 
determined whether latent/quiescent infection such 
viruses compromises cell function; the lower sensitiv-
ity may therefore not be a drawback in the analysis of 
human physiology in health and disease.

Visualization and display of readcounts: heatmapping
An objective of this work was to generate a pictorial 
description of the distribution of (filtered) sequence 
matches in a given sample. Two methods were used, 
both based on the sequential order of probes in the 
taxonomic groups A (Archaea) to H (Holozoa). In 
the first, Morpheus software at the Broad Institute 
of MIT and Harvard (Cambridge, MA, USA; https://​
softw​are.​broad​insti​tute.​org/​morph​eus/) was used for 
the display either with or without conversion to log2. 
All matches below a cutoff value (specified in the fig-
ures) are shown in blue, and all values between cut-
off and a maximum value (dictated by the experiment 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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in hand) are shown on a white to red scale on a blue 
background where white = cutoff, red = maximum 
(or above), and blue = below cutoff. This presenta-
tion is outlined in Fig.  4. In the second, the normal-
ized data for each probe (reads per host cell) were 
summed for each organism, converted to log2 scale, 
and heatmaps plotted using the pheatmap package 
(v1.0.12) of R. Because of the wider range of abun-
dances for retroelements and viruses, these can 
require different displays (these are specified in all 
cases).

Redundancy check
Because all our probes for cellular microbes are based 
on 16S/18S rRNA, we expected that some probes in 
the collection would be similar to others, perhaps 
because they identify highly conserved regions. A 
concern was therefore that the patterns we observe 
might to some extent reflect the degree of conserva-
tion across different species, as reflected by the num-
ber of probes in the collection with similar sequences, 
rather than the abundance of a target species. To 
address this, we catenated the entire probe collec-
tion into a single file and queried it by BLAST with 
the individual probes. Of the 1017 probes, 634 (62.3%) 
were unique within the collection, 100 (9.8%) found 2 
matches (i.e., detected one similar sequence), and 122 
(12.0%) gave 3–5 matches, and the remainder gave >5 
matches (15.9%) (Fig.  6A). We refer to the number 
of matches identified by each probe as ’redundancy’. 
Nevertheless, inspection revealed that the ’next best’ 
matches were on average 48.8 nt in coverage, with 2.5 
mismatches, falling to homology stretches as short as 
31-mers with one mismatch, arguing that the extent of 
sequence overlap/duplication within the collection is 
relatively low.

However, to formally address whether the signals 
detected in human tissues might reflect the number 
of probe/probe similarities, we plotted the extent 
of ’redundancy’ against total readcounts across 
the cohort. As shown in Fig.  6B, there was a very 
slight correlation between redundancy and total 
readcount (trendline). However, the signals with 
the highest readcounts were at the lower end of 
the redundancy scale. Figure  6C–E shows the out-
come of normalizing the readcount for each probe 
to the redundancy of the probe, indicating that 
normalization does not have a major effect on the 
overall pattern. In Fig.  6F we examined the effect 

of sequentially deleting readcounts for probes with 
a high redundancy (20 or above, 20+; 10 or above, 
10+; 5 or above, 5+) and then deleting values for 
probes with redundancies of 2–5, leaving only sig-
nals generated by unique probes within the collec-
tion. As shown, progressive removal of redundant 
probes led to some degradation of the signal, but 
(i) many highly abundant signals remained despite 
restriction to unique probes, and (ii) the remaining 
signals continued to encompass the entire tree of 
life. However, coverage was slightly compromised, 
and probing the collection of known human com-
mensals/pathogens (N = 104) with the 634 ’unique’ 
probes (not presented) failed to detect 6 species 
(5.8%; compared to only 2% missed with the com-
plete probe list, next section).

One potential way to avoid this issue would be to gen-
erate a far larger collection of random probes, and then 
to discard probes with partial overlaps/duplications 
in the probe collection, and this could be done in the 
future. Overall, our observations argue that the overall 
pattern of microbe signals detected is not dependent 
on probe redundancy. Because our primary intention 
was to retrieve the maximum number of non-human 
sequences, we elected not to remove partially overlap-
ping sequences from the probelist because this could 
compromise retrieval. A drawback is that different 
probes might potentially retrieve the same sequences. 
However, this ambiguity is resolved by separate confir-
mation with 23S/28S sequences and contig building for 
identification (see below).

