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Abstract

Traditionally, the monolayer (two-dimensional) cell cultures are used for initial evaluation of the 

effectiveness of anticancer drugs. In particular, these experiments provide the IC50 curves that 

determine drug concentration that can inhibit growth of a tumor colony by half when compared to 

the cells grown with no exposure to the drug. Low IC50 value means that the drug is effective at 

low concentrations, and thus will show lower systemic toxicity when administered to the patient. 

However, in these experiments cells are grown in a monolayer, all well exposed to the drug, 

while in vivo tumors expand as three-dimensional multicellular masses, where inner cells have 

a limited access to the drug. Therefore, we performed computational studies to compare the 

IC50 curves for cells grown as a two-dimensional monolayer and a cross section through a three-

dimensional spheroid. Our results identified conditions (drug diffusivity, drug action mechanisms 

and cell proliferation capabilities) under which these IC50 curves differ significantly. This will 

help experimentalists to better determine drug dosage for future in vivo experiments and clinical 

trials.
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1 Introduction

In general, drug–dose response curves are used to measure and analyze the relationship 

between a drug’s inhibitory capabilities associated with its respective concentrations. 

Inhibitory concentration curves denoted ICx are dose response curves that allow for 

determining the drug concentration required to reduce a population of viable cells by 

x%, when compared to the cells grown with no exposure to the drug (Chou 2006). This 

change in cell population size could be a result of increased cell death or suppressed cell 

proliferation. Drug discovery and pharmacology studies use the IC50 values to determine 

drug effectiveness (potency). Low IC50 value means that the drug is potent at low 

concentrations, and thus will show lower systemic toxicity when administered to the 

patient. The drug–dose response curves are also used to identify synergistic combination 

therapies and drug interactions mechanisms (Yu et al. 2015; Tallarida 2011; Chevereau and 

Bollenbach 2015).

However, the typical experiments to determine the IC50 curves are performed in two-

dimensional (2D) monolayer cell cultures in Petri dishes (Fig. 1a). The cells are covered 

with a medium of uniform drug concentration and grown for 72 h which is a timeframe 

long enough for cells to divide 1–2 times and to observe drug effects without cells reaching 

confluence (Turner and Charlton 2005; Hafner et al. 2016). In contrast, in vivo tumors 

develop as three-dimensional (3D) masses of tightly packed tumor cells, and thus, their 

response to therapeutic interventions may be different than in 2D experiments. To test 

drug potency in vitro in a way to preserve geometry of typical in vivo tumors, the 3D 

cultures of multicellular spheroids were developed (Pampaloni et al. 2007; Laurent et al. 

2013; Weiswald et al. 2015). In these experiments, the 3D spheroids are first formed 

either by proliferation from single seeded cells or by aggregation of individual cells seeded 

together (Weiswald et al. 2015; Rodrigues et al. 2018). The spheroids are then covered 

with a medium with a uniformly dissolved drug (Fig. 1b); similar like it is done in the 2D 

experiments. However, a significantly different culture geometry results in a limited access 

to the drug inside the spheroid, and thus, in a different overall response when compared to 

results from 2D cell cultures. While several studies addressed drug efficacy in 2D versus 3D 

experiments (Eichler et al. 2015; Imamura et al. 2015; Fontoura et al. 2020), each used a 

different seeding protocol and assessment method making result cross-examination difficult. 

Therefore, we designed computational models as in silico analogues of the 2D monolayer 

and a cross section through the 3D multicellular spheroid cell cultures (Fig. 1) to compare 

side-by-side how identical cells respond to identical drugs in these two settings starting with 

the same number of cells. To our knowledge, this is the first comprehensive computational 

comparison between drug efficacy simulated using analogues of 2D and 3D cell cultures.

In this paper, we first describe a mathematical framework used to model the 2D monolayer 

cell culture and the cross section through a 3D multicellular spheroid culture (Sect. 2). 

Numerical implementation of these models is described in “Appendix A”. These two 

models are then used to test conditions (drug diffusivity, drug action mechanisms and cell 

proliferation capabilities) under which the IC50 values are either similar or significantly 

different between 2D and 3D cultures. The method of fitting the IC50 curves to simulated 

data is presented in Sect. 3. The analysis of results for cytotoxic drugs is presented in Sect. 

Berrouet et al. Page 2

Bull Math Biol. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1, and for anti-mitotic drugs in Sect. 4.2. We summarize our results with the discussion in 

Sect. 5.

2 The Mathematical Model

From a mathematical modeling perspective of tumor cell populations, the models can be 

classified into two types: continuous or discrete. Continuous models treat the population of 

tumor cells as a continuous density distribution, which usually is described by a system of 

ordinary or partial differential equations. On the other hand, in discrete models each cell in 

the population is represented by a discrete object (an agent) that follows a set of prescribed 

rules. Thus, these models are often referred as agent-based models (ABMs). Depending on 

the research question, the one or the other mathematical modeling approach is considered 

though both have their strengths and weaknesses. For a review on the comparison of the two 

types of models, see Schaller and Meyer-Hermann (2006). A continuous model is relatively 

easier to analyze analytically and computationally, but it fails to capture the individual 

cell-to-cell interactions and cellular heterogeneity. On the other hand, the ABM models 

focus on interactions between the individual cells, but are not easy to analyze analytically, 

if not impossible, and the computation time increases significantly with the number of cells 

involved. Recently, researchers have been focusing on developing hybrid discrete-continuous 

models which combine both approaches with the goal of maximizing their advantages and 

minimizing their drawbacks. More information on the hybrid discrete-continuous models 

can be found in Chamseddine and Rejniak (2020).

