
Local-Scale phylodynamics reveal differential community impact of SARS-CoV-2 in 
metropolitan US county 
 
One Sentence Summary:  
Analysis of SARS-CoV-2 genomes in King County, Washington show that diverse areas in the 
same metropolitan region can have different epidemic dynamics.  
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Abstract 
SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving 
local health departments to design interventions with limited information. We analyzed SARS-
CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological 
and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission 
dynamics in King County, Washington, a diverse, metropolitan US county. We applied an 
approximate structured coalescent approach to model transmission within and between North 
King County and South King County alongside the rate of outside introductions into the county. 
Our phylodynamic analyses reveal that following stay-at-home orders, the epidemic trajectories 
of North and South King County began to diverge. We find that South King County consistently 
had more reported and estimated cases, COVID-19 hospitalizations, and longer persistence of 
local viral transmission when compared to North King County, where viral importations from 
outside drove a larger proportion of new cases. Using mobility and demographic data, we also 
find that South King County experienced a more modest and less sustained reduction in mobility 
following stay-at-home orders than North King County, while also bearing more socioeconomic 
inequities that might contribute to a disproportionate burden of SARS-CoV-2 transmission. 
Overall, our findings suggest a role for local-scale phylodynamics in understanding the 
heterogeneous transmission landscape.  
 
Main Text 
 
Introduction  
The first confirmed SARS-CoV-2 infection in the United States was detected in Washington 
State (WA) on January 19, 2020. Since initial detection of the virus, genomic epidemiology has 
played a crucial role in identifying and estimating new introductions and community 
transmission in WA (1–3) and throughout the US (4,5) and has motivated rapid public health 
interventions. While international introductions continue to seed new viral lineages into the US, 
the majority of transmission is driven by infections and movement at a local scale, wherein 
neighboring states, regions, counties, or even zip codes can have vastly different epidemic 
dynamics (3,6,7).  
 
In WA, genomic epidemiology has aided in understanding the spatiotemporal variation of the 
SARS-CoV-2 epidemic. At a statewide level, previous studies have examined changes in the 
relative frequency of variant viruses and the impact of non-pharmaceutical interventions on the 
estimated effective population size of the virus (2). Phylodynamic analyses have estimated the 
role of introductions in promoting community spread in the state at large and revealed an 
asymmetrical interplay between the eastern and western regions of the state, wherein intra-state 
transmission accounts for more than half of the introductions into the eastern region of WA but 
only for less than 30% of the introductions into western WA (3). 
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Even a regional view fails to capture the nuance of epidemic dynamics needed to effectively curb 
transmission in the state, because neighboring counties and even intra-county areas are affected 
by epidemic and demographic heterogeneity. King County, WA is a demographically diverse, 
metropolitan US county that has been proactive in promoting testing and vaccination throughout 
the SARS-CoV-2 epidemic. Despite these efforts, studies have revealed a large degree of 
variation in SARS-CoV-2 infection probability and hospitalization, with communities of color 
disproportionately impacted (8).  
 
While some studies have used genomic epidemiology to examine transmission between US 
counties or boroughs (5–7), here we employ phylodynamic tools to understand the fine scale 
spatial and temporal dynamics of SARS-CoV-2 viral transmission both within and between 
regions of a demographically diverse US metropolitan county. Using 11,737 viral sequences 
sampled from individuals in King County between January 2020 and March 2022, we examined 
the role of introductions in promoting community spread and the impact of non-pharmaceutical 
interventions on viral transmission dynamics.    
 
Methods 
 
Experimental Design and Data Sources 
For this retrospective phylodynamic study, we aimed to understand local SARS-CoV-2 
transmission dynamics in a diverse, metropolitan county. We analyzed 11,737 whole genome 
SARS-CoV-2 sequences from King County, WA and 21,976 genome sequences from around the 
world downloaded from GISAID (9) with sample collection dates between February 1 2020 and 
March 6 2022. In order to analyze local scale phylodynamics, ZIP code information for our 
primary dataset from King County was obtained from the Washington State Department of 
Health (WADOH) on March 22, 2022. 7289 (62%) of genomes from King County were 
sequenced by UW Virology and 2631 (22%) of genomes from King County were sequenced by 
Seattle Flu Study / Brotman Baty Institute for Precision Medicine. Three other laboratories 
(Altius, CDC and WA PHL) sequenced the remaining 1,917 (16%) of genomes collectively.   
 
Time series of zip code-aggregated cases and hospitalizations were found on WADOH and 
Public Health Seattle King County’s (PHSKC) Covid Data Dashboard(10). Publicly available 
demographic information by ZIP code was obtained through the U.S. Census Bureau’s American 
Community Survey (ACS). This study utilized both ACS 2015-2019 (5-Year Estimates) and 
ACS 2020 (11). 
 