The probe collection is largely comprehensive
To address whether the filtered probe collection is suf-
ficiently comprehensive, we used it to screen a manually 
assembled list of rRNAs for known human-associated 
species. A list of 104 organisms known to be present in 
human samples was assembled according to Archaea 
found in human gut [74], bacteria (listed in Wikipedia: 
https://​en.​wikip​edia.​org/​wiki/​Patho​genic_​bacte​ria),  
fungi (https://​en.​wikip​edia.​org/​wiki/​Patho​genic_​fungus),  
helminths [75], and a selection of rarer species assem-
bled manually. Where two or more closely related spe-
cies were listed, a single representative species was 
selected, noting that some species with similar names 
may in fact show significant divergence. Where the 
corresponding rRNA sequence was not available, the 
sequence from a closely related species was selected. In 
each case 16S/18S rRNA sequences were downloaded 

https://en.wikipedia.org/wiki/Pathogenic_bacteria
https://en.wikipedia.org/wiki/Pathogenic_fungus
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from nucleotide database of NCBI. This collection was 
named the PATHLIST (Table S4). Probing PATHLIST 
using the probe collection found matches in 98% of 
cases, and only missed two species (Discussion), indicat-
ing that the eToL v1.0 collection is largely sufficient for 
our purposes. Subsequent versions of eToL will include 
these ’missing species’.

Specificity and cross‑matching
To determine the extent of cross-matching between 
probes designed from the different taxonomic groups 
(A–H), the 1000+ probes were used to screen the 
PATHLIST dataset of human-associated microbes. 
Because very few known human-associated microbes 
fall into the groups C (Chloroplastida), D (Amoebozoa), 
and E0 (basal Eukaryota), these were not included. As 
shown in Fig.  5B, other than some overlaps between 
Fungi and Holozoa (as expected, given their related-
ness), there was little cross-matching between groups, 
attesting to the group-specificity of the probes in the 
collection.

Species identification, contig generation, and diversity
The eToL net collects a compendium of non-human 
sequences (confirmed by second-round filtering) in 
a target tissue. For identification, filtered matching 
reads for key signals of interest were downloaded, 
contigs were generated using one of several online 
tools (e.g., CAP3 assembly at the Rhone-Alpes Bio-
informatics Pole PRABI-Doua; http://​doua.​prabi.​fr/​
cgi-​bin/​run_​cap3; also EG assembler https://​www.​
genome.​jp/​tools-​bin/​easse​mbler4.​cgi?​status= ​seqcl​
ean&​pmode=​all [76]; unfortunately, EGassembler 
ended on July 4th 2022; a summary of available tools 
is given at https://​onlin​etool​web.​com/​contig-​assem​
bly-​online-​tool/), and their abundances determined 
by BLAST of each contig generated from human tis-
sue against the collection of sequence matches, retain-
ing only sequences with 100% (or near-100%) identity 
to the probe. Where necessary key contigs are used as 
probes to retrieve additional sequences from the same 
libraries. For sequence identification, BLAST at NCBI 
allows retrieval of the closest homologs. However, 
an average of 4000 matches were retrieved across 20 
SRA datasets, but this can be as high as 16000. Com-
putation time for contig building using EGassembler 
is estimated at 30 minutes for 4000 matches, rising 

to 5 h for 16000 matches [76] (computation time is 
approximately proportional to the square of the num-
ber of sequences). By contrast, contig assembly by 
phylogenetic group (A–H, where the mean number 
of matches for each bacteria and fungi was ~1000) is 
significantly faster and this number of sequences can 
be assembled into contigs in ~5 minutes [76]. Never-
theless, because the microbial sequences retrieved are 
not monophyletic, and show divergence within a sin-
gle individual sample and between different samples, 
as illustrated in Box 3; high-stringency contig building 
risks excluding important contributors to the micro-
biome and, as in all such microbiome analyses, cau-
tion is necessary in interpretation.

Box 3. Case study: signals detected are 
not monophyletic
To illustrate the complexity of computer 
searching, we report the case of searching 
the first liver SRA with a 64-mer probe, B3_
AcidobacteriaKBS96_16S_8. This found 44 matches, 
of which eight were 100% identical, whereas the 
major class (36) contained one or more mismatches. 
Contig building generated six contigs, of which two 
were highly abundant, the others less so. Sequence 
comparisons and tree building (Clustal Omega) 
revealed that they were divergent in sequence (Fig. 
A). To extend the two most abundant contigs, these 
were used to reprobe the SRA, and matches were 
used to generate contigs again. This gave two contigs 
of 496 and 336 nt. The former was 97% identical to 
an uncultured Betaproteobacteria clone, whereas the 
latter was 100% identical to a Gammaproteobacteria 
species, Acinetobacter.

Using the major contigs to search a second liver 
SRA revealed that the major contig from liver 
1 found closely related, but not 100% identical, 
sequences in liver 2, whereas the second most abun-
dant contig in liver 1 found no close relatives in liver 
2. This illustrates two points: (i) the exact species 
present in a tissue sample are not monophyletic, but 
represent a spectrum of related microbes; and (ii) 
what is true of one tissue sample may not be true 
of a near-identical sample from a different individ-
ual. The best approach may be to address multiple 
samples from different individuals, and identify the 
commonalities.

http://doua.prabi.fr/cgi-bin/run_cap3;
http://doua.prabi.fr/cgi-bin/run_cap3;
https://www.genome.jp/tools-bin/eassembler4.cgi?status=seqclean&pmode=all
https://www.genome.jp/tools-bin/eassembler4.cgi?status=seqclean&pmode=all
https://www.genome.jp/tools-bin/eassembler4.cgi?status=seqclean&pmode=all
https://onlinetoolweb.com/contig-assembly-online-tool/
https://onlinetoolweb.com/contig-assembly-online-tool/
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Fig. A  Matches obtained with a single probe highlight the most abundant species (*contigs 3 and 5) in the first liver sample, contig building 
(Consensus 1 and Consensus 2, respectively) and divergence in a second sample.

