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Abstract 
Host-microbe interactions constitute dynamical systems that can be represented by 
mathematical formulations that determine their dynamic nature, and are categorized as 
deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is 
essential for understanding the system under study. Very little experimental work has 
been done to determine the dynamical characteristics of host-microbe interactions and 
its study poses significant challenges. The most straightforward experimental outcome 
involves an observation of time to death upon infection. However, in measuring this 
outcome, the internal parameters, and the dynamics of each particular host-microbe 
interaction in a population of interactions are hidden from the experimentalist. To 
investigate whether a time-to-death (time to event) dataset provides adequate 
information for searching for chaotic signatures, we first determined our ability to detect 
chaos in simulated data sets of time-to-event measurements and successfully 
distinguished the time-to-event distribution of a chaotic process from a comparable 
stochastic one. To do so, we introduced an inversion measure to test for a chaotic 
signature in time-to-event distributions. Next, we searched for chaos, in time-to-death of 
Caenorhabditis elegans and Drosophila melanogaster infected with Pseudomonas 
aeruginosa or Pseudomonas entomophila, respectively. We found suggestions of 
chaotic signatures in both systems, but caution that our results are preliminary and 
highlight the need for more fine-grained and larger data sets in determining dynamical 
characteristics. If validated, chaos in host-microbe interactions would have important 
implications for the occurrence and outcome of infectious diseases, the reproducibility of 
experiments in the field of microbial pathogenesis and the prediction of microbial 
threats.  
 
Importance 
Is microbial pathogenesis a predictable scientific field? At a time when we are dealing 
with Coronavirus Disease 2019 (COVID-19) there is intense interest in knowing about 
the epidemic potential of other microbial threats and new emerging infectious diseases. 
To know whether microbial pathogenesis will ever be a predictable scientific field 
requires knowing whether a host-microbe interaction follows deterministic, stochastic, or 
chaotic dynamics. If randomness and chaos are absent from virulence, there is the 
hope for prediction in the future regarding the outcome of microbe-host interactions. 
Chaotic systems are inherently unpredictable although it is possible to generate short-
term probabilistic models, as is done in applications of stochastic processes and 
machine learning to weather forecasting. Information on the dynamics of a system is 
also essential for understanding the reproducibility of experiments, a topic of great 
concern in biological sciences. Our study finds preliminary evidence for chaotic 
dynamics in infectious diseases. 
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Introduction 
 
Host microbe interactions can have variable outcomes that result in at least four states, 
namely symbiosis, commensalism, latency, and disease (1, 2).  These states can be 
distinguished by the amount of damage incurred on the host. When damage is sufficient 
to affect homeostasis disease ensues and is manifested as symptoms of distress.  
When damage is sufficient to cripple essential systems death ensues. Studying the 
dynamics of host-microbe interactions is inherently difficult, since measurements of 
host-microbe interactions, such as survival time post infection, are often very difficult to 
reproduce in a quantitative manner even when the initial conditions appear to be nearly 
identical. There are several non-exclusionary explanations for the lack of detailed inter-
experimental reproducibility even when the overall result is reproducible. On one hand, 
microbial pathogenesis is dependent on a dizzying array of variables that include 
microbe- and host-specific factors, such as inoculum size, route of infection, host state, 
temperature, associated microbiota, etc. (3) Even in the most carefully conducted 
experiment it is unlikely that all variables are perfectly controlled from experiment to 
experiment. This is apparent even in experiments where a qualitative variable such as 
host death is consistent but quantitative outcomes such as time to death can vary 
significantly from experiment to experiment (4). For instance, even within an experiment 
where a set of genetically identical hosts in the form of inbred mice are infected with the 
same inoculum of a bacterium or parasite, organ microbial burden across individuals 
can vary by 100-fold (for an example see Figure 2 in (5)). Such ranges are often 
attributed to experimental variation, although to our knowledge the sources of such 
variability have not been exhaustively investigated in any host-microbe interaction, and 
such studies may not be feasible with current experimental capabilities. This 
interpretation assumes that the system is deterministic since it operates on the implicit 
assumption that if an experimenter could control for all experimental variables the 
results would be perfectly reproducible from experiment to experiment. Yet, this 
assumption has never been formally tested, and it is possible that experimental noise 
and lack of reproducibility in host-microbe interactions also reflect the mathematical 
properties of the systems under study. 
      