Additionally, we obtained mobile device location data from SafeGraph (https://safegraph.com/), 
a data company that aggregates anonymized location data from 40 million devices, or 
approximately 10% of the United States population, to measure foot traffic to over 6 million 
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physical places (points of interest) in the US (12). We estimated population mobility within and 
between North and South King County and the in-flow of visitors residing outside of King 
County from January 2019 to March 2022, using SafeGraph’s “Weekly Patterns” dataset, which 
provides weekly counts for the total number of unique devices visiting a point of interest (POI) 
from a particular home location. Points of interests (POIs) are fixed locations, such as businesses 
or attractions. A “visit” indicates that a device entered a building or the spatial perimeter 
designated as a POI. A “home location” of a device is defined as its common nighttime (18:00-
7:00) census block group (CBG) for the past 6 consecutive weeks.  
 
Geographic Scales 
To understand local-scale dynamics, the majority of this study was focused on geographic scales 
finer than the county level. We divided King County into both Public Use Microdata Areas 
(PUMAs), which are non-overlapping, statistical geographic areas containing no fewer than 
100,000 people each, and general regions, North and South. Information as to how we aggregate 
ZIP codes into PUMAs and PUMAs into North and South can be found in the Supplementary 
Table 1 and Supplementary Figure 1.  
 
Maximum likelihood tree generation 
A temporally-resolve phylogeny was created using the Nextstrain (13) SARS-CoV-2 workflow 
(https://github.com/nextstrain/ncov), which aligns sequences against the Wuhan Hu-1 reference 
using nextalign (https://github.com/nextstrain/nextclade), infers a maximum-likelihood 
phylogeny using IQ-TREE (14) with a GTR nucleotide substitution model, and estimates 
molecular clock branch lengths using TreeTime (15). All sequences were downloaded from the 
GISAID EpiCoV database on May 26 2022 (9).. 
 
In order to capture the SARS-CoV-2 epidemic in King County with high resolution and 
computational efficiency, we created four separate temporally resolved phylogenies that span 
from February 2020 to March 2022. To do so, we created specific phylogenies for Omicron 
(Nextstrain clades 21K, 21L, 21M comprising 2856 King County Sequences and 18,817 
contextual sequences from around the world), Delta (Nextstrain clades 21A, 21I, 21J comprising 
2955 King County Sequences and 19,197 contextual sequences from around the world), Alpha 
(Nextstrain clade 20I comprising 2941 King County Sequences and 15,406 contextual sequences 
from around the world), and all other SARS-CoV-2 lineages (2850 King County Sequences, 
16,168 contextual sequences from around the world). These builds provided higher resolution 
during epidemic waves while also being mutually exclusive to sequences found in the alternative 
builds. 
 
Phylogeographic reconstruction of spread around King County was conducted using the same 
Nextstrain workflow via ancestral trait reconstruction of PUMAs and North and South region 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283536doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283536
http://creativecommons.org/licenses/by-nc-nd/4.0/


geographic attributes. Metadata on ZIP code, PUMA, and region was manually added to the 
GISAID metadata using the ZIP code information obtained from WADOH as described above.  
 
Clustering  
To identify local outbreak groups in King County, we clustered all King County sequences based 
on inferred internal node location. Following Müller et al (2), we used a parsimony-based 
approach to reconstruct the locations of internal nodes. Briefly, using the Fitch parsimony 
algorithm, we inferred internal node locations by considering only two sequence locations: King 
County and then anywhere else. We then identified local outbreak clusters by selecting groups of 
sequences in which all their ancestral nodes were inferred to be from King County, up until there 
was a change in location.  
 
After identifying relevant King County clusters from each of the four variant Nextstrain builds, 
we then annotated the clusters in a combined dataset.   
 
Subsampling 
 
To reduce computation times in subsequent MCMC analyses, we utilized three different 
subsampling schemes. Three thousand sequences from King County, WA from identified 
clusters were chosen either at random, through equal temporal subsampling for every year-week 
in the studied time period, or via weighted subsampling informed by daily hospitalization counts 
smoothed using a 14-day rolling average. The random subsampling scheme with 3000 sequences 
was chosen for the main result as it allowed for better resolution during variant waves.  
 
MASCOT GLM on multiple local outbreak clusters 
 
To analyze the transmission dynamics within and between South and North King County, we 
used an adapted version of MASCOT (16). MASCOT is an approximate structured coalescent 
approach (17) that models how lineages coalesce (share a common ancestor) within the same 
locations or migrate between them. In order to distinguish between local transmission and 
transmission occurring outside of King County, we extended MASCOT to jointly infer 
coalescent and migration rates from local outbreak clusters (2). In short, we model the 
transmission dynamics in King County as a structured coalescent model. We then model the 
introduction of lineages into King County (independent of whether it is North or South King 
County) as a backwards in time process of lineages having originated from outside King County. 
This backwards in time process is assumed to be independent of the transmission dynamics in 
King County and occurs at a rate given by the introduction rate (2). The rate of introduction that 
is estimated as part of the MCMC is allowed to vary over time.  
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We used generalized log-linear models (18) to estimate whether COVID-19 hospitalizations, 
cases, seroprevalence, NPIs, and mobility are predictive of SARS-CoV-2 effective population 
sizes and migration rates over time. The model included error terms to account for observation 
noise and omitted predictor variables. We implemented a MASCOT-GLM (18) analysis on King 
County transmission clusters with BEAST2 (19) software, allowing the effective population 
sizes and the rates of introduction to change every day and every 14 days, respectively. We 
performed effective population size and migration rate inference using an adaptive multivariate 
Gaussian operator (20) and ran the analyses using an adaptive Metropolis-coupled MCMC (21). 
 