Viruses: whole‑genome ’stripping’
Because viruses have no ribosomes, we turned to whole-
genome sequences. For viruses where detailed transcrip-
tomes are available, both in latency and in productive 
infection, we recommend the use of 64-mer probes based 
on abundant transcripts. However, transcriptome data 
are only available for a minority of virus types, and for 
general applications we based our methodology on intact 
viral genomes. Nevertheless, these also contain inter-
nal homologies with human sequences (see below). For 
methodology development we based our analysis on the 
report in Neuron by Readhead et al. [40] where they used 
a k-mer method to screen human brain SRAs for 515 
viruses. Although this method is prone to false positives 
(Introduction) it appears to be immune to false negatives. 
For methodology development we therefore selected 

Validation with 23S/28S and mitochondrial DNA
Because this approach employs a large number of 
probes (>1000), any observed high or low abundance 
in a particular tissue SRA could occur by chance 
(Bonferroni correction). To circumvent this issue the 
same protocols were used to devise fresh probes from 
23S/28S rRNA for the same (or the closest available) 
key species signal of interest, and these were then used 
to reprobe the SRAs for matches. Again, all matches 
were filtered against human sequences, contigs assem-
bled, followed by species identification.

An alternative approach that is valid for eukary-
otic microbes including Fungi, but not for Bacteria or 
Archaea, is to employ mitochondrial DNA (mtDNA) 
sequences that have been ’stripped’ (below) against 
human sequences.
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the top 20 viruses in terms of readcounts, representing 
>99.9% of all matches found in human brain (B. Read-
head, pers. comm.).

To identify matching sequences in the human genome/
transcriptome, complete genomes for these 20 key 
viruses were used to search human sequences in the 
NCBI databases (BLAST/nucleotide collection (nr/nt), 
organism name = Homo sapiens). This revealed many 
matches, some relatively close (Table S5). To refine this 
approach we applied a ’stripping’ method, as follows. All 
regions of sequence similarity between the viral genomes 
and human sequences identified by BLAST were deleted 
from the viral genome. In addition, low-complexity 
regions were removed. The first-round stripped genomes 
were then searched again against H. sapiens, revealing 
further matches. Four rounds of stripping were neces-
sary to remove all homologies with the human genome/
transcriptome. Because some viruses are present as inte-
grated copies in around 1% of the human population (in 
particular with homology to HHV-6A, HHV-6B, and 
potentially HHV-7) [77], these are present in the NCBI 
databases of ’human’ sequences, and these were manu-
ally curated to remove key matching sequences (notably 
human telomeric repeats that are present in the viral 
genomes). The stripped genomes are given in Table S6.

Retroelements
The principal retroelements in the human genome are 
long and short interspersed nuclear elements (LINEs and 
SINEs, respectively). LINE activation has been reported 
in neurological disease [78]. LINEs belong to several sub-
families, and representative 64-mer probes were devised 
for each of these. SINEs are generally relatively short 
highly conserved sequences related to human 7SL RNA, 
and probes were included to cover SINE elements. The 
human genome also includes several classes of human 
endogenous retroviruses (HERVs) that have been impli-
cated in diverse disorders including neurodegenera-
tive disease [79], and we included probes to assess their 
abundance. Following the same nomenclature scheme as 
before, probes for retroelements including HERVs were 
allocated domain code R (Table S2C).

Recognizing and excluding contamination
Microbiome identification through rRNA sequencing and 
metagenomics is prone to various types of contamina-
tion that can obscure true signals [80–82]. Contamination 
may be classified into two principal categories (Table 1A). 
Type 1 contamination includes contamination of the sam-
ple and reagents used to examine it, whereas type II con-
cerns in vivo biocontamination, as discussed below.

(i)	Reagent contamination: type 1A

Molecular biology reagents used to work up sam-
ples for sequence analysis are often contaminated with 
microorganisms. Salter et al. reported that sample dilu-
tion by a factor of 103 to 104 was necessary before con-
taminants represent 50% of the signal [80]. In terms of 
RNA-seq from PCR amplified material, this means that 
0.1% of the signals could originate from contaminat-
ing material. In a series of 1000 signals, one or more 
may therefore arise from reagent contamination. Com-
mon bacterial contaminant species are given in Table 1, 
Table S1, and Table S2 of [80], and Fig. 5 of [83]. In addi-
tion, organisms commonly encountered in tap water 
may be consulted (Table  S2). Although duplicate and/
or blank samples worked up independently have been 
recommended [82], this is not possible with pre-exist-
ing RNA-seq data. In addition, workup and sequenc-
ing of blank samples generally fails because instrument 
settings reject very low numbers of sequence reads 
(Azenta Life Sciences/GENEWIZ, authorized personal 
communication).