Dynamical systems are either stochastic or deterministic. Stochastic systems are 
dominated by random variables and are inherently unpredictable. Deterministic systems 
are predictable in that they produce the same output given the same initial conditions.  
Chaotic systems are a subset of deterministic systems where the long-term course of 
the system is highly unpredictable, even while the system is theoretically predictable. 
This seeming contradiction stems from the high sensitivity to initial conditions 
possessed by a chaotic system, popularly captured by the notion of "the butterfly effect", 
where a small change to the weather system such as a butterfly flapping its wings 
cascades onto a large change in the system later, potentially culminating in a tornado. 
In a deterministic system, the future course of the system is theoretically possible to 
determine, if given perfect knowledge of the current state of the system and its 
dynamics. But since in practice, we can never account fully and with complete precision 
for all the state variables, such long-term prediction is impossible. By the same token, 
experiments carried out in the context of a chaotic system cannot be expected to be 
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repeatable since we cannot control for all variables with perfect precision. We 
emphasize to the non-specialist reader that mathematical chaos does not mean 
‘chaotic' in the vernacular parlance. The free online dictionary defines chaotic ‘A 
condition or place of great disorder or confusion’, but the mathematical definition is that 
of a system that is highly sensitive to the initial conditions, which is quantified by the 
maximal Lyapunov exponent being greater than zero, indicating that nearby trajectories 
at a given point in time diverge exponentially with respect to time in the future. Chaotic 
systems are to be contrasted with stochastic, or random, dynamical systems. In 
stochastic systems, neither short- nor long-term prediction is possible due to an 
irreducible element of randomness. For example, the outcome of a gambling game 
where the cards are dealt at random cannot be predicted because complete chance 
determines the combinations at various points. Importantly, it has been observed that in 
biology chaotic behavior is prevalent, however, as noted by Rogers et. al., (6) due to 
lack of sufficient data it is often somewhat difficult to conclusively establish a chaotic 
signature, as is the case in the current study. 
 
There is very little information available on the dynamical characteristics of host-microbe 
interactions, i.e., whether these dynamics are stochastic, predictably deterministic, or 
chaotic. Cryptococcus neoformans infection in the moth Galleria mellonella, followed a 
deterministic and predictable course, and no signatures of chaos were detected, but the 
inoculum used may have been too large, thereby resulting in a predictable outcome of 
death that overwhelmed any chaotic influences in this system (7). In contrast, analysis 
of influenza virus dynamics (8) and host-parasitoid systems (9) suggests dynamical 
behavior suggestive of chaos. Chaos is believed to be widespread in the biological 
world and has been reported either empirically or theoretically in predator-prey 
relationships (10), microbial densities in ecological systems (10), DNA content during 
mitosis (11), and even in processes that are considered periodic such as cardiac 
rhythms (12), circadian rhythms (13), gene regulation (14), human menstrual cycles 
(15), signaling cascades (16) and yeast budding cycles (17). Given the likelihood of the 
existence of chaotic signatures in such diverse systems it is worthwhile to consider 
whether it also occurs in microbial pathogenesis, a process that involves emergent 
properties arising from the host-microbe interaction. In this study we investigated the 
dynamics of Pseudomonas spp. infection in Caenorhabditis elegans and Drosophila 
melanogaster. 
 
Results 
 
Detecting chaos in time-to-death distributions 
When faced with a time series sampled from some dynamical process, one might want 
to detect whether the underlying process is chaotic or stochastic. Of course, there could 
be some stochasticity on top of an underlying chaotic process, in which case one might 
still want to detect the presence of chaos. The difficulty arises from the fact that many 
statistics of a chaotic process resemble a stochastic one -- the determinism of the 
process rendered barely detectable due to the unstable dynamical trajectories 
characteristic of chaos. However, methods exist for distinguishing chaos (18, 19). One 
such method is the permutation spectrum test, studying the distribution of ordinal 
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patterns in short consecutive subsequences of the time series (20, 21). In particular, the 
existence of forbidden ordinal patterns -- those with no or almost no occurrence -- is 
known as a strong indication of chaos, which distinguishes it from a truly stochastic time 
series. In the experiments described here, a population of hosts are exposed to 
pathogens, and the resulting time-to-death distribution is compared to that of a naturally 
occurring time-to-death distribution of a control population. In this case, the problem of 
detecting underlying chaos in the dynamics of host-microbe interactions, when the 
readout is time-to-death, is complicated by two factors. First, we do not have access to 
the internal dynamics of the system, only to the time at which a terminal event (death) 
occurs. Second, since we only gather one data point from each individual (time until 
death), we must study an assemblage of systems rather than a single continual system. 
This forces a degree of randomness on the data, especially as we cannot control the 
system’s internal parameters. In particular, we can no longer use the permutation 
spectrum test in the traditional way, since we have a distribution of time-to-deaths pulled 
from a sample population rather than a sample of time-series from single individual 
subjects.  In addition, we note that that in both worms and flies, the infection does not 
occur at the same time for all animals and that the time zero reflects the beginning of 
the experiment rather than the time of initial infection.  Nevertheless, as stated in the 
methods, for both systems infection is expected to occur shortly after the experiments 
begin.  Given that this is a physiological infection method where the animals are 
infected by ingesting the pathogen, repeated infections theoretically likely but neither 
are common since infected worms remain infected after first injecting bacteria and flies 
incur such gut damage from initial infection that they are unlikely to be candidates for 
subsequent infection.  Hence, our dynamic analysis is for the whole infection system 
rather than for individual animals and note that this approach is more akin to what 
happens in natural epidemics resulting from the encounter of a pathogen with a 
susceptible host population. 
 
