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Abstract: Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain,
which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are
limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood
circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves
many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction.
Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription
factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting
Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During
cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-
κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress,
anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood–brain barrier, and
inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of
Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through
the Nrf2 signaling pathway in recent years, and expounded the important role and future potential
of the Nrf2 pathway in cerebral ischemic stroke.

Keywords: Nrf2; cerebral ischemic stroke; oxidative stress; inflammation; mitochondrial function;
blood–brain barrier; ferroptosis

1. Introduction
1.1. Cerebral Ischemic Stroke

Stroke refers to the obstruction or bleeding of arteries in a certain part of the brain
tissue, which leads to focal neurological impairment in the corresponding part, including
ischemic stroke and hemorrhagic stroke. Investigation showed that the incidence and
prevalence of stroke increased with years, and stroke caused high rates of disability and
mortality, which seriously endangered human life and health [1]. Among them, cerebral
ischemic stroke makes up the vast majority, accounting for about 70% of all stroke events [2].
Cerebral ischemic stroke is featured with cerebral vascular congestion and insufficient blood
supply, leading to insufficient supply of oxygen and nutrients in brain tissue, and then leads
to a series of pathophysiological changes or injuries, and the death of brain cells, eventually
leading to neurological dysfunction. At present, it is known that the pathophysiological
changes caused by ischemic stroke include energy metabolism disorder of brain tissue,
oxidative stress injury, excitatory amino acid poisoning, inflammatory reaction, etc. [3]. The
ischemic parts of the brain are segmented into the ischemic core area and the penumbra
area. The supply of glucose and oxygen in the ischemic core almost completely stops,
resulting in irreversible damage to all cells and death due to necrosis. The penumbra can
still acquire a small amount of glucose and oxygen supply from the blood flow, and prevent
the cells from dying immediately [4]. If the blood flow can be restored in a timely manner,
the function of brain cells may be restored. However, during the onset of acute stroke,
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partial opening of collateral blood circulation, or unobstructed blood circulation again after
embolectomy, will cause ischemia-reperfusion injury, which will lead to the release of free
radicals, which will lead to the destruction of brain cell structure and further aggravate
brain tissue damage [5].

1.2. Nrf2

Transcription factor NF E2-related factor 2 (Nrf2) is a member of the transcription
factor family, widely exists in various cells, and has redox sensitivity [6,7]. When cells
are stimulated by oxidative stress, Nrf2 can regulate the antioxidant stress by combining
with the antioxidant response element (ARE) in nucleus [8]. The cytoplasmic kelch-like
epichlorohydrin-associated protein 1 (Keap1) can sense the oxidative insults, and Nrf2 will
serve for the counter responses [9]. More than 600 genes, among them more than 200 encod-
ing proteins linked to inflammation, cancer, neurological disorders, aging, cardiovascular
disease, and other serious illnesses, are regulated by the Nrf2 signaling pathway [10]. Nrf2
can regulate most downstream factors, and it can play plenty of roles, including antiapop-
tosis, anti-inflammatory injury, reducing calcium overload, antioxidative stress, etc., and
help the body maintain the redox reaction of brain tissue and brain cells. Nrf2 signaling is
increasingly complex as Nrf2 is sited at the center of a vast regulatory network now. Thus,
it is vital to stabilize Nrf2 activity to maintain the redox balance and brain homeostasis. As
the brain is vulnerable to oxidative stress [11], Nrf2 activation has now become a promising
target in the setting of cerebrovascular accidents such as ischemia. Nrf2 plays a crucial
role in the management of excessive oxidative stress after stroke [12]. Hydrogen peroxide,
which increases after ischemia-reperfusion, is the main stimulator of Nrf2 activation [13].
Nrf2−/− rats have greater cerebral damage after ischemic stroke modeling due to the lack
of Nrf2 protection [14]. The above results indicate that Nrf2 is an important molecule to
regulate oxidative stress. Moreover, the expression level of Nrf2 can affect the recovery and
prognosis of ischemic stroke injury.