	(ii)	 Sample contamination: type 1B

This is an important issue because, if samples are 
not dissected under fully sterile conditions, they may 
become contaminated by exogenous organisms, for 
example airborne spores and microbes from human 
skin. These latter are likely to contaminate some sam-
ples, and analysis is complicated by the fact that the 
skin microbiome is very diverse and differs according 
to body site, individual, and geographical location [84–
86]. One possible way to tackle this issue is to exclude 
known human skin microbes. In the present work we 
subtracted brain datasets against a series of RNA-seq 
datasets for human skin (Results). Caution is necessary 
because, for example, a common skin fungus, Malasse-
zia, has been directly implicated in human diseases such 
as psoriasis and has been reliably been detected in other 
human tissues [87].

	(iii)	 In vivo biocontamination: types 2A and 2B

This falls into two subtypes. Type 2A concerns con-
tamination in vivo through life-long exposure to envi-
ronmental agents. For example, we have observed 
signals in RNA-seq data corresponding to barley 
(Hordeum vulgare, not presented). Although airborne 
contamination of samples is not excluded, we suspect 
that in vivo contamination may take place. For exam-
ple, inhaled ultrafine manganese oxide particles readily 
enter the central nervous system [88]. In mice exposed 
to microparticles (5 μm) and macroparticles (20 μm) 
in drinking water, both types of particle entered body 
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tissues [89], and environmental exposure to both small 
(<2.5 μm) and large (2.5–10 μm) particles has been 
associated with cognitive decline in human [90]. Barley 
pollen (25 μm) is in the same broad size range; over the 
course of a lifetime it is possible that these might also 
enter the circulation including brain vasculature, and 
from there into the brain itself. A similar route of infec-
tion could apply to microbial spores.

Type 2B contamination concerns contamination of 
the target tissue in vivo before sampling. For exam-
ple, in studying a body tissue obtained postmortem, 
the cause of death should be taken into consideration. 
To illustrate, in many elderly patients (the principal 
source of postmortem tissues) death is often precipi-
tated by severe infection, often pulmonary, and it is 
possible if not likely that microbes enter the circula-
tion and are thus present in diverse body tissues, inde-
pendently of any disease process under investigation 
(Table 1A).

	(iv)	 Strategies to exclude contamination

Key recommendations are summarized in Table  1B. 
However, there is likely to be substantial overlap 
between microbes that are representative of the natural 
microbiome in human tissues and common contami-
nants of human origin such as from the skin.

(v)	 Viruses and contamination

The problem of virus contamination is less severe 
because analysis is based on RNA-seq data, and con-
tamination with mammalian cells expressing virus 
transcripts is thought to be unlikely. By contrast, con-
tamination with viral genomes is possible, but these 
(particularly for DNA viruses) may be recognized 
because genomic reads are unlikely to correspond to 
the viral transcriptome. Viral reads were therefore 
mapped to the viral transcriptome to determine their 
authenticity (not presented).

Microbes and viruses: how many cells/genomes are being 
detected?
This analysis is based, for cellular organisms, on the num-
ber of copies of rRNA transcripts in each sample. The 
question therefore arises of how many cells are present, 
which in turn depends on the number of ribosomes (or 
viral transcripts) per cell. Because this parameter intro-
duces a further complexity, further discussion is provided 
in Boxes 1 and 2.

Scripts
The scripts developed in this study are available at github 
(https://​github.​com/​xinyu​ehu12/​ToL).

Results
Tree of life
To generate the probe collection for cellular microbes, 
120 key organisms were selected from Open Tree of Life 
Project and other sources to represent, as far as possible, 
the full spectrum of cellular organisms. The key organ-
isms cover the domains of Archaea (A), Bacteria (B0–6), 
Chloroplastida (C1–4), Amoebozoa (D), basal Eukaryota 
(E0), fungi (F0–6), and Holozoa/Metazoa (H0–3) (Fig. 1). 
To address the distribution of these organisms across 
the Tree of Life, the 16S/18S sequences corresponding 
to these 120 organisms were downloaded and used to 
build a phylogenetic tree (Fig.  2). Because Archaea and 
Eukaryota are more related, the Bacteria group was used 
as outgroup [91]. This tree has relatively good statistical 
support because the bootstrap values for most of nodes 
are over 70. The nodes that have weak support (bootstrap 
value <70) are shown in gradient colors, ranging from 
red (7) to blue (69). The 16S rRNA sequences form two 
monophyletic groups, Archaea and Bacteria, whereas 
only one monophyletic group, Holozoa, was observed 
within the 18S rRNA sequences of eukaryotes. The spe-
cies, especially from Chloroplastida and Amoebozoa, 
were not clustered well (Fig.  2), and their nodes show 
weak support.