Faced with these problems, we devised a new test that we term an “inversion measure”, 
which we suggest can be used in detecting chaos based only on the distribution of time-
to-event in an ensemble system. This method is based on a histogram representation of 
the time-to-event distribution. Similarly, to the permutation spectrum test, we subdivide 
the histogram’s bins into consecutive non-overlapping sequences of k=4 bins. For each 
such sequence, we check whether it is an inversion, meaning the direction of change 
from second to third bin is opposite to the direction of change from first to fourth. We 
measure the frequency of 4-bin sequences which are inversions. We base this measure 
on the understanding that distributions that are roughly smooth after averaging away 
random noise would have fewer inversions, whereas distributions that are less smooth 
and more irregular, which is a characteristic of chaos (18), would potentially have more 
inversions. Indeed, as the direction of change from the first to fourth bin is expected to 
indicate the local linear trend, the direction of change from the second to third bin would 
be expected, on average, to align with this trend as well. Our measure is inspired by the 
permutation spectrum test in studying the aggregate behavior of short sequences of 
time. We assign a p-value to the measure based on bootstrapping against a null 
hypothesis that the distribution is locally linear (See Methods for more details). Thus, a 
low p-value indicates the distribution significantly deviates from a locally linear one and 
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may have chaotic characteristics. We note, however, that this is not a definitive indicator 
of chaos but rather of persistent nonlinear irregularities that could arise from chaos. In 
this paper, we propose this measure as a preliminary test for discriminating between 
truly stochastic processes and chaotic ones, based on time-to-event distributions. This 
is a nonparametric test as the null hypothesis makes no assumptions about the specific 
shape of the time-to-event distribution other than its local linearity. 
 
To begin validating this measure, we apply it to simulated time-to-event data from two 
processes, one chaotic and one stochastic. Specifically, for a chaotic process, we 
generate data from the logistic map (18) � � ���1 � ��, with 0 � � � 1 and 
parameter 0 � � � 4. The logistic map is known to be chaotic for certain parameters r. 
We selected � � 3.9 and measured the distribution of time-to-event, where an event is 
considered to occur when the dynamic variable x falls in a certain fixed small region (for 
us, the interval (0.2 .. 0.21)), and the initial distribution is uniformly sampled from the 
interval (0 .. 1). For the stochastic process, we sample from a geometric distribution with 
the same mean, that is the time-to-event distribution of a stochastic Bernoulli process. 
The resulting time distributions look qualitatively similar for sufficiently long waiting times 
(see Figure 1), while the distribution of short waiting times is erratic for the chaotic 
process. Consequently, detecting chaos in such time-to-event distributions can be 
expected to be difficult since the chaotic signature is most noticeable only for sufficiently 
short waiting times. 
 

 
Figure 1: Time-to-Event distributions: A. Sampling geometric distribution. B. Sampling 
from the chaotic quadratic map � � ���1 � ��, � � 3.9. 
 
We find a higher proportion of inversions in the chaotic data as opposed to the 
stochastic data, and we find statistical significance for rejecting the null hypothesis of a 
locally linear distribution in the chaotic case (p<0.05), but not in the stochastic one 
(p=0.41), see Figure 2. These results suggest that our inversion measure is capable of 
discriminating chaos from stochastic behavior using only time-to-event distributions 
without access to the underlying time-series itself. 
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Figure 2: Inversion method of bootstrap for locally linear approximation of the 
distributions (histograms): A. Sampling from a geometric distribution. B. Sampling from 
chaotic quadratic map. Red line indicates the actual inversion measure of the 
distribution. Cautionary note: The results derived by the inversion method presented in 
panel A, though in agreement with our hypothesis, are sensitive to parameter choice 
and can vary from run to run, even with a large sample size. In the text below, please 
see a discussion of the false positive levels as a function of the histogram’s number of 
bins, for data coming from the Weibull, a generalized exponential distribution. 
 