Here, we use a hybrid discrete-continuous model in which tumor cells interact physically 

with one another and react to a drug dissolved in a surrounding medium. The cells 

are modeled as individual off-lattice agents, and drug concentration is described by 

the continuous partial differential equation. We previously used a similar mathematical 

framework to model in vivo tumors and the emergence of drug-induced resistance (Gevertz 

et al. 2015; Perez-Velazquez et al. 2016; Shah et al. 2016; Karolak et al. 2019a; Perez-

Velazquez and Rejniak 2020). Here, we adjusted this framework to model in vitro cell 

cultures, both the 2D monolayer and the cross section through the 3D spheroid. In addition 

to different culture geometry, we also extended the previous work by considering different 

mechanisms of drug action, i.e., the cytotoxic and anti-mitotic drugs. Below, we provide all 

model equations and spatial setups of all performed computational experiments.

2.1 Discrete Description of Tumor Cells

Each cell in our model is treated as a separate entity characterized by several individually 

regulated properties. The position of kth cell is denoted by Xk(t), current cell age by Ck
age(t), 

cell maturation age, which is the age when the cell is ready to divide, by Ck
mat, the number 

of nearby neighboring cells, Ck
neigh(t), and a level of the drug accumulated inside the cell by 

Ck
γ(t). For simplicity, we assume that all cells have the same diameter RD. The state of the 

kth cell at time t is denoted by Ck(t) = Xk(t), Ck
age(t), Ck

mat, Ck
neigh(t), Ck

γ(t) . The initial state of 

the kth cell is Ck(0) = Xk(0), 0, Ck
mat, Ck

neigh(0), 0 .
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Note that the cell maturation age, Ck
mat , is the only cell feature that does not depend on time 

t, and it is assigned explicitly upon cell birth. However, to avoid cell synchronized divisions, 

we impose up to 15% of differences in the duration of the cell cycle (Tyson et al. 2012). 

Thus, we set

Ck
mat  = Amat  ∓ ω, (1)

where Amat is the average maturation age for the whole cell population, and ω is randomly 

chosen from a uniform distribution from [0, 2.5] h.

The cell Ci is considered to be a neighbor of cell Ck at time t, if it is located within the 

neighborhood radius Rneigh from cell Ck, that is:

Xk(t) − Xi(t) ≤ Rneigh . (2)

We consider here the neighborhood radius equal to two cell diameters (Rneigh = 2RD) which 

accounts for two layers around the host cell (as in Perez-Velazquez et al. 2016; Karolak 

et al. 2019b). The initial number of neighboring cells, Ck
neigh(0), depends on the initial 

cell configuration (see Sect. 2.3). As the cells divide, die or move around, the number of 

neighboring cells, Ck
neigh(t), varies with time.

The cell spatial dynamics is modeled by Newton’s second law of motion:

mk
d2Xk
  dt2 = ∑

i ≠ k

M
fk, i + Fk

vis, (3)

where fk, i is the interaction force between two neighboring cells Ck and Ci, Fk
vis denotes 

the force against viscosity of the surrounding medium, and mk is the mass of the kth 

cell. Newton’s second law of motion has been used to address the dynamics of cell-to-cell 

interactions, see the review in Murray et al. (2009) and the references therein.

The cell interaction forces arise when two neighboring cells, Ck and Ci, come into too close 

contact. If the distance between the cells’ centers is smaller than the cell diameter RD, the 

repulsive Hooke’s forces fk, i and fi, k = − fk, i are exerted to preserve cells’ volumes:

fk, i = ℱ RD − Xk − Xi
Xk − Xi
Xk − Xi

 if  Xk − Xi < RD

0  otherwise, 
(4)

where ℱ is the constant spring stiffness, and the spring resting length is equal to cell 

diameter RD. Since the cell can be exposed to interactions with multiple neighbors, the total 

force acting on the kth cell is the sum of all repulsive forces fk, 1+ fk, 2+···+ fk, M between the 

kth cell and its M neighbors.

Cell dynamics is thus governed by the equations of motion where the connecting springs are 

overdamped and system returns to equilibrium without oscillations. Hence,
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mk
d2Xk
  dt2 = 0. (5)

The viscous force, Fk
vis, of the kth cell is modeled as proportional to its velocity. That is,

Fk
vis = − vdXk

  dt , (6)

where ν denotes the media viscosity coefficient. Then, substituting (5) and (6) in (3), we 

obtain that the cell motion is determined by

∑
i ≠ k

M
fk, i − vdXk

dt = 0. (7)

Clearly, cell’s age progresses at the same rate as time progresses; hence,

dCk
age 

dt = 1. (8)

This equation has an exact solution Ck
age(t) = t − Ck

0, where Ck
0 is the time at which the cell 

was born. However, we will keep the differential equation form for consistency with other 

equations in numerical implementation described in “Appendix A”.

When the kth cell reaches its maturation age, Ck
mat, it will divide unless it is over-crowded. 

The overcrowding means that the number of neighboring cells, Ck
neigh(t), located within 

the neighborhood radius, Rneigh, exceeds the prescribed threshold max. If the cell is 

overcrowded, its proliferation is suppressed until the space becomes available. Here, the 

overcrowding threshold was determined computationally to be equal to 10 cells.

Upon division of the kth cell, two daughter cells Ck1(t) and Ck2(t) are created 

instantaneously. They are placed symmetrically near the mother cell in the random direction 

θ chosen from a uniform discrete distribution [0,2π]. The locations of the daughter cells are 

defined by

Xk1(t) = Xk(t) − 0.5 ⋅ RD(cos(θ), sin(θ)),
Xk2(t) = Xk(t) + 0.5 ⋅ RD(cos(θ), sin(θ)) . (9)

Since they are placed at the distance smaller than cell diameter, the repulsive forces between 

daughter cells are activated. Furthermore, this may also result in daughter cell placement 

near other cells. Therefore, multiple repulsive forces will be applied to resolve potential cell 

overlap, and the cells will be pushed away until the whole cell cluster reaches an equilibrium 

configuration.