Empirical Predictors 
 
We chose several predictors to inform estimates of the migration and effective population size of 
SARS-CoV-2 in King County regions. To inform the effective population size, we used daily 
COVID hospitalizations (lagged 1-3 weeks), daily confirmed SARS-CoV-2 cases, and percent 
immunity against SARS-CoV-2 in Western Washington.  
 
Percent immunity for Western Washington was found via the Nationwide COVID-19 Infection- 
and Vaccination-Induced Antibody Seroprevalence from the Centers for Disease Control (CDC) 
(22). To include daily values, the monthly seroprevalence surveys estimates were plotted, fit to a 
spline and daily percent immunity values based on the fitted spline were extrapolated for the 
time period studied to include as a predictor. 
 
We also used dates of non-pharmaceutical interventions (NPIs) in WA and between-region 
mobility to inform migration rates between North and South King County. Dates of NPIs were 
found as part of the COVID-19 US State Policy Database (23). NPIs included are start and end 
of emergency stay at home orders as well as closing and reopening of bars and restaurants.  
 
To measure movement between North and South King County, we extracted the home CBG of 
devices visiting either North or South points of interest (POIs) and limited our dataset to devices 
with home locations in South King County visiting North King County POIs, or vice versa, and 
to POIs that had been recorded in SafeGraph’s dataset since January 2019. For each POI in each 
week, we excluded home census block groups with fewer than five visitors to that POI. To adjust 
for variation in SafeGraph’s panel size over time, we divided Washington’s census population 
size by the number of devices in SafeGraph’s panel with home locations in Washington state 
each month and multiplied the number of weekly visitors by that value. To estimate the total 
number of visits from each home CBG in each week, we multiplied the number of weekly 
visitors by the total number of visits divided by the total number of unique visitors in 
Washington state each week. For each direction of movement, we summed these adjusted 
weekly visits across POIs and measured the percent change in movement from North to South or 
South to North over time relative to the average movement observed in all of 2019.  
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Posterior processing  
 
Parameter traces were visually evaluated for convergence using Tracer (v1.7.1) (24) and 10% 
burn-in was applied for all phylodynamic analyses. All tree plotting was performed with baltic 
(https://github.com/evogytis/baltic) and data visualizations were done using Altair (25). We 
summarized trees as maximum clade credibility trees using TreeAnnotator and visually inspected 
posterior tree distributions using IcyTree (26). 
 
Transmission between regions was calculated by measuring the number of migration jumps from 
North to South King County and vice versa walking from tips to root in the posterior set of trees. 
In order to account for unequal sampling between the two regions, the rate of migration was 
estimated as the total number of migration jumps per month in each region divided by  the 
average branch lengths for that region for the same month.  
 
Persistence time was measured by calculating the average number of days for a tip to leave its 
sampled location (North vs South), walking backwards up the phylogeny from the tip up until 
node location was different from tip location (following Bedford et al. (27)).  
 
Estimating percentage of new cases due to introductions 
 
We estimated the percentage of new cases due to introductions for both North and South King 
County by adapting the methods previously described in Müller et al (2). The percentage of cases 
due to introductions 𝜋 at time t can be calculated by dividing the number of introductions at time 
t by the total number of new cases at time t. We first represented the total number of new cases 
in a region as the sum of the number of introductions and the number of new local infections due 
to local transmission, resulting in the following equation: 

𝜋(𝑡) 	=
#	𝑜𝑓	𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑡)

#	𝑜𝑓	𝑛𝑒𝑤	𝑙𝑜𝑐𝑎𝑙	𝑐𝑎𝑠𝑒𝑠(𝑡) 	+ 	#	𝑜𝑓	𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑡)	 

 
We estimated the number of new local cases at time t by assuming the local epidemic in each 
King County region follows a simple transmission model, in which we estimate the number of 
new cases at time t as the product of the transmission rate 𝛽 (new infections per day per 
individual) multiplied by the number of people already infected in that region I. For the number 
of introductions, we similarly assumed that the number of introductions equals the product of the 
rate of introduction (introductions per day, which we refer to as migration rate m) and the 
number of people already infected in that region  I. We then rewrote the above equation as 
 

𝜋(𝑡) 	= 𝑚(𝑡)	𝐼(𝑡)
𝛽(𝑡)	𝐼(𝑡)	+	𝑚(𝑡)	𝐼(𝑡)	,  
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where I(t) denotes the number of infected people in that region at time t. Given the presence of 
I(t) in every element, we factored out I(t) to arrive at 
 

𝜋(𝑡) = 𝑚(𝑡)
𝛽(𝑡)	+	𝑚(𝑡)	. 

 
For each region in King County, we considered introductions at time t to be the sum of the 
introductions coming into the region from outside of King County and introductions coming 
from the neighboring King County region. Splitting up the introductions by source of 
contribution, we ultimately defined the percentage of new cases due to introductions 𝜋 at time t 
for region y as 
 

𝜋)(𝑡) 	=
*!"(+)	,	*#$%(+)

-"(+)	,	*!"(+)	,	*#$%(+)	
 ,  

where 𝑚.) denotes the migration rate per day into region y from the neighboring King County 
region z, and 𝑚/0+	refers to the migration rate per day into region y from outside of King County.  
 