To further test the ability of the inversion measure to reliably detect chaotic signature, 
we applied the same test to time-to-event distributions associated to two other known 
chaotic systems: the Henon map and the Lorenz system, which are respectively two- 
and three-dimensional. In each of these, we picked a small window in space that 
intersects the attractor of the system (so it will be repeatedly visited by the system) and 
define this window as our “event”. The Henon map is given by the dynamics ���� � 1 �

���
� � ��;  ���� � 
��. We used the “classical” Henon given by � � 1.4, 
 � 0.3, and we 

defined our event window by [0.25,0.35] x [0.15,0.25]. The Lorenz system is a 
differential equation given by �� � ��� � ��; �� � ��� � �� � �; �� � �� � ��. We 
approximated this differential equation by the corresponding difference equation with 
step size 0.01, using the parameters � � 10, � � 28, � � 8/3 (the “classical” Lorenz 
system used by Lorenz), with the event window given by [-1.0,1.0] x [-1.0.1.0] x [13.0, 
1.5.0]. We used 10,000 sample points for each process. To test the sensitivity of the 
system to the number of histogram bins, for both the Lorenz and Henon systems we 
binned the waiting time data into a range of bins number from 50 to 1000 bins before 
applying the inversion measure. For both systems, the inversion measure again rejects 
the null hypothesis with statistical significance.   
 
As stochastic control, we sampled data from various Weibull distributions, which is a 
common family of distributions of waiting times, with a wide variety of shapes. We swept 
over different choices of parameters for the number of bins for the histogram, and for 
each one ran the inversion measure multiple times to calculate the percentage of false 
positives. We found that for a certain range of bin size parameters (around 100-300 
bins, given 10000 sample points), false positives were low for a variety of Weibull 
distributions (ranging between 3% and 7%). However, if more bins were used, the 
number of false positives increased significantly. Still, given an appropriate choice for 
the number of bins, we were broadly able to distinguish between chaotic systems and 
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stochastic ones. Specifically, when using 256 bins on 1000 runs of 10,000 sample 
points each for data coming from Weibull distribution, Lorenz, and Henon maps, we 
obtained a 9.8% false negative rate for the Lorenz process, an 11% false rate for the 
Henon process and a 6.6% false negative rate for the Weibull distribution. For these 
tests we used a kernel-smoothed density (MATLAB function ksdensity with its default 
settings) as the null hypothesis, rather than a local linearization. 
An additional problem associated with the inversion method needs further 
investigations. The inversion method uses the distribution of time-to-events as its input 
rather than a dynamic time-series. This fact makes it harder to discriminate between 
chaotic and stochastic dynamics for certain chaotic systems whose time-to-event 
stationary distributions are similar to those of stochastic processes, an issue which can 
be heightened when taking into account the distribution of longer waiting times, for 
which the chaotic signal tends to fade away. 
 
Biological Data analysis 
For the biological model systems described below, time-to-death data is obtained as 
described in the experimental setup in the methods section, with no preprocessing or 
change of units. These experiments were conducted using automated C. elegans 
lifespan machine analysis, which utilizes modified flatbed scanners to capture images of 
petri plates containing C. elegans animals feeding on a non-pathogenic bacterium 
(Escherichia coli) or a pathogenic bacterium (P. aeruginosa) at set intervals for 
processing by automated analysis software as described in (22, 23). This technology 
enables unbiased, continuous tracking of individual C. elegans animals throughout their 
adult lifespan and has the potential to determine an individual animal’s time of death to 
within a 15-minute interval or less. Additionally, these experiments can use relatively 
large populations per condition with each plate containing up to 35 worms. In the case 
of D. melanogaster, visual observations were made to assess survival of groups of flies 
(n=20-30 per vial) feeding on normal fly food or a fly food amended with a pathogenic 
bacterium (P. entomophila). Dead flies were counted at various time points ranging from 
every hour up to 48 h.  
  
Caenorhabditis elegans 
We first construct the time-to-death histograms for both non-infected and infected C. 
elegans data sets, to visually determine the differences between them. 
 