We then devised 64-mer probes for these species (the 
rationale is presented in the Methodology section), as 
shown in the pipeline (Fig. 3), and filtered them against 
human sequences. To validate this approach, we checked 
whether the probe collection detects known human path-
ogens/commensals. With few exceptions, all organisms 
in the PATHLIST were detected in the probe collection, 
generally with multiple matches. The mean number of 
matches between the probe collection and each sequence 
in the PATHLIST was 25.8, and the median was 15. Only 
two species were not detected, Leishmania donovani 
and Ascaris lumbricoides. These data suggest that the 
probe collection covers around 98% of species for which 
sequences are available (future editions of eToL will be 
revised to include any missing lineages).

We also developed a uniform method of display based 
on heat-mapping, as illustrated in Fig. 4.

A concern is that rRNA depletion {e.g., through poly(A) 
RNA selection} in RNA-seq libraries might compromise 
detection. However, this was not found to be a systematic 
problem, and robust microbe signals were detected in 
both poly(A)+ and unselected RNA-seq datasets (Fig. 5), 
although only a small number of poly(A)+ datasets were 
examined (section on Methodology development). A 
further concern is whether the probe collection we have 
developed contains probes that significantly overlap with 
each other, and thus constitute partial duplicates. As 
described in Methodology, this was carefully addressed 

https://github.com/xinyuehu12/ToL
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(Fig.  6). The whole probe collection detected 98% of a 
test list of human pathogens and commensals, whereas 
selection of the unique probes detected only 92%. We will 
address this issue in further refinements, but the current 
analysis was continued with the complete list of probes.

Excluding contamination
Contamination is increasingly recognized to be a prob-
lem in microbiome analysis (reviewed by de Goffau et al. 
2018). We therefore adapted our protocols to address this 
issue. A signature of contamination is that different sam-
ples processed in parallel have consistent signals in all 
samples. Multi-positive signals were deleted from both 
the Miami and Rockefeller datasets. As shown in Figure 
S1, many of the signals in the Miami dataset might be 
contaminants, whereas the same issue was not encoun-
tered with the Rockefeller dataset (Figure S1). How-
ever, deleting multi-positive signals comes at the risk of 
removing true signals (Table 1B).

Mutiple independent datasets: the brain has its own 
microbiome
The second strategy was to only consider signals that are 
present in independent datasets from the same tissue. 
We therefore screened 17 independent RNA-seq datasets 
from human brain. As shown in Fig. 7A, although there 
were differences in the exact signals in each dataset, the 
patterns were substantially conserved despite entirely 
independent workup.

To rigorously confirm that the microbial signals 
detected in brain do not arise through contamination, we 
sequentially subtracted the signals from the 17 independ-
ent brain samples against tapwater (which, because of its 
chlorine content, has its own specific microbiome; details 
in the source references for the tapwater SRAs), and then 
against human skin. Specifically, if any signal appeared 
in any sample of tapwater or skin, all brain values were 
set to zero. Both procedures markedly depleted the brain 
microbial signal. However, multiple signals remained 
(Fig. 7B). This argues that brain has its own microbiome 
that differs from that of skin, and is unlikely to represent 
either type 1 or type 2 contamination.

Tissue differences: liver versus brain
Previous studies highlighted likely overlaps between the 
brain and skin microbiomes (e.g., [36, 37]), which may 
be unsurprising because both tissues have an epithelial 

developmental origin. Subtraction of brain against skin 
signals could conceal species that are both (i) present in 
skin, and are (ii) opportunistic invaders of the CNS. We 
therefore focused on a different tissue, liver. As shown 
in Figure S2, the microbiome profiles for brain and liver 
display many similarities, but also some evident differ-
ences. The identities of key differentials were estab-
lished by contig building and probing of NCBI datasets 
(Figure S3). In the samples analyzed, Malassezia spp. 
were found to be brain-specific, whereas Staphylococcus 
aureus appeared to be liver-specific (Table S7). The dif-
ferential presence of key species was confirmed by sec-
ond-round reprobing using 23S/28S-based probes (not 
presented).

Heterogeneity
We addressed whether individual probes are generally 
detecting specific organisms, or clusters of organisms. We 
observe that, even using these highly selective probes, we 
identify clusters of organisms that are not monophyletic. 
We illustrate this in Box 3 through a case study. It is impor-
tant to note that each probe detects a cluster of related 
species rather than a unique species (Box 3), and the exact 
identity of each sequence group retrieved from human tis-
sue must be revalidated by 23S/28S analysis.

Viruses and retroelements
In terms of readcounts, viruses were less abundant than 
the other microbes (Fig. 8A). Adenovirus C was the most 
abundant in these samples. Other viruses such as HSV-1, 
CMV, HHV-6A and TTV were also present in some indi-
viduals (not presented), but their overall abundance was 
low (comprehensive analysis using this methodology is in 
preparation).