In a transmission modeling framework, the transmission rate 𝛽 is equal to the sum of the growth 
rate r and the per-day uninfectious rate 𝛿 where 

𝛽 = 	𝑟 + 𝛿 
 

To compute the growth rate in region y, we assume that differences in effective population size 

between adjacent time intervals can approximate the growth rate r and thus 123"
1+

	≈ 	𝑟. In 
addition, we assumed that dNe/dt is independent from the rate of introduction. We calculated the 
growth rate of the effective population size 123

1+
 as  

      
123
1+

 = 23(+,4+)5	23(+)
4+

,  
where 𝑁𝑒(𝑡) denotes the effective population size of a region at time t. We ran our MASCOT-
GLM analysis using daily time intervals but calculated 𝑁𝑒	using a rolling weekly average in 
order to smooth our estimates.  
 
 By also assuming an expected time until becoming uninfectious for each individual of 7 days 
(28), we calculated the transmission rate 𝛽 at time t in region y as 
 

 𝛽y(t) = 123"
1+

	+ 	𝛿  
 

The rate of introduction per day from outside of King County	𝑚/0+(𝑡) into a King County region 
y is a parameter that was directly inferred by MASCOT-GLM for each daily time interval by 
modeling everything outside of King County as a separate third deme. 
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Since the coalescent, which MASCOT approximates, works backward-in-time, we calculated the 
rate of introductions from the neighboring King County region 𝑚.)(𝑡)	(where zy refers to 
migration from region z into region y) as the backwards migration rate 𝑚6

.)	(𝑡)  from inferred 
MASCOT parameters. To compute the backwards migration rate, we first calculate the forward-
in-time varying migration rate 𝑚7

).(𝑡) for region y into region z over a linear combination of c 
different predictors: 

𝑚7
).(𝑡) = 	𝑏 ∗ 	𝑒𝑥𝑝(<𝑤8𝜎8𝑝8(𝑡) + 𝑒

9

8:1

)	 

where the forward migration rate 𝑚7(𝑡) is computed via MASCOT-GLM coefficients 𝑤8, 
indicators 𝜎8, log-standardized predictor values 𝑝8 for predictor i and the respective error 
parameter e. The variable 𝑏 outside the summation refers to the overall migration rate scaler 
while, 𝑤8 refers to the migration rate scalar for each of the individual c predictors. 
 
From the forward-in-time migration rate 𝑚7

).(𝑡), we can then calculate the backwards-in-time 
migration rate from state z to state y, 𝑚6

.)	(𝑡), as the product of the ratio of effective population 
sizes 23"(+)

23!(+)
  and the calculated forward migration rates: 

 

 𝑚6
.)	(𝑡) = 	

23"(+)
23!(+)

𝑚7
).(𝑡)	,  

Where 𝑁𝑒)(𝑡) refers to the effective population size in region y at time t and 𝑁𝑒.(𝑡)	refers to the 
effective population size in the neighboring King County region z at time t. 
 
In addition to the calculation of percentage of new cases due to introductions, we repeated the 
above calculation using only SafeGraph mobility data. We used the in-flow of visitors from 
outside of King County and movement between each region of King County as approximations 
for the number of introductions and within-region mobility as an approximation for the 
transmission rate, following the same equation presented above. When estimating in-flows from 
outside King County and within-region movement, we applied the same filtering and 
normalization methods used when estimating between-region movement.  
 
Estimating the effective reproductive number Rt  
 
We calculated the effective reproductive number Rt , the time-varying average of secondary 
infections, in both regions, using both the daily time-varying transmission rate 𝛽 and the 
becoming uninfectious rate 𝛿 where 𝑅𝑡	 = 	-

;
. Additionally, we sought to separate out the 

contributions of introductions versus local transmission to the Rt of each region. To do so, we 
modified the Rt equation to include the percent of new cases from introductions as an estimate of 
local community spread only:  
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  𝑅𝑡	 = 	-(15<)
;

, where 𝜋 refers to the percentage of new cases due to introductions as described 
above. 
 
To estimate the contribution of introductions from outside of King County separately from that 
of the neighboring King County region, we calculated Rt using the above equation and the 
percent of cases from introductions as previously described but omitting introductions from 
outside King County. Briefly:  

𝜋).(𝑡) = 	
𝑚).(𝑡)

𝛽(𝑡) +	𝑚).(𝑡)
, 

where	𝜋).(𝑡) refers to the percentage of cases in region z due to introductions from region y into 
region z at time t, and 𝑚). refers to the per-day migration rate from region y to z as derived 
above.  
 
Data Availability 
Nextstrain builds, BEAST XMLS, scripts, sequence information, and de-identified data can be 
found at https://github.com/blab/ncov-king . 
 