1.3. Oxidative Stress

Free radicals of oxygen and nitrogen are necessary for all aerobic organisms. Reactive
oxygen species (ROS) participate in the basic biochemical process of the organism, which
can maintain the redox steady state of tissues and cells. The physiological health of the
organism is very important. However, excessive oxidative stress may lead to lipid, protein,
and DNA damage, which is harmful to the body. Oxidative stress means that the balance
between the oxidative system and antioxidant system in the body is broken, which leads to
the destruction of intracellular biological macromolecules such as sugars, lipids, protein,
and nucleic acids, and further leads to the damage of organs, tissues, and functions, which in
turn leads to the further accumulation of oxidation products, thus aggravating the damage
and forming a vicious circle [15]. Oxidative stress includes exogenous and endogenous
mechanisms. Endogenous stress usually comes from intracellular signaling pathways,
metabolism, and inflammatory processes [16]. Different types of ROS will be produced by
metabolism, including superoxide anion radical (O2

•−), peroxy radical (ROO•), hydroxyl
radical (HO•), as well as the non-free radical compounds such as hydrogen peroxide (H2O2)
and singlet oxygen (1O2) [17]. At present, it is known that the action of free radicals is
concentration-dependent; that is, ROS is beneficial to the body at normal physiological
concentration, but harmful to the body when it exceeds a certain concentration [18]. If
the content of ROS exceeds the cell tolerance level, it will oxidize DNA and induce DNA
breakage and damage, which is common during the occurrence of tumors [19]. Oxidative
stress participates in cerebral ischemia injury through many ways, which damages the
normal function of cells, causes irreversible damage to cells, and causes cell necrosis and
apoptosis [20]. After cerebral ischemia, oxidative DNA leads to cell damage, activates
several death-related signal pathways, and then leads to programmed cell death, leading to
neurological dysfunction [21]. The antioxidant system is the body’s response to all kinds of
oxidative damage in order to reduce oxidative damage. After ischemic stroke, cells start the
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antioxidant defense function, and activate enzymes such as superoxide dismutase or heme
oxygenase [22]. Superoxide dismutase (SOD) and glutathione (GSH) play an antioxidant
role by maintaining the redox balance of tissues and cells [23]. However, brain tissue
contains many unsaturated fatty acids and high concentrations of lipids, and its antioxidant
capacity is weak, which makes brain tissue vulnerable to the damage of ROS [24]. Therefore,
it is of great significance to study the mechanism of oxidative stress after cerebral ischemia.

1.4. The Role of Nrf2 in Cerebral Ischemic Stroke

Study has shown that cells significantly elevate the Nrf2 expression during the acute
phase of stroke [25]. In the models of middle cerebral artery occlusion (MCAO), the expres-
sion of Nrf2 was upregulated from 3 h after occlusion, and reached its zenith at 24 h [26].
Other studies have shown that Nrf2 participates in the process of CIRI and has endogenous
neuroprotective effects [27,28]. The activation of Nrf2 is caused by excessive ROS genera-
tion after cerebral ischemia. After Nrf2 activation, transcription of a series of antioxidant
genes was initiated. Some studies confirmed that heme oxygenase-1 (HO-1) and NAD(P)H
quinone oxidoreductase 1 (NQO1) expression increased after cerebral ischemia [29]. Nrf2
activator reversibly reduced the expression of SODs, and the overexpression of SOD1 or
SOD2 significantly reduced the brain damage caused by cerebral ischemic stroke [30,31].
The mechanism underlying the protective effect of Nrf2 in cerebral ischemic stroke is
not yet completely understood. It was shown that Nrf2 alleviates CIRI by activating the
expression of antioxidant genes, defending against the damage caused by ROS, alleviating
blood–brain barrier disruption and attenuating inflammation [32]. The study showed that
following transient middle cerebral artery embolism in Nrf2 knockout mice, the basic and
induced activation of antioxidant enzymes and detoxification enzymes were inhibited, the
cerebral infarction area was larger, and the behavioral performance was worse than that in
the control group [33]. All the above studies show that Nrf2 plays a vital role in alleviating
ischemic stroke and CIRI, and most studies show that this role is a beneficial protective
role.