The age of each newly born daughter cell is initialized to zero,

Berrouet et al. Page 5

Bull Math Biol. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ck1
age(0) = Ck2

age(0) = 0. (10)

The cell maturation age is inherited from its mother cell; however, a small noise term is 

added to avoid synchronization of the cell cycles,

Cki
mat = Ck

mat ± ωi, for i = 1, 2, (11)

where ωi is randomly chosen from a uniform distribution [0,2.5] h.

The level of drug accumulated by the mother cell is divided equally between the two 

daughter cells

Ck1
γ (t) = Ck2

γ (t) = 0.5 ⋅ Ck
γ(t) . (12)

The overall rate of change in drug accumulated by the kth cell is modeled in the most simple 

way as absorption at a constant rate ργ

dCk
γ

dt = ργ . (13)

This equations has an exact solution: Ck
γ(t) = ργt, provided that drug concentrations at the 

locations visited by the cell are not lower that cell’s demand. Thus, special precautions will 

be taken in the numerical implementation described in “Appendix A” to account for these 

situations.

We model here two different mechanisms of drug action. In the case of a cytotoxic drug, 

the cell dies immediately after accumulation of a lethal dose of the drug γ max. In the case 

of an anti-mitotic drug, the cell dies when it attempts to divide (in the mitotic phase of the 

cell cycle) after accumulated drug exceeds the lethal dose γ max. The dead cells are removed 

from the system.

2.2 Continuous Description of Drug Kinetics

The change in drug concentration γ(x, t) at location x = (x, y) within the domain Ω, 

depends on drug diffusivity and on the uptake by the tumor cells located nearby. The partial 

differential equation (PDE) describing the spatiotemporal drug dynamics is given by:

∂γ(x, t)
∂t = DγΔγ(x, t)

diffusion 
− ργ ∑

k = 1

N
χ Xk(t), x

cellular uptake

,
(14)

where γ is the drug diffusion coefficient, ργ is the cellular uptake rate, N is the total 

number of cells located in the neighborhood of radius Rγ defined by the indicator function 

χ:
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χ Xk(t), x =
1, if x − Xk t < Rγ,
0, otherwise.

(15)

We assume that there is no loss or gain of the drug along the domain boundaries ∂Ω. Hence, 

we impose Neumann-type boundary conditions

∂γ (x, t)/ ∂n = 0,

where x ∈ ∂Ω, where n is the inward pointing normal.

The drug is supplied only once, at the beginning of the simulation and its concentration in 

the extracellular space, that is in the space outside the cells (Ω \ ⋃ Ck), at time t = 0 is 

uniform,

γ(x, 0) = γ0, for x ∈ Ω ∖ ⋃Ck .

2.3 Initial Cellular Configurations

Since our goal is to compare the IC50 values achieved in the computational analogues 

of the 2D and 3D cell cultures when the same cells are exposed to the same drug, we 

consider two different initial configurations that correspond to these laboratory experiments. 

In both cases, we start with the same initial number of cells (315) that was determined 

computationally to ensure that the cells will not grow to confluence during the simulated 72 

h. This is consistent with laboratory experiments. We reproduced the cell monolayer culture 

(Fig. 2a) and the cross section though the cell spheroid culture (Fig. 2b), respectively.

Modeling the monolayer cell culture—The two-dimensional computational model is 

designed to reproduce the evolution of cells seeded sparsely in the domain filled with a 

dissolved drug. This is an analogue of a 2D cell monolayer culture in the Petri dish where 

all cells are exposed to the drug dissolved in the surrounding medium (Chou 2006; Yu et al. 

2015). Each simulation starts with 315 cells that are randomly distributed within a domain. 

The cells are monitored for 72 h, and the final number of viable cells is recorded. During 

this computational experiment, the cells are allowed to divide, absorb the drug and die. Upon 

division, the daughter cells are placed randomly nearby the mother cell and the repulsive 

forces are applied between overlapping cells until the new stable configuration is achieved.

The cells could also become growth-arrested due to contact inhibition if their configuration 

reached confluence. Upon death, the cells are removed from the system which could create 

free space and initiate new cell divisions. Figure 2a(i)–(iii) shows three snapshots from a 

monolayer simulation with no drug.

Modeling a cross section of the multicellular spheroid culture—The two-

dimensional computational model is designed to reproduce the central cross section of 3D 

multicellular spheroid culture. In these laboratory experiments, the cells are first grown in 

the dish until they form a packed sphere and then are embedded into the medium mixed 
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with a drug (Adcock et al. 2015; Friedrich et al. 2009). We reproduce this experimental 

design by starting each simulation with 315 cells that formed a circular cell cluster. The 

cells are then monitored for 72 h and are allowed to proliferate, absorb the drug or die, as 

in the monolayer case. However, the difference in initial configurations between these two 

computational models results in distinct population dynamics. In the spheroid model, the 

cells inside the cluster are overcrowded and thus stop proliferating due to cellular contact 

inhibition. Figure 2b(i)–(iii) shows three snapshots from a multicellular spheroid simulation 

with no drug.