As can be observed in Figure 3, the two histograms differ substantially. While the time-
to-death distribution of the non-infected individuals resembles the normal distribution, 
the infected individuals' histogram is far more irregular. This irregularity may partially 
result from a smaller sample size of the infected population (Figure 3). The two 
histograms, however, come from two different underlying biological processes and so 
cannot be directly compared. The former results from a process of aging-related death, 
while the latter reflects the pathogenic process of the worm-microbe interaction and the 
consequent immune system response. 
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Figure 3. Survival analysis of non-infected (data from Stroustrop et al. (21), n=2992) and
infected (data generated in Ausubel lab, n=407) C. elegans. A) Survival over time. 
Time-to-death histograms for non-infected (B) and infected (C) worms. 
 
To discriminate whether our system of host-pathogen interactions exhibited chaos, we 
employed the inversion measure on these time distributions, as described above and in 
the methods section. We find statistical significance for rejecting the null hypothesis in 
the infected population (p<0.02), a possible indicator of chaos, and we do not find 
statistical significance for rejecting the null hypothesis in the uninfected population 
(p=0.64), see Figure 4. Here we treated the two populations similarly. 

 
Figure 4. Inversion method of bootstrap for locally linear approximation of the 
distributions (histograms): A. Sampling from non-infected C. elegans population 
distribution. B. Sampling from infected C. elegans population. Red line indicates the 
actual inversion measure of the distribution. 
 
This observation, though not definitive due to the preliminary nature of our inversion-
based test for chaos, lends credence to the hypothesis that the time-to-death data result
from the infected C. elegans population is the result of an underlying chaotic dynamical 
process. As an additional null distribution to compare against, we considered a different 
smoothing mechanism as opposed to locally linearizing the density: kernel smoothing. 
We used MATLAB’s ksdensity function to smooth our sample distribution and use this 
smoothed density as the null to generate a bootstrap distribution of inversion measures. 
We were unable to confidently reject this null hypothesis (p=0.11). However, we believe 
that for too few data points (see above for the counter argument) the kernel-smoothed 
density may be too different from the actual density to meaningfully compare against, 
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whereas the locally-linearized density closely maintains the local trends. As discussed 
above, the appropriate number of required data points for the inversion method to be 
reliable requires further investigation. 
 

D. melanogaster infected with P. entomophila 
We repeated a similar procedure to analyze infected and non-infected fly datasets 
(Figure 5). Here, however, we had to contend with data that was collected manually 
instead of by machine. While observations were mostly carried out in regular intervals, 
there was a specific time interval used between data collection points. This means that 
the number of deaths observed at the subsequent time point needed to be distributed 
over a wider time interval. To do this, we randomly redistributed the number of deaths 
observed at wider time intervals into regular subintervals. This introduces an additional 
element of randomness into the analysis, which we would expect to drown out the 
chaotic signature. Nevertheless, we still detected statistical significance (p < 0.05) in the
inversion measure (Figure 6). In this case, rather than obtaining a single inversion 
measure for the histogram, we generated a distribution of inversion measures to 
account for the randomness of the redistribution process and compared this distribution 
to the null bootstrap distribution. At the same time, in the uninfected fly data we did not 
find a statistically significant difference between the bootstrap null and sample 
distribution. 
 
 

 

Figure 5. Survival analysis of non-infected (n=366) and infected (n=673) D. 
melanogaster. A) Survival over time. Time-to-death histograms for non-infected (B) and 
infected (C) flies. 
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Figure 6: Comparing the null and sample distributions of the inversion measure. A: non-
infected. B: infected. 
 

Power analysis 
     In order to add context to our results, we conducted a power analysis to determine 
how many data points can be removed while maintaining statistical significance. See 
Methods for more details. We conducted this analysis with the infected worm data and 
saw that the statistical significance threshold of p = 0.05 was reached around a sample 
size of 350, compared to our sample size of 407. The same analysis was performed on 
the data obtained from the infected fly data resulting in a required sample size of a 
similar order of magnitude. 
 
      

 
Figure 7: Power analysis for the C. elegans dataset 
 
Discussion 
In this study we first established that a time-to-death distribution provided adequate 
information to analyze dynamical signatures in C. elegans infected with P. aeruginosa 
and D. melanogaster infected with P. entomophila, in search for evidence of chaotic 
behavior. While we found suggestive evidence for chaos in both models with the 
infection time-to-death series, no such evidence was found in the non-infected 
populations (normal aging). To our knowledge, this analysis provides the first evidence 
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that host-microbe interactions may be subject to chaotic behavior. Knowledge of 
whether virulence is deterministic, stochastic, or chaotic, and the types of host-microbe 
interactions that manifest those properties is critically important for understanding the 
fundamental attributes of virulence. Identifying the relevant variables that potentially 
drive the dynamical behavior in such interactions could have profound implications for 
public health, vaccine design, and preparedness against emerging pathogens.   
 