2. The Structure and Function of Nrf2

The relative molecular weight of Nrf2 protein was 6.6 × 104 Da. It is a transcription
factor with a highly conserved basic leucine zipper structure, and is regulated by Keap1 at a
low level and has a short half-life in non-activated cells [34]. Nrf2 mainly has seven highly
conserved epichlorohydrin-related protein homologous domains (Nrf2 epichlorohydrin
homology, Neh) [10,35] (Figure 1): The Neh1 region is a leucine zipper motif associated
with intranuclear small musculoaponeurotic fibrosarcoma (sMaf), forms a heterodimer,
recognizes and binds related sequences on the ARE, and can also interact with E2 ubiquitin-
binding enzyme to adjust Nrf2 stability. The Neh2 region is a Keap1-dependent regulatory
region, which contains two binding units, DLG and ETGE, to negatively regulate the
Nrf2 transcriptional activity and promote its degradation [36]. The DLG-binding motif
of Nrf2 functions as a “latch” separating from Keap1, while the ETGE-binding motif
acts like a ‘hinge’ that remains connected to Keap1 [37]. Neh3 is located at the carboxyl
terminus of Nrf2 and acts as a transactivation domain to activate transcription of related
genes downstream [38]. Neh4 and Neh5 are two independent activation regions, both
of which are rich in acidic amino acid residues and participate in the regulation of Nrf2
transcription by binding to cyclic AMP response element-binding protein (CREB) [39].
The Neh6 region is a Keap1 independent regulatory region and participates in the Keap1
alternative degradation pathway. Neh7 can specifically interact with retinoic acid X receptor
α (RXRα) [40]. Brain microglia, macrophages, and astrocytes are the main producers of
Nrf2; they produce a large amount of Nrf2 during the first 24 h after the induced middle
cerebral artery occlusion [41,42].
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Figure 1. Domain structures of Nrf2. The Nrf2 protein contains seven domains: Neh1–Neh7. Neh2
is the Keap1-binding domain. Neh4, 5, and 3 domains are critical for transactivation. Neh3 can
activate transcription of downstream-related genes. The Neh6 region participates in the Keap1
alternative degradation pathway. The Neh1 region binds to small musculoaponeurotic fibrosarcoma
(sMaf) and forms a heterodimer. Neh7 can bind to RXRα and RaRα. KEAP1, cytoplasmic kelch-like
epichlorohydrin-associated protein 1; CBP, cyclic AMP response element-binding protein; HRD1,
HMG-CoA reductase degradation protein 1; RXRα, retinoid X receptor α; RARα, retinoic acid receptor
α; β-TrCP, β-transducin repeat-containing protein; sMAF, small musculoaponeurotic fibrosarcoma;
CHD6, chromodomain helicase DNA-binding protein 6; ARE, antioxidant response element.

Normally, Nrf2 forms a complex with Keap1, a negative regulator of Nrf2, at a low
expression level. Nrf2 will disconnect from Keap1 under oxidative stress, and then Nrf2
will help to transfer Keap1 into the nucleus. Nrf2 possesses protective effects against
oxidative stress and inflammation [43]. Nrf2 can adjust the expression of antioxidant
enzymes, including catalase (CAT), glutathione peroxidase (GSH-Px), and SOD, and it
can regulate the expression of some phase II detoxification enzymes, such asNQO1, HO-1,
and glutathione S-transferase (GST) [44,45]. Many Nrf2-driven genes become involved
in glutathione synthesis or action. The de novo synthesis of glutathione starts with γ-
glutamylcysteine synthetase (γ-GCS), which binds cysteine with glutamate to produce
γ-glutamylcysteine. HO-1 is one of the crucial and well-studied antioxidant genes adjusted
by Nrf2 and is of particular importance in endothelial homeostasis. HO-1 is usually
upregulated along with ferritin. HO-1 combines with biliverdin reductase to release
bilirubin, which ranks as one of the most robust endogenous antioxidants by clearing
reactive oxygen species and reactive nitrogen species ROS/RNS [46].

In addition, other downstream classes of genes involved in protein transport, ubiq-
uitination, phosphorylation, proliferation, and apoptosis, have also been shown to be
potentially Nrf2-regulating endogenous encoding genes [47]. Nrf2 has also been shown
to regulate genes in response to air pollution or increased reactive oxygen species [48].
Nrf2-related signaling pathways play an important role in maintaining cellular homeostasis
under stress, inflammation, carcinogenesis and proapoptotic conditions [49,50]. This shows
that Nrf2 is widely involved in the physiological and pathological processes of the body,
and it is an important cytokine.