Drug initial distribution in the monolayer and spheroid models—The initial drug 

concentration γ(x, t0) = γ0 is uniform throughout the extracellular space outside the cells, 

that is in Ω \ ⋃Ck. Since in the monolayer cell culture model the cells are located sparsely 

inside the domain, drug concentration γ0 is imposed uniformly in the whole domain (and on 

each grid point in the numerical implementation). In contrast, in the spheroid experiments, 

the drug is initially present outside the 3D culture only. To mimic the lack of the drug inside 

the spheroid in numerical implementation, the grid points inside the spheroid are left with 

no drug and drug diffusion occurs at the border of the cell cluster in the medium. However, 

in both computational models, drug absorption by the cells leads to local depletion of the 

drug (see the last column in Fig. 1). All physical and computational model parameters are 

summarized in Table 1.

3 Fitting the Inhibitory Concentration (IC50) Curves

The inhibitory concentration curve (called also the drug response curve or the IC50 curve) is 

described by the following Hill equation (Gardner 2000; Levasseur et al. 1998):

f(x) = f∞ + f0 − f∞

1 + x
IC50

−β (16)

where f0 is the control effect (the plateau observed for low drug concentrations), f∞ is 

the background effect (the plateau observed for large drug concentrations), β is the curve 

slope, and IC50 value is the curve inflection point at which the drug maximal effect (f0 − 

f∞) decreases by 50%. The curve slope β is a measure of variability in drug response—the 

steeper the slope is, the more homogeneous the drug response. The value of f∞ describes 

drug efficacy—the lower the f∞, the higher the beneficial effect (often denoted by Emax, 

maximal effect). The IC50 value is correlated with drug potency, i.e., the amount of drug 

necessary to produce the effect—the lower the IC50 value, the more potent the drug (Meyer 

et al. 2019). The relationship between drug potency, drug efficacy and the IC50 curve shape 

is shown in Fig. 3.

To draw the inhibitory concentration curves and determine the half-inhibitory concentration 

value IC50, we perform computational experiments for the monolayer and spheroid cultures 

with initial drug concentrations varied from γ0=0 to 103 mM. Each simulation starts with 

315 cells arranged either in the monolayer or spheroid configuration. The total number of 

cells that remained after 72 h of the simulated time is recorded. For each drug concentration, 

we repeat the simulation 3 times to determine the average number of viable cells. These 

Berrouet et al. Page 8

Bull Math Biol. Author manuscript; available in PMC 2022 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



numbers were normalized using the average count of cells grown with no drug. With this 

process, we obtained the normalized cell counts f (γ0) for each tested drug concentration 

γ0. For simplicity, we focus on drugs that have high efficacy, f∞ = 0 and assume that 100% 

of viable cells remained at end of control experiment, i.e., f0 = 100. Thus, we consider the 

following simplified Hill function:

f γ0 = 100

1 + γ0
IC50

−β ,
(17)

where γ0 is the drug concentration and f (γ0) is the normalized cell count for drug 

concentration γ0. The Hill coefficient β and the half-inhibitory concentration value IC50 

were determined by fitting the Hill function Eq. (17) to the simulated data using the 

MATLAB built-in function fit that minimizes

min
β, IC50

∑
i = 1

n
Yi − f γ0, i

2,

where Y i i = 1
n  are the simulated normalized cell count data at the tested drug concentrations 

γ0, i and f γ0, i i = 1
n  are the normalized cell counts given by the Hill function Eq. (17).

4 Results

Our main goal is to examine under which conditions the IC50 values calculated from 2D 

monolayer and 3D spheroid culture data are similar, and under which conditions they are 

distinct. This will allow us to determine, whether the typical 2D cell culture experiments 

are sufficient in assessing efficacy of the anti-cancer drugs, or if the experiments should be 

carried using the 3D spheroid cultures. In particular, we are interested how the IC50 values 

depend on drug mechanism of action, on drug diffusivity and on vital properties of the tumor 

cells. We consider here three cell lines that differ in their doubling times and span division 

ages consistent with reported experimental data (Hafner et al. 2016; Leander et al. 2014). We 

perform simulations for three distinct drug diffusivity values that correspond to therapeutic 

compounds used in the clinic, such as small molecule drugs, nanoparticles or antibodies, as 

reported in the literature (Schmidt and Wittrup 2009; Karolak et al. 2018). We also take into 

consideration two distinct killing mechanisms characteristic for clinically applicable drugs 

(Lipp and Hartmann 2008; Kustermann et al. 2013): the cytotoxic drugs (Sect. 4.1) and 

the anti-mitotic drugs (Sect. 4.2). In order to cross-examine the results for both drugs, we 

assume that each drug is absorbed by the cells at the same constant rate and the same drug 

concentration is lethal for the cells.

4.1 Cytotoxic Anti-Cancer Drugs

In the case of cytotoxic drugs, cell survival is regulated only by the level of the absorbed 

drug, and the cell dies if the amount of the accumulated drug exceeds the predefined 

threshold. We first examined whether the IC50 values for the 2D and 3D cultures depend 
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on how fast the drug is diffusing within each cell culture. Next, we examine whether the 

drug-induced cell death depends on how fast the cells are dividing.

The impact of drug diffusivity on IC50 values in 2D and 3D cell cultures—We 

considered three distinct diffusion coefficients: γ = 1, 10−2, 10−4 μm2/s. In each case, we 

perform several computational simulations using initial drug concentrations γ0 between 0 

and 103 mM for both a monolayer and a spheroid cultures. These results are summarized in 

Fig. 4a–c.