The observation of potential chaotic signatures time to death in a population of infected 
animals may have important implications for the predictability of microbial pathogenesis. 
Both models are invertebrates, which lack adaptive immunity. We don’t know the 
generalizability of these observations to other host-microbe systems, but the occurrence 
of chaotic dynamics in vertebrates would affect our ability to predict future threats. For 
example, the COVID-19 pandemic has highlighted the importance in identifying other 
potential threats in nature. The challenge of virulence forecasting is highlighted by the 
fact that there are more than 300,000 viruses among the more than 6,000 known 
mammalian species (24). Could the subset of mammalian viruses that threaten humans 
be predicted? Some may argue that the answer to this question must await additional 
mechanistic information that could be used to model human infections. However, even if 
we knew all the steps by which a single virus could interact with host cells, the immune 
response to that virus, the potential for transmissibility, prediction of virulence in a 
population, etc., it would not be possible if the overall process is stochastic or chaotic. 
This is because small differences in the host-microbe interaction would have major 
effects on the outcome of an infection, as manifested by a range of outcomes from 
asymptomatic infection to pathogenicity, which in the extreme results in the death of the 
host. An example of this phenomenon is the unpredictability of infection at the level of 
the individual, as evident in the current SARS-CoV-2 pandemic where outcomes range 
from asymptomatic infection to death and are determined by a set of variables that in 
combination produce uncertain outcomes (3). Chaotic systems are inherently 
unpredictable although it is possible to generate probabilistic models for short term 
prediction of such systems, as is done in applications of stochastic processes and 
machine learning to weather forecasting. Hence, our finding that some host-microbe 
interactions may manifest as chaotic dynamical systems implies that absolute 
predictability with regards to the outcome of these interactions may be impossible if 
these dynamics are widespread in nature. Nevertheless, knowledge of whether some 
host-microbe interactions are chaotic could inform efforts to control such diseases 
including the possibility of exploiting properties of chaos, itself, to our advantage. For 
example, once the relevant driving forces have been identified in the analysis of chaotic 
systems, tools from the field of control theory in general, and chaos control theory in 
particular, can be applied to hypothesize perturbations that could be applied to stabilize 
a chaotic system (25). 
 
In our prior exploration of chaos with C. neoformans infected Galleria melonella (7), we 
found that the outcome of infection was deterministic and predictable without evidence 
of chaos. In the course of the work presented here, we have learned that the time-to-
death data must be obtained as precisely as possible for each individual host. Likewise, 
infection time is an important variable. For both worm and fly infections infection 
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occurred shortly after commencement of the experiment. For our purposes are using 
the definition of infection as acquisition of the microbe by the host (1). Worms become 
infected shortly after encountering the P. aeruginosa lawn and remain infected for the 
duration of the experiments, which precludes the possibility of re-infection.  Flies are 
starved prior to being exposed to infected food and thus rapidly acquire infection, which 
is rapidly damaging to their gut and reduces the likelihood of subsequent infections. 
Hence, although we cannot control the exact time when the bacteria entered either host, 
we anticipate that it occurred shortly after inoculation for both systems.  For flies we 
recognize that after their initial feeding to relieve their hunger that subsequent feeding 
times can be affected by circadian rhythms, etc., but note this is physiological for these 
insects. The alternative of infecting each animal by mechanical injection is not practical 
since our power calculation shows that hundreds of individuals are needed, which would 
inevitably require many hours to infect such numbers and mechanical infection would 
introduce additional uncertainties including skin damage and likely differences in the 
puncture site and inoculation depth. In fact, we used this approach in our prior Galleria 
melonella study that failed to identify chaotic signatures (7), probably due to a 
combination of lack of power and too high inoculum.  An additional problem with that 
prior study is that it evaluated time-to-death measured at large intervals (e.g., daily), but 
this is inadequate for detecting dynamical fluctuations on a finer scale, as is the case in 
our experimental analysis in this paper. Many studies in the field of microbial virulence 
rely on measuring the percentage of animals that survive daily and round to nearest 24 
h interval irrespective of the fact that each individual animal succumbed at a different 
time. This is a form of averaging that is done for experimental convenience since it is 
often not practical to monitor the experiment continuously to record the exact time of 
death. While exploring methods to study chaos in host-microbe interactions we found 
that such averaging could reduce or abolish chaotic signatures. In light of the current 
analysis, our inability to find chaotic signatures in our prior study may have been a false-
negative result stemming from death sampling at large intervals and low power, since it 
analyzed only 240 events (7). Hence, detection of chaos in host-microbe interactions is 
highly dependent on experimental design and the common practice for making 
measurements at large time intervals produces data that is unsuitable for ascertaining 
the dynamical nature of the system. Fortunately, with the availability of continuous 
monitoring devices such as cameras it is possible to obtain accurate survival data for 
each individual in the study and thus generate a fine-grained time-to-death histogram 
that can be analyzed by the methods described here. Though our current results 
provide statistically significant conclusions, larger sample sizes and even finer-grained 
time-to-death measurements could provide even better data sets to solidify our 
conclusions. 
 