In addition to regulating cellular oxidative stress response, Nrf2 is also involved in
the regulatory process of maintaining intracellular redox homeostasis. By activating the
expression of various kinds of antioxidant proteins, Nrf2 can reduce ROS-induced cellular
damage and electrophilics, and maintain a redox dynamic balance in the human body.
Under oxidative stress, the content of ROS in vivo increases and the Nrf2 system is activated,
the cells express more antioxidant enzymes and proteases of synthetic antioxidants, the
antioxidant mechanism is enhanced, and the content of ROS decreases, thus achieving
the dynamic redox balance [51]. Therefore, Nrf2 is an important factor to maintain cell
homeostasis and organism homeostasis.
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3. Oxidative Stress and Cerebral Ischemic Stroke

Oxidative stress refers to the excessive production of ROS and reactive nitrogen species
(RNS) when the body is under many external or internal stimuli, and the imbalance of
oxidation system and antioxidant system leads to cell damage. The main mechanism of
oxidative stress injury is the increase of free radical sources and the decrease of antioxidant
capacity. ROS are the oxygenated molecules with high activity properties, including O2

•−,
H2O2, NO, and ONOO−, etc. In living cells such as neurons, ROS can be produced in
response to hypoxia, serum deprivation, or cytokine stimulation [52]. Mitochondria are the
main organelles that generate ROS in cells [53]. RNS refers to the redox molecule derived
from nitric oxide (NO). NO is generated by NOS catalyzing the L-arginine guanidine-
based terminal nitrogen oxidation reaction. Low concentrations of NO can resist oxidative
damage, while high concentrations of NO can aggravate the oxidative damage of the
body [54,55]. Oxidative stress is known to be involved in several pathophysiological
processes [56]. Therefore, the regulation of oxidative stress is an important factor to
maintain the balance of the body.

After CIRI, the blood–brain barrier of brain tissue is destroyed, and oxidative stress is
one of the factors [57]. It has been found that oxidative stress is a significant mechanism
leading to brain tissue injury after cerebral ischemic stroke [58,59]. In CIRI, when the
generation of oxidants surpasses the body’s antioxidant capacity, the accumulated ROS
will trigger the oxidation reaction of DNA, lipid, and protein, leading to the death of
tissue cells, and then cause neurological dysfunction [60]. However, during reperfusion, a
great deal of reactive oxygen species, such as hydroxyl radicals and superoxide radicals,
and an excess increase in hydrogen peroxide, are produced [61]. ROS tend to affect cell
membranes lipids, and lipid peroxidation will generate a vast number of lipid peroxides
(4-HNE and other toxic aldehydes), which increase the cell membranes’ permeability and
destroy their structural integrity [62]. ROS and RNS interact to produce reactive oxygen
and nitrogen molecules, such as strong oxidant peroxynitrite. It has been found that
NADPH oxidase 2 (NOX2) plays a key role in CI/R-induced oxidative stress injury and
is a key enzyme causing ROS [63]. In addition, several studies showed that decreasing
NOX2 expression and reducing NOX activity are two effective ways to attenuate CIRI [64].
When studying the protective mechanism of ischemic preconditioning, some researchers
found that ischemic preconditioning (IPC) can induce cerebral ischemic tolerance, which is
initiated by oxidative stress. This mechanism is related to the opening up of the adenosine
triphosphate (ATP)-sensitive potassium channel (mito K+ ATP), which is necessary for IPC
to play a protective role. Moreover, it was found that there is a delicate balance in ROS
generation; for instance, a high level of ROS produced during IR is cytotoxic, while a low
level of IPC-produced ROS is neuroprotective [65].

The SOD family includes SOD1, SOD2, and SOD3 proteins that neutralize the first
oxygen-sourced ROS. SOD belongs to the body of free radical scavenging agents, and
protect cells against oxidative stress, especially in the removal of superoxide produced
during metabolism [66]. In addition, SODs can inhibit the damage of oxygen free radicals,
and also reduce the number of peroxidation products generated by brain tissue under
ischemia and reperfusion, and increase the ability of the cerebral cortex to withstand
hypoxia [67]. This shows that SODs have a protective effect on ischemic brain injury.
Moreover, the balance between SODs and ROS is very important for the homeostasis of
the body. If the balance between them cannot be maintained, the cell homeostasis will be
destroyed.