For each drug diffusivity, the simulations are repeated 3 times, and the average number of 

viable cells is used to calculate the IC50 curves, separately for the 2D monolayer cultures 

(blue curves) and 3D multicellular spheroid cultures (red curves). All IC50 curves have 

quite similar shapes, and the corresponding IC50 values are of the same order of magnitude 

with less than 20% of difference. It can be observed that with the diminishing diffusion 

coefficients, the IC50 values for the spheroid cultures are slightly higher than for the 2D 

cultures, that is, consistent with the fact that slowly diffusing drugs are not able to effectively 

penetrate the tightly packed cell clusters. Therefore, the cells in the 3D spheroids could 

survive better the drug insult. This is also confirmed by the final cellular configurations 

shown in the insets in Fig. 4. For higher concentrations of slowly diffusing drugs, some cells 

in the 3D spheroids have survived after 72 h of exposure to the drug, while no cells remained 

in the 2D cell cultures exposed to the same drug concentrations. For example, when cells 

were exposed to the initial drug concentration of γ0 = 10 mM, there were no cell remaining 

in both 2D and 3D experiments for the highest diffusion case of 1 μm2/s (Fig. 4a), while 105 

and 315 cells remained in the 3D spheroid model for diffusion of 10−2μm2/s (Fig. 4b) and 

10−4μm2/s (Fig. 4c).

In summary, slower drug diffusion resulted in more pronounced changes in the IC50 values 

for the spheroid model in comparison with the IC50 values for the monolayer model, which 

were not significantly different.

The impact of cell maturation ages on IC50 values in 2D and 3D cell cultures—
Since the amount of the absorbed drug depends on how long the cell is exposed to it, we 

examined the relationship between the IC50 curves as the average cell maturation age Amat 

increases from 18, to 30, to 50 h, while all other parameters were kept fixed. These results 

are shown in Fig. 5a–c.

For each maturation time, we perform simulations for both the monolayer (top row in 

Fig. 5) and spheroid (bottom row) cultures. We consider three diffusion coefficients: γ = 

1μm2/s (blue curves), γ = 10−2μm2/s (red curves) and γ = 10−4μm2/s (magenta curves). 

The corresponding IC50 values for all simulated cases are summarized in Table 2. These 

results indicate that in the monolayer model cell maturation time and drug diffusivity do 

not effect the IC50 curves, and thus have insignificant role in inhibiting growth of the 

whole cell population. On the other hand, in the spheroid model, the changes in the IC50 

values are more pronounced. For a fixed cell maturation age, the IC50 values differ at lease 

twofold between the fastest and the slowest diffusing drug. Moreover, in the case of slowly 

proliferating cells, this difference is almost fivefold. For faster diffusing drugs, the IC50 
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values are similar despite the differences in cell maturation ages, but in the cases of slower 

spreading drugs, the corresponding IC50 values increase with the increased maturation.

In summary, the 2D monolayer model is not able to differentiate between the inhibitory 

effects of cytotoxic drugs of different diffusivity for a range of tumor cells with diverse 

proliferation dynamics. This is because all cells in the monolayer culture are equally 

exposed to the drug. On the other hand, in the 3D spheroid culture model, both factors: 

drug diffusivity and frequency of cell proliferation affect the IC50 values noticeably, with 

values increasing for slower diffusing drugs and for slower proliferating cells. This is an 

effect of a more realistic tumor geometry in which tightly packed cells are more difficult to 

penetrate by the drug dissolved in the surrounding external medium.

4.2 Anti-mitotic Anti-cancer Drug

The anti-mitotic drugs are designed to interfere with microtubule functions which are 

essential in the cell division process. Cells exposed to these drugs cannot progress to the 

mitotic phase of the cell cycle and die. Therefore, cells’ survival depends on both the level 

of the accumulated drug and the current cell cycle phase. In particular, if the absorbed drug 

exceeds the predefined threshold, the cell remains viable until it attempts to divide. For the 

anti-mitotic drugs, we first examined whether the IC50 values for the 2D and 3D cultures 

depend on drug diffusivity within the 2D and 3D cell cultures. Next, we tested whether the 

drug-induced cell death depends on cell maturation age, that is on how fast the cells are 

dividing.

The impact of drug diffusivity on IC50 values in 2D and 3D cell cultures—As 

in the previous case, we considered three different drug diffusion rates: γ = 1, 10−2, 10−4 

μm2/s and performed several computational simulations using initial drug concentrations γ0 

between 0 and 103 mM. Each simulation is seeded with 315 cells arranged either sparse 

in the domain (a monolayer culture) in a circular configuration (a cross section through 

a spheroid culture). For each combination of parameters, we perform 3 simulations and 

the average data are used to generate the IC50 curves for the 2D monolayer cultures (blue 

curves) and 3D multicellular spheroid cultures (red curves). These results are presented in 

Fig. 6a–c.

Similarly, as in the cytotoxic drug case, the IC50 values for the 2D cell cultures do not 

differ significantly despite distinct drug diffusivity. Moreover, for fast proliferating cells, the 

IC50 curves for both 2D and 3D cultures are overlapping (Fig. 6a), while for the slowly 

proliferating cells, the IC50 curves for the spheroid cultures attain higher half-inhibitory 

values (Fig. 6b, c). In contrast to the cytotoxic case, the 3D cell colonies of cells exposed to 

higher concentrations of anti-mitotic drugs are less compact. This is an effect of the delayed 

death of the cells located in the middle of the spheroid. These cells have already absorbed a 

lethal level of the drug, but remain in the dormant state due to overcrowding. Once the space 

for their division becomes available, these cells make an attempt to divide and die due to the 

drug action. This, in turn, creates space for division of other cells that might instead die if 

they accumulated a lethal dose of the drug. This may create a domino effect that results in 

more cell death and less compact spheroid structure. This effect may also take place in 2D 
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cell cultures, but because these cells are seeded more sparsely, it is not so apparent as in the 

3D spherical cultures.