In addition, further validation of our inversion measure and the bootstrap method for 
obtaining the statistical significance are necessary to solidify our conclusions, including 
an understanding of how the choice of number (individuals infected) and size of bins 
(time intervals) affect the results when a finer time-resolution of the data sampling 
becomes available. In fact, this analysis indicates the need to develop new methods for 
following the dynamics of host-microbe interactions inside the host since the currently 
used variables to measure outcome such as time-to-death, weight loss, fever, etc., do 
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not have sufficient resolution to provide a conclusive result. In addition, since the 
inversion measure appears sensitive to parameters such as number of bins and can 
result in false positives/negatives in certain parameter settings, further work will be 
needed to refine the measure and increase its accuracy. Finally, a deeper theoretical 
study is needed to understand the limits of discerning chaos from time-to-event data, 
given the nature of ergodic processes. 
 
In recent years there has been great concern about the reproducibility of biomedical 
research (26, 27). The detection of chaotic signatures in host-microbe interactions 
implies that these systems may have inherent challenges to reproducibility. 
Experimenters studying virulence or the efficacy of a therapeutic intervention in an 
animal model often choose an inoculum that rapidly kills all members of the infected 
group, leaving no time for the host-pathogen dynamics to present itself. Such doses can 
ensure conclusive results with relatively few animals but translate into making the 
experimental system deterministic. Consequently, experiments that force an outcome 
are not informative of the dynamical nature of natural host-microbe interactions. 
However, even when using a large inoculum to ensure mortality, there is considerable 
variation in such variables as time-to-death. In this regard, our observation of chaotic 
signatures suggests that differences in the microbial load administered and/or the site of 
infection could translate into large differences in effect size, negating the consistency 
and reproducibility of inter-experimental comparisons. 
 
In summary, this work should be considered an exploration of the dynamics of host-
microbe interactions.  While our work suggests that a time-to-death distribution may 
provide adequate information to analyze for chaotic signatures in host-microbe 
interactions and that such signatures can be observed in C. elegans-P. aeruginosa and 
D. melanogaster-P. entomophila infection systems, we caution that the results were 
dependent on the parameters chosen for the calculation and that more work is needed 
before firm conclusions can be made.  In fact, we are not certain whether experiments 
that measure time to death or the proposed inversion method can provide sufficient 
information to unambiguously determine the dynamical nature of host-microbe 
interactions and there is a need for exploring other experimental parameters. 
Nevertheless, the methods described here provide both a starting point for exploring 
other host-microbe interactions that hopefully will expand our understanding of the 
fundamental dynamics of underlying infectious diseases and highlight areas of 
necessary mathematical research to understand how best to study such dynamical 
processes. 
 
 
Methods and Materials 
 
C. elegans assays 
Wild type (N2) C. elegans were maintained using standard methods. All lifespan and 
killing assays were performed using the C. elegans Lifespan Machine (22, 23). For 
lifespan survival of uninfected worms (N2 worms feeding on E. coli OP50), we used the 
publicly available original data set from Stroustrup et al. 2013 (19). For infection data, 
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assays were performed in the Ausubel Lab using N2 worms and P. aeruginosa strain 
PA14 prepared as described (28). Survival data is available on figshare - 
https://figshare.com/s/0c8fdeccef1098972b73. 
 