Mitochondria are the energy factories of cells. Excessive ROS has a highly toxic
effect on key cellular macromolecules, and ROS can damage the mitochondria, leading to
disorder of the cellular energy metabolism and ultimately cell death [68,69]. After stroke,
the blood supply of local brain tissue is insufficient, mitochondrial dysfunction occurs,
ATP cannot be generated, and calcium homeostasis is disrupted. After cerebral blood flow
reperfusion, oxidative stress further aggravates mitochondrial damage [70]. This is followed
by apoptosis and, in turn, mitochondrial dysfunction produces excess ROS [71]. The
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mechanism may be that under the condition of cell hypoxia, the function of mitochondria
to produce ATP is inhibited, thus affecting the normal function of the Na(+)/K(+)-ATPase
and Ca2+/H+-ATPase plasma pump, the increase of intracellular Na+, Ca2+, and adenosine
diphosphate (ADP) content, the disruption of cell ion homeostasis, and the depolarization
of the cell membrane, leading to the change of intracellular mitochondrial membrane
potential and the release of a large amount of ROS. SOD and GSH-Px are endogenous
antioxidant enzymes that can clear free radicals and protect cells from oxidative injury. After
cerebral ischemic stroke, the activities of SOD and GSH-Px were significantly decreased,
resulting in serious damage to the structure and function of mitochondria, and inducing
brain tissue damage and neurologic function deficits [72]. The above results demonstrate
that ROS and mitochondrial damage interact and promote each other during stroke.

More and more researches have shown that oxidative stress is involved in stroke and
CIRI; therefore, many drugs take effect by regulating oxidative stress, especially some
traditional Chinese medicines or compounds. This paper summarizes that these drugs play
a protective role in stroke and CIRI by regulating oxidative stress in the past five years.
Dihydrocapsaicin (DHC) is the main active substance of capsaicin in chili peppers. The
study showed that DHC can protect the brain and blood–brain barrier from I/R damage by
inhibiting oxidative stress and inflammation [73]. Acteoside (ACT) has neuroprotective
and antioxidant effects in neurodegenerative diseases. The results showed that ACT could
reduce oxidative stress in the middle cerebral artery occlusion/reperfusion (MCAO/R)
models [74]. Schizandrin A (Sch A) is isolated from Schisandra chinesnesis and it has
significant antioxidant activities. It has been shown that Sch A has a protective role against
cerebral stroke [75]. One of the major active ingredients of Herba Epimedii, Icariside
II, can attenuate CIRI through inhibiting oxidative stress [76]. Rutaecarpine (Rut) is an
alkaloid isolated from Evodia officinalis and has many biological activities. Rut can inhibit
inflammation, oxidative stress, and apoptosis, and it can attenuate CIRI [77]. Biochanin A
is a natural phytoestrogen. The results showed that biochanin A had protective effects on
cerebral ischemic injury by antioxidation in rats [78]. Studies have proven that Theaflavin
possesses strong antioxidative capacity. Theaflavin can reduce oxidative stress, thereby
attenuating cerebral ischemia-reperfusion injury [79]. Carvacryl acetate (CA) is a semi-
synthetic monoterpenic ester extracted from essential oils, which has antioxidant properties.
The study has shown that CA can alleviate oxidative stress injury induced by cerebral
ischemia-reperfusion through the Nrf2 signaling pathway [80]. Convolvulus pluricaulis
Choisy is traditionally prescribed for nerve debility. The study showed that Convolvulus
pluricaulis Choisy has a neuroprotective effect on the oxidative stress model of CIRI in
rats [81]. Cepharanthine (CEP) has anti-inflammatory and antioxidative properties. It has
been shown that CEP attenuates cerebral I/R injury by inhibiting nod-like receptor family
pyrin domain-containing 3 (NLRP3) inflammasome-induced inflammation [82]. Studies
have shown that Sanggenon C (SC) has antioxidant effect. The results showed that SC can
inhibit inflammation and oxidative stress in CIRI [83]. Coicis Semen has antioxidative roles.
Coicis Semen can alleviate ischemic brain injury, which may be related to the inhibition of
oxidative stress [84]. It has been shown that resveratrol has an anti-inflammatory effect.
Pic can reduce oxidative stress and apoptosis caused by CIRI, and the effect is realized by
adjusting the Sirtuin1 (SIRT1)/fork-head box O1(FoxO1) signaling pathway [85]. Garcinol
is a polyisoprenylated benzophenone derivative. Study has shown that Garcinol can inhibit
oxidative stress and improve cerebral ischemia injury [86]. Fisetin has an antioxidant and
anti-inflammatory effect. Fisetin protected CIRI injury, perhaps due to suppression of
oxidative stress and inflammatory reaction [87]. Geraniin is a polyphenol isolated from
Phyllanthus amarus. Study has shown that Geraniol can protect against CIRI by inhibiting
oxidative stress [88]. Cucurbitacin B (CuB) has been demonstrated to possess antioxidative
properties. The study showed that CuB can decrease lactate dehydrogenase (LDH) release
and ROS production; that is, it can reduce cerebral I/R injury by reducing the level of
oxidative stress [89]. Fraxin, one of the primary active ingredients of Cortex Fraxini, may
have potent anti-inflammatory activity. A recent study showed that Fraxin significantly
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improved CIRI by inhibiting oxidative stress and inflammatory response [90]. Scutellarin
can protect against cerebral ischemia injury, and study has shown that this is related to its
antioxidant effect [91]. These drugs play a protective role in cerebral ischemic stroke or
CIRI by regulating oxidative stress, and their specific regulatory mechanisms are different.
We summarized these studies, and showed them in the table (Table 1) below.