The impact of cell maturation ages on IC50 values in 2D and 3D cell cultures—
Next, we focused on the relationship between the IC50 values for the anti-mitotic drugs and 

cell maturation age. We considered again three cell lines characterized by distinct maturation 

ages: Amat = 18, 30 or 50 h, respectively. These results are summarized in Fig. 7a–c where 

the IC50 curves for 2D monolayer culture are shown in red and for the 3D spheroid culture 

in blue. The corresponding IC50 values are summarized in Table 3.

We again observe the trend that IC50 values increase when drug diffusivity decreases and 

cell maturation age increases for the 3D cell cultures; however, these differences between 

IC50 values and curves are even more pronounced for anti-mitotic drugs in comparison with 

cytotoxic drugs. In fact, for very slowly proliferating cells (Amat = 50 h), there is an order 

of magnitude difference between IC50 values for fast diffusing (Dγ = 1μm2/s) and slowly 

diffusing (Dγ = 10−4μm2/s) anti-mitotic drugs (red curves in Fig. 7a, c). This IC50 value is 

also an order of magnitude larger than the corresponding value for the cytotoxic drugs. In 

case of the 2D cell monolayer cultures, there is no significant difference in the IC50 values 

despite differences in drug diffusivity and cell proliferation speed. This is similar to the case 

of the cytotoxic drugs. For the anti-mitotic drug, we observe a non-monotone relationship 

between drug diffusivity and IC50 values when the average maturation age of the cells is 18 

h (see Table 3, when Amat = 18 h). To confirm this non-monotone relationship, we repeated 

the experiment for the anti-mitotic drug with drug diffusivity Dγ set to 1, 10−2 and 10−4 

μm2/s when Amat = 18 h. Results, not shown here, confirm our initial observations.

In summary, the 2D monolayer model is again not able to distinguish between the inhibitory 

effects of anti-mitotic drugs of different diffusivity for a range of tumor cells with diverse 

proliferation dynamics. Again, this is attributed to the fact that all cells in the 2D monolayer 

culture are equally exposed to the drug. In contrast, in the 3D spheroid culture model, both 

drug diffusivity and cell proliferation time have noticeable effect on the IC50 values which 

increase for slowly diffusing drugs and for slowly proliferating cells. While this trend is 

similar for cytotoxic and anti-mitotic cells, the overall increase in IC50 values is larger for 

the anti-mitotic cells. Actually, it is an order of magnitude larger for the extreme case (Amat 

= 50 h and Dγ = 10−4μm2/s), showing the crucial role that the drug mechanism of cell killing 

plays in determining the drug inhibitory effect.

5 Discussion

In this paper, we addressed an issue of comparing the potency of anti-cancer drugs using 2D 

monolayer and 3D spheroid cell cultures. Traditionally, the monolayer cultures are used for 

evaluation of how a given drug effects growth dynamics of a given cell line or malignant 

cells derived from a patient’s tumor. These experiments provide information about whether 

the drug exerts the expected effect and what is the minimal drug concentration needed to 

observe this effect. The drugs can be then compared to one another using the IC50 values 

which indicate drug concentration that inhibits growth of tumor cell colony by half. By 
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comparing IC50 values for different drugs, one can assess which of them is effective at lower 

concentrations.

However, it has been shown experimentally that the 2D cell cultures do not recreate 

tumor features observed in vivo, such as tumor morphology, cell phenotypes and cell-

cell interactions, tumor heterogeneity, and the composition of tumor microenvironment 

(Pampaloni et al. 2007; Hoarau-Vechot et al. 2018; Belgodere et al. 2018). Therefore, tumor 

cells’ response to anti-cancer drugs and drug penetration through the tumor tissue might 

not be faithfully captured in the monolayer cultures. To test this hypothesis, we performed 

computational studies to compare the IC50 curves generated from the analogues of the 

two-dimensional cell monolayer culture and the three-dimensional multicellular spheroid 

culture, when the same cells are exposed to the same drugs for the same period of 

time. We considered hypothetical drugs of various sizes (and thus different diffusivity) 

and different cell killing mechanisms (cytotoxic and anti-mitotic). Our results indicated 

that in simulations of 2D cell cultures the IC50 values were similar, indicating the same 

drug potency despite different drug characteristics and cell properties. However, in the 

simulations of 3D multicellular spheroid cultures, both classes of drugs showed significant 

differences in the the IC50 values for different drug diffusivity and cells of different cell 

cycles. This strongly suggest that 2D cell cultures are not able to differentiate the half-

inhibitory effects for distinct drugs, and the 3D multicellular spheroid cultures should be 

rather used to assess effective drug concentrations in laboratory experiments.

While in this manuscript, we consider hypothetical drugs of biologically relevant properties, 

our ultimate goal for our future work is to apply these analyses to specific drugs and specific 

cell lines/tumors for which we can provide experimental validation. Certain assumptions 

of our model can also be refined in the future. For example, some cytotoxic drugs can 

induce cell necrosis, while others result in cell lysis. In the former case, cells will remain 

in the system, though they would stop absorbing the drug. In the latter case, dying cells 

may release toxins that have a direct impact on neighboring cells’ survival. The process 

of dead cell clearance may also be modeled in a more realistic way by using additional 

time lag, in contrast to instantaneous cell removal, as it is modeled in the current version. 

Moreover, we observed in our simulations that anti-mitotic drugs may result in less compact 

spheroid structure due to sudden death of inner cells. This took place when some inner dying 

cells created space for their immediate neighbors to divide, but the cells died instead when 

they entered into mitotic phase of their cell cycle. It is observed that some in vivo tumors, 

such as melanomas, are less dense and contain more interstitial fluid that would suggest 

more intratumoral death. However, further studies are needed to confirm if the mechanism 

suggested by our simulations faithfully explains empirical observations.