 
Results 
 
The COVID-19 epidemic in King County, WA shows distinct spatial and temporal patterns that 
persisted throughout our study, from February 2020 to March 2022. At the PUMA level, 
confirmed COVID-19 cases and hospitalizations in King County are disproportionately higher in 
more southern PUMAs than in northern PUMAs (Fig 1A, B) during almost every time period 
analyzed. During the last time period encompassing the BA.1 Omicron wave, from December 
2021 to March 2022, we observe a more equal geographic distribution of confirmed COVID-19 
cases, but COVID-19 hospitalizations continue to disproportionately affect southern regions. 
 
Due to the salient differences between northern and southern PUMAs, we then divided King 
County into two regions, North and South, and analyzed COVID-19 cases and hospitalizations 
continuously over time (Fig 1c,d). From January 2020 to the end of March 2020, during the 
beginning of the epidemic, we see that cases and hospitalizations are slightly higher in North 
King County. However, starting in April 2020 soon after a stay-at-home order on March 23, 
South King County consistently had higher confirmed cases and hospitalizations per capita than 
North King County, a trend that mostly persisted throughout the time period studied, except 
during the Omicron wave when cases were similar in both regions. Time series of cases and 
hospitalizations replicated the geographical trends seen in Fig.1a,b: while the difference in 
number of confirmed cases seemed to contract in during the BA.1 Omicron wave (Dec 2021–
March 2022), the magnitude of the difference in hospitalizations remains roughly constant, with 
South King County disproportionately burdened.  
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Figure 1: Descriptive Epidemiology of SARS-CoV-2 Epidemic in King County, WA. 
(A, B) Confirmed positive cases (A) and hospitalizations (B) per 100,000 individuals of 
SARS-CoV-2 in King County by Public Use Microdata Area (PUMA) averaged for each 
of the six waves of the epidemic up until March 2022. Dark borders denote geographical 
boundaries between North and South King County (C, D) Daily positive cases and 
hospitalizations of SARS-CoV-2 from February 2020 to March 2022 by region of King 
County smoothed with a 14 day rolling average. Blue denotes North King County; Orange 
denotes South King County.   
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Figure 2: Representative SARS-CoV-2 Clusters by Region in King County. We combined 
more than 11,500 SARS-CoV-2 genomes from King County with more than 45,000 contextual 
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sequences from around the world and built a time-resolved phylogeny. King County outbreak 
clusters were then extracted using a parsimony based clustering approach. We inferred geographic 
transmission history between each region using MASCOT-GLM. Here, we display the number of 
clusters over time by King County Region (A), the frequency of cluster size by region on a linear 
(B left) and log (B right) scale (up to a cluster size of 10. Larger clusters exist but were excluded 
from the graph for clarity), and the maximum clade credibility tree of all clusters with five or more 
sequences (C) where color represents posterior probability of being in South King County. The x-
axis represents the collection date (for tips), or the inferred time to the most recent common 
ancestor (for internal nodes). Blue denotes North King County, Orange denotes South King 
County.   
 
 
To investigate transmission dynamics between and within these two King County regions, we 
analyzed 11,602 sequenced King County viruses alongside contextual sequences from around the 
world. Following the creation of time-resolved phylogenies using Nextstrain (13), we split the 
sequences into local outbreak clusters using parsimony-based clustering to identify groups of 
sequences whose ancestral states were inferred to be in King County (see Methods). We identify 
5964 clusters and find that the number of clusters increases over the time in both regions (Fig. 
2a), most likely due to an increase in the number of cases being sequenced in WA. Additionally, 
we find that the majority of clusters are single introductions (n = 5,095) with larger clusters 
increasingly rare (Fig 2b, clusters with more than 10 sequences were excluded for clarity).South 
King County has a greater mean cluster size (South: 1.87; North: 1.61; two-sample t-test p-value: 
0.048) as well as a larger maximum cluster size (max South cluster size of 280 vs max North 
cluster size of 150).  Figure 2C shows the phylogenetic tree of all clusters with 5 or more 
sequences with inferred geographic location as coloring.  
 
We then employed phylodynamic inference methods on the identified outbreak clusters to 
analyze SARS-CoV-2 spread in the county. Following subsampling, we used a MASCOT-GLM 
approach with relevant predictors on a random subsample of 3000 sequences from our dataset of 
local outbreak clusters to reconstruct SARS-CoV-2 transmission dynamics (Supp. Fig. 2). Figure 
2c shows all clusters greater than size five with respective posterior support for inferred ancestral 
states. Phylodynamic estimates of the effective population size (Ne) of the virus in both King 
County regions over time mirror patterns seen in both confirmed COVID-19 hospitalizations and 
cases: while the Ne in North King County is initially greater until the end of March 2020, 
following WA stay-at-home orders, we find a consistently greater Ne in South King County 
throughout the study period (Fig. 3).  
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Figure 3: Estimates of effective population sizes from Feb 2020 to March 2022 in North 
(blue) and South (orange) King County using 3000 randomly subsampled sequences. The 
inner band denotes the 50% highest posterior density (HPD) interval and the outer band denotes 
the 95% HPD interval. Vertical gray lines denote dates of non-pharmaceutical interventions in 
Washington State.  
 