We also screened, using 64-mer probes, the abundance 
of select retroelements and endogenous retroviruses in tis-
sue samples. As shown in Fig. 8B, these are very well repre-
sented, although at present their potential contributions to 
health and disease remain unknown.

How many microbes are there in brain?
Readcounts, normalized on a per cell basis, do not imme-
diately indicate whether microbes in brain are (relative to 
host cells) rare or abundant. We therefore considered fur-
ther normalization factors including the number of rRNA 
copies that are present in typical microbial cells of differ-
ent types (Box 1) to calculate how many cells/genomes are 

(See figure on next page.)
Fig. 4  Visualization of the cellular microbiome profile. (Left) Standard display (first brain sequence read archive listed in the supplementary material) 
generated with Morpheus where the number of matches for the 1000+ probes in a constant order A–H (Center) are colored such that blue = 0, 
white = lower cutoff (generally any value >0) and red ≥ upper bound (differs between experiments). All values are normalized to the number of 
host cells determined by readcounts for two housekeeping genes. (Right) Magnification of the B2–B4 region showing matches for individual probes
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Fig. 4  (See legend on previous page.)
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present in normal human brain; we elaborate on this point 
in the Discussion section and in Box 2.

Discussion
We report a new method to comprehensively analyze 
the entire microbiome of human tissue samples from 
transcriptomic (RNA-seq) data. The method com-
prises a ’net’ of >1000 probes that covers all organisms 
from the known spectrum of lifeforms – the electronic 
Tree of Life (eToL). The method reported here is not 
intended to replace other established methodologies, 
but to provide an alternative that does not require 
any dedicated computer programs beyond those that 
are already widely available to the community (e.g., 

BLAST and BLAST+). Primarily based on 16S/18S 
sequences from cellular organisms, the approach has 
been extended to cover viruses and retroelements. 
Moreover, for the first time it addresses the entire ToL 
rather than selected subgroups of microbes. The most 
significant advantage of this method is that it requires 
around 5000-fold less computation than rival NGS 
techniques (e.g., metagenomics) and avoids the prob-
lems of non-selectivity encountered in some earlier 
studies.

This study is based on a spectrum of cellular organisms 
(N = 120) that span the entire ToL (Figs. 1 and 2), 20 viruses 
that are reported to be particularly abundant in our target 
tissue (brain), and 11 types of retroelements. For cellular 

Fig. 5  Analysis of RNA-seq of total RNA versus polyA+ RNA, and class specificity of the different probes. (A) Two brain (cortex) polyA+ RNA datasets 
were available for study, these were matched with two (cortex) total RNA datasets. Although the total number of microbial matches spanned a 
10-fold range (inset), as expected given independent sample preparation and sequencing methods, the figure shows that polyA+ RNA selection 
does not remove all rRNA, and the number of overall matches (inset) for the two polyA+ datasets was intermediate between the two matched total 
RNA datasets. (B) (Left) The whole probe collection was used to probe the list of 100+ human-associated microbes (PATHLIST). (Right) Probes for 
classes A (Archaea), B (Bacteria), F (Fungi), and H (Holozoa) were then separately used to probe PATHLIST subclassified into the same groups. Classes 
C (Chloroplastida), D (Amoebozoa), and E0 (basal Eukaryota) were not studied because too few human-associated species are known. The figure 
demonstrates that each probe class principally detects species of the same class, although some cross-matching was observed between Fungi and 
Holozoa as expected because of evolutionary relationships. Class C–E0 probes failed to find matches in classes A, B, F, and H (panel B), but some 
crossmatching is expected because these probes found matches in the complete PATHLIST (left)
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species, the maximum likelihood phylogenetic tree shows 
the relationships between the rRNA sequences of the dif-
ferent cellular organisms, but species from domains such 

as Chloroplastida, Amoebozoa, and basal Eukaryota were 
not well clustered. Some nodes have weak statistical sup-
port although the overall statistical support is good. This 

Fig. 6  Overlaps within the probe collection (’redundancy’). (A) The collection was compared to itself, revealing that over 60% were unique. (B) To 
determine how probe overlaps might affect sequence detection, we compared the total readcounts (brain) to the extent of probe redundancy 
(number of overlaps in the probe collection), demonstrating that high readcounts do not correlate with redundancy. The r2 of the trendline 
(Microsoft Excel) was 0.02, showing that only 2% of the observed variation in numbers of matches can be ascribed to probe redundancy. (C,D) 
Side-by-side comparison of probe redundancy (C) with brain readcounts (D), demonstrating no obvious correlation. (E) As in (D), but the readcount 
scores have been divided by the redundancy of each probe, showing some changes, but conservation of the overall pattern. (F) Effect of removing 
probe signals with different levels of redundancy (≥20, ≥10, ≥5, and >1). Although the overall profile was retained, this degraded many signals, 
indicating that the complete probe list is preferable for comprehensive retrieval
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may be because only partial rRNA sequences were avail-
able for some species. In addition, the branch of Enterocy-
tozoon bieneusi (F1_Ebieneusi_18S) is long (not presented), 
which means it has high divergence compared to the other 
species, emphasizing the exceptional diversity of the fungi. 
However, the robustness of multiple alignment tools plays 
an important role in the accuracy of the phylogenetic tree. 
Although Multiple Alignment Using Fast Fourier Trans-
form (MAFFT) has been reported to have good alignment 
accuracy, the MUSCLE tool was found to have better per-
formance in reconstructing trees in our study. Other align-
ers may also be used to align such distant sequences [92]. 
To improve the accuracy of the alignments, rRNA second-
ary structures may also need to be considered [93].