In summary, to our knowledge, this work is the first comprehensive computational study 

comparing drug efficacy in analogues of the 2D and 3D cell cultures. Our simulations 

indicate that monolayer cell cultures may provide misleading results, since the produced 

IC50 values were almost identical for several cases for which spheroid cultures resulted in 

significantly distinct IC50 values. Thus, our main message from this study is to advocate 

for using the 3D cell cultures as a standard for testing drug efficacy, which is not currently 

practiced by the experimental laboratories and pharmacology industry.
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Appendix A: Numerical Implementation of Model Equations

Our computational model combines the off-lattice individual cells with the continuous 

PDE for the drug concentration. The drug concentration equation Eq. (14) is numerically 

solved on the regular Cartesian grid x = (x, y), while cells’ positions are defined off-lattice 

Xk k = 1
N . The exchange of information between these two computational structures takes 

advantage of the indicator function Eq. (15).

A finite difference scheme is used to approximate the solution of the differential equations 

modeling cell relocation and drug kinetics. Let Δt denote the time step, and let cell 

velocity be discretized by the first-order difference equation, then the cell motion Eq. (7) is 

discretized as

∑
i ≠ k

fk, i − vXk(t + Δt) − Xk(t)
Δt = 0 (18)

Thus, the location of the kth cell at the next time step (t + Δt) can be determined by

Xk(t + Δt) = Xk(t) + 1
vΔt ∑

i ≠ k
fk, i . (19)

Using the same finite difference approximation for Eq. (8), the age of the kth cell at the next 

time step is given by

Ck
age(t + Δt) = Ck

age(t) + Δt (20)

Similarly, let the rate of change of the drug accumulated in the kth cell be discretized by the 

first-order finite difference scheme, then Eq. (13) becomes,

Ck
γ(t + Δt) = Ck

γ(t) + ργΔt, (21)

However, if there is not enough drug in cell vicinity (within the cell radius RD) to be 

absorbed by the kth cell, then the cell would uptake all the drug available nearby. Hence, the 

drug accumulated by the kth cell at time (t + Δt) will be computed by

Ck
γ(t + Δt) = Ck

γ(t) + min ργΔt, γ(x, t) ⋅ χ Xk(t), x
uptake

,
(22)
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The domain Ω is discretized into a square grid with equal spacing between grid points Δx 
= Δy. Solution of the reaction-diffusion equation Eq. (14) modeling drug concentration in 

the domain is then approximated using a forward finite-difference approximation in time and 

centered finite-difference approximation in space. Thus, an approximation of the solution of 

Eq. (14) is obtained by the following numerical method:

γ(x, y, t + Δt) = γ(x, y, t) + DγΔt
(Δx)2 (γ(x + Δx, y, t) + γ(x, y + Δy, t)

− 4γ(x, y, t) + γ(x, y − Δy, t) + γ(x − Δx, y, t))

− min ργΔt, γ(x, y, t) ∑
k = 1

N
χ Xk(t), x, y

(23)

Numerical stability of this forward in time centered in space (FTCS) method is ensured by 

satisfying the following condition:

DγΔt/Δx2 ≤ 1/4,

which is satisfied for the maximum diffusion value considered in this study (see Table 1 for 

parameter values), and the chosen time step and grid size. Thus, the numerical method FTCS 

for all parameter values is stable.

Other numerical methods could be used to approximate Eq. (14), such as an unconditionally 

stable fully implicit method or an IMEX method that implicit–explicit combines an implicit 

scheme for diffusion with an explicit scheme for the reaction terms (Ascher et al. 1995; 

Madzvamuse 2006). This, however, would impose higher computation costs.

In the case, when cell’s demand for drug absorption is higher than the drug available in the 

medium, all available drug will be depleted; thus, the cellular uptake component is equal to 

the minimum between the drug demanded by the cells and the drug available:

γ(x, y, t + Δt) = γ(x, y, t) + DγΔt
(Δx)2 (γ(x + Δx, y, t) + γ(x, y + Δy, t) − 4γ(x, y, t) + γ

(x, y − Δy, t) + γ(x − Δx, y, t)) − min γ(x, y, t), ργΔt ∑
k = 1

N
χ Xk(t), x, y .

(24)
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Fig. 1. 
Schematics of 2D and 3D cell cultures and their mathematical analogues. a A schematics of 

the 2D monolayer cell culture, a corresponding fluorescent microscopy image of a part of 

the Petri dish, and a snapshot from our in silico analogue model of the 2D cell culture. b A 

schematics of the 3D multicellular spheroid culture, a corresponding bright field microscopy 

image of a part of the well plate, and a snapshot from our in silico analogue model of the 

cross section through the 3D spheroid. The background color represents drug concentration 

to illustrate local drug gradients from high concentration (yellow) to low concentration 

(blue). Experimental images courtesy of the Moffitt Analytic Microscopy Core
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Fig. 2. 
Tumor growth in 2D and 3D cell cultures with no drug (the control case). a A computational 

model of the monolayer cell culture with sparsely seeded initial 315 cells (i), the daughter 

cells divide and spread throughout the domain (ii) for 72 h of the simulated time reaching 

4516 cells (iii). b A computational model of the cross section though the spheroid cell 

culture with initial cluster of 315 cells (i), the non-overcrowded cells divide and expand (ii) 

for 72 h of the simulated time reaching 3183 cells (iii)
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Fig. 3. 
Drug potency and efficacy reflected in IC50 curves. The shape of the IC50 curve depends on 

the control effect (f0), variability of cell population response (slope β), drug potency (IC50 

value), and drug efficacy (background effect f∞)
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Fig. 4. 
Comparison of IC50 curves and values for cytotoxic drugs. IC50 curves for monolayer 

cultures (blue curves) and cross sections though spheroid cultures (red curves) and their 

corresponding IC50 values are shown for the following diffusivity values: a Dγ = 1μm2/s; 

IC50=4.2675 for 2D and 3.9644 for 3D cultures; b Dγ = 10−2μm2/s; IC50=4.2706 for 2D and 

5.0965 for 3D cultures; c Dγ = 10−4μm2/s; IC50=4.2913 for 2D and 5.1837 for 3D cultures. 