Table 1. Several traditional Chinese medicine/compounds affect cerebral ischemic stroke by regulat-
ing Nrf2 signaling pathways.

Medicine Model (s) Related Signaling Pathway Related Mechanism Effect Reference

Dihydrocapsaicin
(DHC) MCAO/R

Activate SOD and GPx,
downregulate ROS, NOX2, NOX4,
NF-kB, NO, and MMP-9

Attenuate oxidative
stress and inflammation Protective [73]

Acteoside (ACT) MCAO/R Decrease ROS and MDA, increase
SOD and CAT

Attenuate oxidative
stress and neuronal
apoptosis

Protective [74]

Schizandrin A
(Sch A)

MCAO/R and
OGD/R

Downregulate iNOS, COX-2, IL-1β,
IL-6, and TNF-α, increase SOD, CAT,
HO-1 and NQO-1

Suppress inflammation
and oxidative stress Protective [75]

Icariside II MCAO/R
Decrease ROS and MDA, increase
SOD, GSH-Px, catalase, Nrf2, and
HO-1

Attenuate oxidative
stress Protective [76]

Rutaecarpine
(Rut) MCAO/R

Alleviate IL-6, IL-1β, LDH, MDA,
and ROS, increase IL-4, IL-10, SOD,
HO-1, and NQO1

Alleviate inflammatory
response and oxidative
stress

Protective [77]

Biochanin A MCAO/R Activate SOD, GSH-Px, and HO-1,
suppress MDA, NF-kB

Antioxidative and
anti-inflammatory
actions

Protective [78]

Theaflavin MCAO/R and
OGD/R

Decrease ROS and MDA, increase
SOD and GSH-Px

Restore the impaired
antioxidant defense
system

Protective [79]

Carvacryl acetate
(CA) MCAO/R Decrease ROS and MDA, increase

SOD Antioxidant stress Protective [80]

Convolvulus
pluricaulis
Choisy

BCCA Increase SOD, catalase, glutathione,
and total thiol

Protect against oxidative
damage Protective [81]

Cepharanthine
(CEP)

MCAO/R and
OGD/R

Decrease ROS and MDA, NLRP3,
ASC, and cleaved caspase-1, increase
SOD

Inhibit microglia
activation, inflammation,
and reduce oxidative
stress

Protective [82]

Sanggenon C
(SC)

MCAO/R and
OGD/R

Decrease TNF-α, IL-1β, IL-6, ROS,
and MDA, increase SOD

Inhibit inflammation
and oxidative stress Protective [83]

Coicis Semen MCAO/R and
OGD/R

Decrease ROS and MDA, increase
SOD, GSH-Px, ZO-1 and occludin,
CD31, and VEGF

Inhibit oxidative stress
and promote
angiogenesis

Protective [84]

Piceatannol (Pic) MCAO/R Decrease ROS, increase SOD, CAT,
and GSH-Px

Suppress oxidative
stress Protective [85]

Garcinol MCAO/R and
OGD/R

Inhibit IL-1β, IL-6, TNF-α, NF-κB,
MDA, and nitric oxide (NO), increase
SOD

Attenuate inflammation
and oxidative stress Protective [86]

Fisetin MCAO/R and
OGD/R

Decrease IL-1, TNF-α, iNOS, IL-1β,
COX-2, IL-6, and PGE2

Inhibit inflammation
and oxidative stress Protective [87]

Geraniin MCAO/R and
OGD/R

Decrease LDH, NO, nNOS and MDA,
increase SOD

Decrease oxidative stress
and neuronal apoptosis Protective [88]

Cucurbitacin B
(CuB)

MCAO/R and
OGD/R Decrease LDH, ROS, and NLRP3 Inhibit oxidative stress

and inflammation Protective [89]