Earlier studies of microbe analysis encountered problems 
including non-specificity and crossreactivity with human 
sequences. The K value (the frequency of probes aligning 
to target sequences by chance) can be used to calculate the 
probe length that is necessary for accurate target detec-
tion. By considering the background of incomplete but 
above-threshold matches (Kb value), the minimum probe 
length for finding unique matches in a typical mammalian 
genomic library was calculated to be 62 nt at 85% sequence 
identity and a Kb of 0.1 [56]. Therefore, our eToL approach 
was based on 64-mer (or longer) probes, that have been 
carefully filtered to remove any sequences matching human 
sequences. The 64-mers were semi-randomly selected 
because, if we used a sliding window method to produce 
overlapping 64-mers, the computation time required to 
process the many thousands of probes generated would 
become prohibitive.

The collection of probes (eToL) is designed as a ’net’ to 
entrap all non-human microbial sequences. For this rea-
son the identity of each probe does not indicate the exact 
species present, and retrieval of sequences from human 
tissue is necessary for species identification. However, 
the matches to our probes discovered in RNA-seq data 
unambiguously confirmed the presence of microorgan-
isms because all matches were double-checked to exclude 
human sequences. Therefore, the false positive rate of 
detecting human sequences was reduced to near-zero.

The 64-mer probe collection for cellular organisms 
is believed to be largely comprehensive because 98% 
of known human pathogens and commensals were 
detected by the probe collection. In future editions of 
the ToL probe list will include probes for missing species 
such as Leishmania donovani and Ascaris lumbricoides, 
as well for species that are less well represented in the 
probe list.

We took strict precautions to recognize and exclude 
potential contaminants of either type 1 or type 2 
(Table 1). This revealed that some RNA-seq datasets are 
potentially diluted by contaminant species inadvertently 
introduced during sample preparation and workup. Sub-
traction of matches against likely sources of contamina-
tion including human skin and tap water reduced but did 
not eliminate the microbiome signals, arguing that key 
species are indeed present in human brain (in prepara-
tion). To confirm the identity of these brain-resident spe-
cies, the matches were retrieved from brain, the exact 
species identified, and then further validated by 23S/28S 
rRNA analysis, and for eukaryotic species, analysis of 
mitochondrial DNA (in preparation).

For viruses, we report that the false positives in the 
study of Readhead et al. may be explained, in part, by 
homologies between viral and human sequences. For 
example, HHV-6A, 6B, and 7 (that were asserted to 
be increased in AD) have pronounced matches with 
human telomeric DNA repeats, HHV-3 and HHV-8 con-
tain sequences similar to human thymidylate synthase 
(TYMS), the HHV-4 genome has matches to human 
interleukin 10 receptor variant (IL10RV), and the genome 
of variola virus (the agent of smallpox, also detected in 
human brain by Readhead et al. contains homologies to 
human ribonucleotide reductase subunits (RRM1 and 
RRM2B) (Table S5). The major virus type in human brain 
was identified to be adenovirus type C (transcript map-
ping will be reported elsewhere).

Overall, this work reveals that a remarkable diversity 
of microbes are present in brain (and liver) samples. All 
major taxonomic groups are represented. In addition to 
bacteria and fungi, as previously reported, we report that 

Fig. 7  The profile of the cellular microbiome in human brain. (A) Schematic of the relative representation of microbes in normal brain (cortex): 
overall readcounts from 17 independent brain samples (below) indicate that bacteria and fungi are the major species in brain. (B) Profiles of 
readcounts in 17 independent brain samples showing different patterns in different brain RNA-seq datasets (where B9 and B16 have distinctive 
patters) but overall conservation of the profile. Estimated abundances from the calculated numbers of rRNA per cell in the different organisms are 
as follows Archaea (10-5 microbes per host cell), Bacteria (0.14), Chloroplastida (0.06, but type 2 contamination has not yet been excluded, Table 1), 
Amoebozoa (0.01), basal Eukaryota (0.01), Fungi (0.05), Holozoa (0.05, possibly because of cross-matching with Fungi, Figure 5B). Bacteria and 
Fungi represent 41% and 13% of the total burden (together >50%). (C) Signals that are present in >75% of all samples. (D) The brain has its own 
microbiome. (Lane 1) The mean brain microbiome profile from 17 independent samples. (Lane 2) The mean profile in tapwater. (Lane 3) Brain profile 
where all signals also detected in tapwater have been removed. (Lane 4) Mean skin microbiome profile. (Lane 5) Brain profile where all signals also 
detected in tapwater and skin have been removed, showing degradation of the signal. Although type 1 contamination cannot be formally excluded 
here, there may be overlaps between the brain and skin microbiomes (Discussion). However, despite attenuation of the signal, the subtraction 
demonstrates that there are microbial signals in brain that do not occur in skin. Panel (A) was created at Biorender.com