The vertical lines show standard deviation values. Insets show final cell configurations 

for the selected drug concentrations. Cell colors indicate the level of absorbed drug (low-

pink, high-black). Background colors indicate the level of the remaining drug (high-yellow, 

medium-green, low-blue). The drug was supplied uniformly only once, at the beginning of 

each simulation. The cell maturation time for these simulations was 18 h
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Fig. 5. 
Comparison of IC50 curves for three cell lines of different maturation ages. IC50 curves and 

values for drugs with diffusion coefficients of Dγ = 1μm2/s (blue), 10−2μm2/s (red), and 

10−4μm2/s (magenta) in the monolayer culture model (top) and the cross section though the 

spheroid culture model (bottom) for the maturation times of a Amat = 18 h, b Amat = 30 h, 

and c Amat = 50 h. All data are presented after 72 h of the simulated time
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Fig. 6. 
Comparison of IC50 curves and values for anti-mitotic drugs. IC50 curves for monolayer 

cultures (blue curves) and cross sections though spheroid cultures (red curves) and their 

corresponding IC50 values are shown for the following diffusivity values: a Dγ = 1μm2/s; 

IC50=4.2988 for 2D and 3.8735 for 3D cultures; b Dγ = 10−2μm2/s; IC50=4.3018 for 2D and 

5.3333 for 3D cultures; c Dγ = 10−4μm2/s; IC50=4.3037 for 2D and 4.8457 for 3D cultures. 

The vertical lines show standard deviation values. Insets show final cell configurations 

for the selected drug concentrations. Cell colors indicate the level of absorbed drug (low-

pink, high-black). Background colors indicate the level of the remaining drug (high-yellow, 

medium-green, low-blue). The drug was supplied uniformly only once, at the beginning of 

each simulation. The cell maturation time for these simulations was 18 h
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Fig. 7. 
Comparison of IC50 curves for three cell lines of different maturation ages. IC50 curves 

for drug diffusion coefficient of Dγ = 10−4μm2/s and cell maturation ages of a Amat=18 h, 

b Amat=30 h, and c Amat=50 h, in 2D cell monolayer culture (blue) and 3D cell spheroid 

culture (red). All data are presented after 72 h of the simulated time
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Table 1

Physical and computational model parameters

Cellular and microenvironmental parameters

Cell diameter RD = 10 μm, cell radius R = 5μm Shashni et al. (2018), NCI-60 Human Tumor Cell Lines Screen [Internet] 
(2015)

Spring stiffness ℱ = 50 μg/μm · s2 Baumgartner and Drenckhahn (2002), Rejniak and Dillon (2007)

Mass viscosity v = 250 μg/μm · s Kane et al. (2018)

Neighborhood radius Rneigh = 2RD = 20 μm Perez-Velazquez et al. (2016), Karolak et al. (2019b)

Overcrowding cell number max = 10 cells estimated

Average maturation age mat = 18, 30, 50 h Hafner et al. (2016), Mehrara et al. (2007)

Drug parameters

Diffusion coefficient γ = 1, 10−2, 10−4 μm2/s Schmidt and Wittrup (2009)

Drug uptake radius Rγ = 5 μm Cell radius

Baseline drug concentration γ = 1 mM

Initial drug concentration γ0 vary from 0 to 103 mM Fallahi-Sichani et al. (2013)

Cellular uptake rate ργ = 5 × 10−8 ng/μm3s 0.1γ/s

Cellular death threshold γmax = 2 × 10−6 ng/μm3 2γ
Numerical parameters

Domain size [−500, 500] μm × [−500, 500] μm

Mesh width Δx = Δy = 5 μm Cell radius

Time step Δt = 5 s FTCS stability
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Table 2

IC50 values for cytotoxic drug diffusion coefficients Dγ and cell maturation ages Amat, for both monolayer and 

spheroid in silico cultures

Dγ μm2/s Amat = 18 h Amat = 30 h Amat = 50 h

Summary of IC50values in the monolayer model

1 4.2675 3.2892 2.7924

10−2 4.2706 3.2876 2.7966

10−4 4.2913 3.2962 2.8088

Summary of IC50values in the cross section spheroid model

1 3.9644 3.2315 2.9875

10−2 5.0965 5.2505 4.9565

10−4 5.1837 6.6280 9.5846
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Table 3

IC50 values for anti-mitotic drug diffusion coefficients Dγ and cell maturation ages Amat, for both monolayer 

and spheroid in silico cultures

Dγ μm2/s Amat = 18 h Amat = 30 h Amat = 50 h

Summary of IC50values in the 2D model

1 4.2988 3.3495 3.2190

10−2 4.3018 3.3641 3.1989

10−4 4.3037 3.3656 3.2361

Summary of IC50values in the 3D model

1 3.8735 3.3896 3.4942

10−2 5.3333 5.7667 7.4052

10−4 4.8457 9.0081 18.148
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