 
We next analyzed the posterior set of phylogenies produced by the MASCOT-GLM analysis to 
understand within and between region viral circulation. Given the higher estimated Ne in South 
King County, we quantified the average persistence time of viral transmission chains in each 
region (Fig 4a, see Methods). While the average monthly persistence time remained relatively 
equal between the two regions during the early stages of the epidemic, following May 2020 up 
until 2022, we see that transmission chains in South King County consistently have significantly 
higher persistence times than in North King County, with the mean local transmission length 
averaged over the entire time period of  21.5 days in South King County and 13.5 days in North 
King County.   
 
To understand if these longer transmission chains in South King County could be due to a higher 
number of viral introductions from outside the county, we reconstructed the ancestral states of 
each a priori defined King County transmission cluster to quantify the relative number of 
introductions into each region (Fig 4b). While greater than 50% of introductions prior to May 
2020 were into South King County, the majority of the time period studied was characterized by 
a greater relative proportion of introductions from outside into North King County.    
 
These fine scale phylodynamic analyses also allow us to  investigate the interplay between local 
regions. Introductions from outside regions have been shown to play a driving force in 
maintaining local outbreaks (29) but often these introductions are focused on interstate or 
international travel. Here we quantify the interplay between two inner-county regions, examining 
the number of transmission events that occur between North and South King County (Fig 4c). By 
quantifying the number of migration jumps between the two regions, we see a clear pattern 
emerge in which prior to June 2020 when WA lifted emergency stay at home orders, there was 
little difference in the number of transmission events between regions. Following the elimination 
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of the stay-at-home orders however, transmission events become asymmetrical, where we 
consistently see disproportionally more transmission from South King County to North King 
County than in the opposite direction, with the largest differences occurring in the beginning 
months of 2021.  
 

 
Figure 4: Within and Inter-Regional Dynamics in King County inferred from pathogen 
genomes and relevant covariates. A. Persistence time (in days) of local transmission chains 
over time in both regions of King County. Accompanying graph showing persistence times 
averaged over the entire time period for both regions with error bars denoting 95% CIs.  B.  
Inferred reconstruction of ancestral state for each transmission cluster over time. Blue denotes 
initial introduction in North King County and orange denotes initial introduction in South King 
County. Average values are normalized to 100% over time. Accompanying graph showing 
inferred introductions averaged over the entire time period for both regions with error bars 
denoting 95% CIs. C. Number of migration events from North to South King County (purple) 
and from South to North King County (green) over time. Bands denote 95% CI. Accompanying 
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figure shows number of migration events between the two regions averaged over the entire time 
period with error bars denoting 95% CIs. 
 
Given the higher number of introductions into North King County but the larger Ne and longer 
transmission chain length in South King County, we sought to estimate the relative contribution 
of introductions versus local community spread in driving the epidemic in both King County 
regions. To do so, we calculated the percentage of new cases from introductions in each region 
using the estimated changes in Ne over time as well as the estimated rates of introduction both 
from outside King County and from the neighboring inner-county region. We estimated a 
relatively higher percentage of cases due to introductions in South vs North King County prior to 
emergency stay-at-home order in WA on March 23, 2020 (Fig 5a). Following the stay-at-home 
order, the pattern switched and was largely constant throughout the epidemic, with North King 
County averaging about 35% of new cases from introductions versus local spread while only 
about an average of 25% of new cases were estimated to be from introductions in South King 
County. To further support this estimate, we calculated the percentage of visits to POIs in North 
and South King County for devices having an outside home location using SafeGraph mobility 
data. We find similar estimates ranging from about 25%-40% throughout time (Fig. 5a, black 
lines).  
 
To better compare transmission dynamics between the two regions, we next used the effective 
population size dynamics to compute Rt, the time-varying effective reproductive number (Fig. 
5b, Supp. Fig. 3). Additionally, we also employed our estimates of the percentage of new cases 
that are due to introductions to separate out the effects of local transmission and introductions on 
Rt. We find that the Rt for both regions closely follows variant waves, with an Rt above 1, which 
implies increasing transmission, matching with dates of increased case counts. Additionally, by 
separating out contributions into being from local transmission, introductions from the 
neighboring King County region, or introductions from outside King County, we find that local 
transmission is the main contributor to Rt in both regions but that introductions have a 
differential impact. We see that introductions as a whole play a much larger role in promoting 
and maintaining transmission in North King County, with outside regions being the main 
contributor of introductions. In South King County, Rt  is more driven by local within-region 
spread, with introductions from North King County being more influential than introductions 
from outside the county.  
 
Phylodynamic estimates of epidemic dynamics were similar regardless of subsampling strategy 
used (Supp. Figs 4, 5). 
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Figure 5: Phylodynamic estimates of differential impact of introductions and local spread 
on transmission dynamics of SARS-CoV-2 by region in King County. (A) Percentages of 
new cases due to introductions were estimated as the relative contribution of introductions to the 
overall number of infections in the region.  The inner area denotes the 50% HPD interval and the 
outer area denotes the 95% HPD interval. Blue = North King County; Orange = South King 
County.  Black lines represent the same calculation using SafeGraph mobility data as parameter 
approximations. Solid black line is for North King County; Dashed black line is for South King 
County. (B) Estimates of local Rt highlighting the contribution of introductions from outside 
King county (red) and from the neighboring King County region (gold) on local transmission in 
each King County region. Dashed line denotes an Rt of 1. Estimates higher than 1 suggest an 
exponentially growing epidemic.  
 