D. melanogaster assays 
Pseudomonas entomophila was streaked from lab glycerol stocks onto LB 
supplemented with 10% milk and incubated at 29°C overnight (26). Isolated colonies 
showing lytic activity on milk plates were then inoculated into LB medium and cultured 
at 29°C for 18 h. Pellets from concentrated cultures (5000 RPM for 20 min at 4°C, 
OD600 = 200) were mixed 1:1 with 2.5% sucrose; for the negative control 2.5% sucrose 
was mixed 1:1 with LB. Adult wild-type (Canton-S) flies (4-6 days old, n=25-35 flies/vial) 
were starved in empty vials for 2 h at 29°C and then transferred to infection vials that 
consisted of our normal fly food (29) covered with a Whatman filter disc onto which the 
prepared inoculum or media control was applied (140 µl of the 1:1 bacteria/media: 
sucrose mix). Flies were kept at 29°C for the duration of the assay but were flipped into 
new vials without pathogen/infection filters on 24 h post-infection. Pathogen-
independent mortality was recorded at 2 h post-infection. Thereafter, the number of 
dead flies per vial was recorded by visual observation at different (random) time 
intervals for approximately seven days after infections. For lifespan survival, cohorts of 
wild-type (Canton-S) female flies (4-6 days old, n=25-35 flies/vial) were monitored every 
1-3 days for survival. Flies were flipped into new media tubes every 3 days. Cohorts 
were monitored for up to 8 days for infected flies or for non-infected flies until all flies in 
the vial were dead. Survival data is available on figshare - 
https://figshare.com/s/0c8fdeccef1098972b73. 
 
The inversion measure on a time distribution 
Given a distribution of times, we first convert the distribution into a histogram. In the 
case when the time points are naturally discrete, such as in our simulated data of 
waiting times sampled from discrete chaotic or stochastic processes, then we use each 
discrete time point as a bin. In the case of a continuous process, then we pick a 
parameter n and divide the time distribution into n bins. 
 
Given a histogram with n bins, where each bin contains a whole number, we first add a 
random noise, distributed uniformly at random between 0 and epsilon, where epsilon<1, 
to the histogram so as to break ties, ensuring each bin has a unique value while 
preserving the order of the unequal counts. Then we subdivide the bins into consecutive 
nonoverlapping sequences of 4 bins each, with the remainder discarded. For each such 
sequence �1, �2, �3, �4, it is countertrend, or an inversion, if ��� � ��� and ��� � �� 
have the same signs (positive or negative). We then calculated the frequency of 
sequences which are inversions. Since this frequency depends on the randomness of 
the tie-breaking procedure, we rerun this process 1000 times with different 
randomizations and take the average. 
 
To obtain a p-value for the inversion measure, we used a bootstrap against a null 
hypothesis that the histogram is smooth. We consider two types of null-density: kernel-
smoothed and locally linear. For the kernel smoothing, we applied MATLAB’s built-in 
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ksdensity function to the sample histogram. For the locally linear null density, we locally 
linearized the sample histogram as follows. For each consecutive sequence of 4 bins, 
let �1, �2, �3, �4 be the corresponding sequence of whole numbers. We calculate a line 
of best fit for �� as a function of i, and let this line of best fit be the null density for this 
sequence. If the line goes below 0, we reset the negative numbers to 0’s. We repeat 
this process for each sequence of 4 bins, resulting in a piecewise linear null density 
(which is then normalized to sum to 1). To generate a bootstrap from a null density 
(either a kernel smoothed density or a locally linear one), we sample from it the same 
number of points as in the original sample and recalculate the inversion measure. We 
do this 1,000 times to generate a bootstrapped null distribution of the inversion 
measure. We then calculate a t-statistic and its p-value by comparing the sample 
inversion measure to this null distribution. 
 
For the fly datasets, in which some observations were not made in regular intervals, we 
redistributed events along gaps as follows. Whenever one or more observations were 
missed, we randomly uniformly distributed the next-observed number of events along 
the interval between the given observation and the prior observation. We then formed a 
histogram from this redistributed data and proceeded as before to calculate the 
inversion measure. Due to the randomness of redistribution, we carried this process out 
1,000 times, thus generating a sample distribution of inversion measures. For each of 
these 1,000 histograms, we ran the bootstrap process with a sample size of 1,000, 
thereby generating a total of 1,000,000 inversion measures that make up the null 
distribution. We used these two distributions to generate a p value by estimating the 
probability that the sample inversion measure is greater than or equal to the null 
inversion measure. 
 
For the uninfected flies, we combined two distinct datasets. In this case, we 
redistributed each dataset along gaps as mentioned above, and only then combined the 
two histograms into one and proceeded with the analysis as just described 
 

Power analysis 

For the power analysis, we varied a parameter n starting from 20% of the full sample 
size (n = 82 for the worm data) to 100% of the full sample size (n = 407 for the worm 
data). For each n, we randomly sampled with replacement n data points (i.e. “events”) 
from the given distribution. We used this reduced sample to recalculate a p-value for the 
inversion measure relative to a null distribution, by repeating the same analysis on this 
reduced sample. We repeated this procedure 100 times for each n-value and took the 
average of the p-value. 
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