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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microbes ranging from Archaea to Amoebozoa, Chlo-
roplastida, basal Eukaryota, and Holozoa/Metazoa are 
present in human brain (to be presented elsewhere). Few 
viruses were encountered, the majority being of the ade-
novirus C class.

The eToL method goes some way towards answering 
the question of whether there is indeed a brain micro-
biome [28]. Because this is a Methodology paper, we do 
not report systematically on the identities of the target 
organisms or experimental confirmation (in prepara-
tion) except in a specific examplar study (brain versus 
liver, Figure S2). However, in terms of microbes/genomes 
per cell, we estimate that Archaea are present at 10−5 
microbes per host cell, Bacteria (0.14), Amoebozoa 
(0.01), basal Eukaryota (0.01), and Fungi (0.05), of which 
Bacteria and Fungi constitute >50% of the total microbial 
burden (Fig. 7). Although this number of microbes might 
appear to be high, brain neurons are extremely large, and 
we calculate that, in terms of volume, the total microbial 
cell volume amounts to no more than 1/10 000th of the 
neuronal volume.

We have considered whether the eToL method can be 
extended to medical diagnostic applications. The method 
correctly identified 98% of human-associated micro-
bial sequences, and simple modifications would allow 
this to be raised to 99%+. A potential drawback is that 
short small subunit rRNA sequences do not allow precise 
identification of microbial species. For example, in one 
study Bacillus cereus was misidentified as B. thurigen-
esis because the 16S rRNA sequences of these two spe-
cies are 99.7% identical [94]. However, simple refinement 
of the analysis by reference to 23S/28S sequences allows 
rapid confirmation that a given organism is indeed pre-
sent. In addition, our analyses indicate that few if any sig-
nals detected in human samples are monophyletic – we 
observe multiple closely related species/sequences that 
probably reflect lifetime exposure to constantly evolv-
ing external and internal microbiomes. For this reason 
the eToL method has a significant advantage over stand-
ard metagenomic and/or PCR analyses that are based 
on the reference sequences of standard microbial types. 
The principle utility of the method is that it rapidly 

Fig. 8  Viruses and retroelements in brain. (A) Screening of 12 normal brain samples (Miami and Rockefeller datasets) with the stripped (to 
remove all sequences similar to human) genomes corresponding to the top 20 viruses (>99% of brain matches in Readhead et al. 2018; text for 
details) revealed matches only for adenovirus type C. (B) Screening for retroelements and endogenous retroviruses showing that transcripts for 
LINE and SINE elements are highly abundant, whereas endogenous retrovirus transcripts are much less abundant (8–128-fold). All samples were 
HIV1-negative
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identifies and quantifies the principal organism groups 
that are present in a biological sample. ’Syndromic classi-
fiers’ (discussed in [95]) are of enormous utility in medi-
cal analysis because they permit patients to be classified 
into infectious versus non-infectious syndromes, or can 
distinguish between viral versus fungal versus bacterial 
infections, with ’important implications for clinical man-
agement’ [95].

The approach presented here, unlike other strategies, 
also has the advantage that all cellular organisms across 
the ToL can be addressed in a single screen. For viruses, 
the genome-stripping method offers a route to ensure 
that only viral sequences are detected. In addition, the 
method has advantages over other strategies in terms of 
specificity, and employs widely available analytical tools 
(BLAST and BLAST+). It is also rapid (around 5000-fold 
faster than conventional NGS metagenomic methods). 
Moreover, unlike most PCR-based and metagenomic 
analyses, the method allows quantification of the absolute 
number of microbes present in a given sample. Simple 
modifications to the protocol make it applicable to other 
species such as non-human primates and rodents where 
whole-genome sequence data are available for stripping.

In sum, the methodologies presented here may find 
broad application in the analysis of microbes and viruses 
in widely available RNA-seq data for human tissues, and 
thereby enhance our understanding of the role of the 
microbome in human physiology in health and disease. In 
addition, given that RNA-seq data can now be obtained 
in a few days for under $400, and that the sequence anal-
ysis can be performed very quickly (a few minutes), the 
method is likely to lend itself to medical diagnostic appli-
cations in the analysis of oral, nasal, and pulmonary sam-
ples, as well as of blood, urine, and cerebrospinal fluid.
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