 
Discussion  
 
The surge of whole genome sequencing has enabled large-scale investigation into key COVID-
19 epidemiological dynamics. Yet, genomic epidemiology can also be employed to analyze 
transmission patterns at a local scale to aid in policy making and intervention evaluation. Here, 
we examined fine-scale SARS-CoV-2 transmission dynamics at a sub-county level for King 
County, WA, a large metropolitan area with a demographically diverse population.  
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We used novel phylodynamic methods to reconstruct the epidemic in King County from January 
2020 to March 2022 and examine within-region dynamics and their interplay from pre-identified 
local outbreak clusters. We divide King County into North and South, informed by the clear 
differences in outcomes (cases and hospitalizations) at the PUMA level, in which South King 
County has been disproportionately affected despite having a smaller population size (673,548 in 
South versus 1,400,211 in North King County in 2020 (11)). We estimated that for the majority 
of the time period studied, introductions accounted for a larger percentage of new cases in North 
than in South King County (Fig 4). While a higher proportion of introductions among new cases 
can be attributed to either a higher rate of introduction or a lower local transmission rate, we find 
evidence of a greater number of viral introductions into North King County over time, from both 
outside and within the county, but longer chains of local transmission in South King County (Fig 
4). Together our data suggest a larger impact of introductions in North King County and a larger 
role of local community spread in South King County in driving the respective regional 
epidemics. This conclusion is supported via our Rt estimates, or the time-varying estimate of 
secondary infections, which show that outside introductions play a significant role in 
transmission in North King County while local spread is more contributory in South King 
County (Fig 5). Importantly, cases being driven by a higher percentage of introductions can be 
due to either an increase in introductions from outside, a decrease in local spread, or a 
combination of both.  
 
Saliently, we find that the epidemic dynamics in the two regions diverge not in the beginning but 
rather in the time period between the start and end of the strictest non-pharmaceutical 
interventions: emergency stay-at-home orders from end of March to early June 2020. Given that 
previous studies have attributed differences in local case counts to unequal reductions in mobility 
(30,31), we analyzed the change in mobility among individuals visiting public points of interest 
in King County (see Methods). When compared to a baseline average from 2019, we find that 
both regions experienced a large decrease in mobility following the implementation of stay-at-
home orders in March 2020 with North King County showing a 60% reduction in mobility 
compared to the 40% reduction in South King County (Fig 6a).  While South King County 
eventually returned to baseline levels of mobility by the end of 2020, North King County was 
able to maintain reduced levels throughout the time period studied. The ability to significantly 
reduce and maintain mobility changes has been previously attributed to socioeconomic 
inequities, including geographical differences in income (32) and percent of the community that 
contributes as an essential worker (30). We find a similar pattern in King County: South King 
County has a lower median household income, a larger percentage of essential workers in the 
active workforce, and a higher average household size than North King County (Fig 6b-d). While 
we are unable to ascribe causality, our work adds to the growing body of literature showing a 
correlation between geographic differences in SARS-CoV-2 transmission and socioeconomic 
inequities potentially related to the ability to reduce mobility following non-pharmaceutical 
interventions.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283536doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 6: Socioeconomic Characteristics of King County. A. Percent change in mobility from 
Feb 2020 to March 2022 over time using average mobility in 2019 as baseline for North (blue 
line) and South (orange line) King County. Dashed line denotes no change compared to baseline. 
B,C. Median household income in 2020 (B) Percentage of the active workforce whose 
occupation is defined as “essential” from 2015-2020 (C) and average household size from 2015-
2020 (D) in King County by Public Use Microdata Area (PUMA)  
 
Given the smaller population size in South King County, one potential explanation for higher 
local spread in that region is lower access to health care resources needed to curb community 
transmission. Previous studies looking at SARS-CoV-2 test positivity in King County at a census 
tract level have found that a higher test positivity was associated with various socioeconomic 
indicators including lower educational attainment, higher rates of poverty, and high 
transportation costs (33,34). Additionally, they found that communities with a higher proportion 
of people of color, which are more likely to be located in South King County, were also 
associated with higher test positivity in 2020. Hansen et al. (34), specifically found that having a 
place of residence in South King County was associated with SARS-CoV-2 test positivity. The 
associations between test positivity and socioeconomic status are not a unique King County 
phenomenon; they have been found in various metropolitan areas around the US (30,31,35). 
Similarly, a previous study that used phylodynamics to analyze differences in SARS-CoV-2 
spread in two Wisconsin counties found that the county with the highest basic reproductive 
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number, an approximate measure of local spread in a naive population, was also the county with 
the higher proportion of people in poverty and lower access to health as well as with the highest 
proportion of communities of color, which mimics the transmission dynamics and demographic 
differences seen at a within-county level in King County (6). 
 
Our results are not without limitations. Whole genome sequencing in WA is conditional on 
laboratory-confirmed testing in which sample quality must meet minimum requirements in terms 
of PCR cycle threshold, potentially biasing our dataset towards more symptomatic cases, 
although previous studies have found no significant difference in viral load between 
symptomatic and asymptomatic individuals (36–38). Additionally, the changing availability of 
genomic sequencing, as well as of at home testing are impacting the chance a case shows up in 
our data through the period studied (see Figure 2b). Multiple subsampling strategies were 
considered and implemented in an effort to account for this variation (Supp. Figs 4, 5). 
 
Our phylodynamic analyses are conditioned on inferred King County sequence clusters that are 
found through the incorporation of contextual sequences from around the world into a 
temporally-resolved phylogeny. As such, it is possible that differential sampling from other 
locations could impact our identified clusters. Optimally, we would like to avoid having to a 
priori define local outbreak clusters entirely by, for example, explicitly accounting for locations 
outside of King County in the model. This is currently not possible due to the additional 
computational cost of explicitly considering an outside deme. Additionally, Bayesian coalescent 
models assume random sampling of infected individuals, meaning that targeted sampling, such 
as super spreader events or contact tracing, could bias our phylodynamic estimations. Such 
sampling from outbreak analyses may also not be constant through time, complicating Ne 
inferences. Lastly, our Rt calculations assume that the change in Ne over time is proportional to 
the change in the number of infected individuals over time. 
 
The dynamics of the SARS-CoV-2 pandemic have been highly heterogeneous across countries. 
In line with other studies, we here show that even different areas of the same metropolitan region 
can have different dynamics. Local scale genomic epidemiology can help reveal some of these 
differences and potentially inform more tailored interventions to reduce the burden of infectious 
diseases. Importantly, highlighting local differences in disease burden can help local public 
health agencies to inform where resources, such as access to testing and vaccinations or aid for 
isolation, are needed most. 
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Supplementary Materials: a list of the supplementary materials, followed by the actual text 
of the Supplementary Materials. 

1. Supp.Fig 1: Number of local outbreak clusters over time by subsampling scheme 
2. Supp.Fig 2: Rt estimation using phylodynamic estimates  
3. Supp.Fig 3: Phylodynamic estimates of SARS-CoV-2 transmission in King County with 

equal temporal subsampling. 
4. Supp.Fig 4: Phylodynamic estimates of SARS-CoV-2 transmission in King County with 

subsampling weighted by hospitalizations. 
5. Supp. Table 1: Geocoding for different geographical scales in King County, WA 
6. Supp.Table 2: Sequence Accession IDs and acknowledgements table (attached .CSV) 
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Supplementary Figure 1: Number of local outbreak clusters over time by subsampling scheme: 
random (A, Blue), equal temporal weighting by year-week (B, Gold), and subsampling weighted 
by daily hospitalizations calculated using a 14 day moving average (C, Red). 
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Supplementary Figure 2: Rt estimation using phylodynamic estimates (Blue North King 
County; Orange = South King County) and case data (Black lines, solid = North King County, 
dashed = South King County) The inner area denotes the 50% HPD interval and the outer area 
denotes the 95% HPD interval. 
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Supplementary Figure 3: Phylodynamic estimates of SARS-CoV-2 transmission in King 
County with equal temporal subsampling. Results presented above were inferred using 3000 
sequences subsampled using equal temporal weighting by year-week. Analyses presented, as 
defined previously, are: effective population size over time (A), percent of cases due to 
introductions (B), and local Rt estimations divided by region and source of contribution (C). 
Orange denotes South King County; blue denotes North King County. 
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Supplementary Figure 4: Phylodynamic estimates of SARS-CoV-2 transmission in King 
County with subsampling weighted by hospitalizations. Results presented above were inferred 
using 3000 sequences subsampled using weighting by hospitalizations over time using a 14 day 
rolling average. Analyses presented, as defined previously, are: effective population size over 
time (A), percent of cases due to introductions (B), and local Rt estimations divided by region 
and source of contribution (C). Orange denotes South King County; blue denotes North King 
County. 
 
 
Supplementary Table 1: Geocoding for different geographical scales in King County, WA 
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Region  PUMA ZIPCODE 

North 
King 

County 

11601 

98103 

98107 

98117 

11602 

98105 

98115 

98125 

98195 

11603 

98101 

98102 

98104 

98109 

98119 

98121 

98154 

98164 

98199 

11604 

98112 

98118 

98122 

98144 

11605 

98106 

98108 

98116 

98126 

98134 
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98136 

11606 

98133 

98155 

98177 

98011 

98028 

11607 

98033 

98034 

98052 

11608 

98004 

98005 

98006 

98007 

98008 

98039 

11609 

98040 

98029 

98076 

98075 

11616 

98045 

98065 

98014 

98077 

98053 

98024 

98072 

98019 
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South 
King 

County 

11610 

98055 

98057 

98056 

98178 

11611 

98146 

98148 

98166 

98168 

98188 

11612 

98003 

98023 

98198 

98070 

11613 

98030 

98031 

98032 

98092 

11614 

98001 

98002 

98047 

11615 

98010 

98022 

98038 

98051 

98027 

98042 

98059 
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