Fraxin MCAO/R and
OGD/R

Decrease ROS, NF-κB, IKK-β, p38
MAPK, ERK1/2, and Keap1

Inhibit oxidative stress,
inflammatory response,
and cell apoptosis

Protective [90]

Scutellarin tMCAO
Decrease ROS, 4-HNE, 8-OHDG,
NT-3, PARP1, NOX1, NOX2, and
NOX4

Suppress oxidative
stress Protective [91]

4. Activation of Nrf2 Signaling Pathway in Cerebral Ischemic Stroke
4.1. Keap1/Nrf2/ARE Signaling Pathway

Keap1 (kelch-like ECH-associated protein 1) is an important regulatory protein. It
forms a complex with ubiquitin protein kinase Cul3/rbx1 through specific binding with the
target protein, and mediates the ubiquitination and degradation of the target protein. The
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primary structure of Keap1 contains 624 amino acids, including five domains: DGR, NTR,
BTB/POZ, IVR, and CTR [92]. Among them, the binding site of Keap1 and Neh2 is located
in the DGR region of the C-terminus, which is a repetitive fragment with six double-chain
glycines. It is an Nrf2 inhibitory polypeptide and plays a role in inhibiting the translocation
of Nrf2 into the nucleus as a negative regulatory protein. BTB/POZ is involved in the
dimerization process of Keap1 protein and can enhance the binding force of Nrf2-Keap1.
The core site of the BTB/POZ region is Ser-104, and its mutation will affect the dimerization
of Keap1 and, thus, interfere with the ability of Keap1 to bind Nrf2 [93]. IVR contains
25 cysteine residues and is a region that regulates Keap1 activity. It can trigger intracellular
redox reaction and contribute to the maintenance of intracellular redox balance [94].

Under physiological condition, Nrf2 and Keap1 exist in the cytoplasm, and the inactive
Nrf2 is ubiquitinated and then degraded. When oxidative stress occurs in the body, Nrf2
and Keap1 are dissociated and activated, transferred to the nucleus, and combined with
the corresponding sites of the ARE in the nucleus, thereby activating the transcription of
antioxidant enzymes and detoxification enzymes downstream of the pathway (Figure 2),
and working with related factors to improve the antioxidant capacity of cells [95]. Keap1
contains an NES in the IVR domain. Oxidative stress can inhibit NES activity [96]. DJ-1
promotes Nrf2 transport to the nucleus by inhibiting Nrf2 ubiquitination and preventing its
binding to Keap1 [97]. Nrf2 mediates the transcriptional activation of antioxidant enzyme
genes such as HO-1, NQO1, and those belonging to the GST family [98]. Studies have
shown that the Keap1-Nrf2 signaling pathway is one of the main defense mechanisms
against oxidative stress through the regulation of cell protective gene expression [7]. The
following research shows that some Nrf2 activators will not affect the binding of Keap1 and
Nrf2 [37]. In parallel with the experimental approaches focusing on the oxidative stress-
induced regulation of Nrf2, a cDNA expression screen for activators of Nrf2-dependent
gene expression identified the autophagy adaptor protein p62 as a novel regulator of ARE
gene expression [99]. P62 plays a role in many cellular functions, and p62 can activate Nrf2.
The phosphorylation of p62 can increase the binding affinity of Keap1 [100]. Recent study
has shown that p62 can not only competitively bind to Keap1, but also directly promote
the degradation of Keap1 through selective autophagy [101].

The Keap1/Nrf2 signaling pathway is the most important antioxidant defense pathway
found at present, which can resist cellular oxidative stress injury and play an important role
in neurological diseases [102]. Trilobatin (TLB) is a naturally occurring SIRT3 agonist, and
TLB can regulate neuroinflammation and oxidative reaction by regulating the TLR4/nuclear
factor-kappa B and Nrf2/Keap1 signal pathway, reducing neuroinflammation and oxidative
damage induced by CIRI, and playing a neuroprotective role [103]. In a cerebral ischemia
model, the researchers observed the downregulation of MicroRNA-139-5p (miR-139-5p) and
the pyroptosis induced by the activation of NLRP3. In addition, it was found that Ginsenoside
Rd (Rd) played a protective role by regulating the ROS/TXNIP/NLRP3 inflammasome
axis. These findings indicate that Rd can protect against ischemic stroke by regulating
the FoxO1/Keap1/Nrf2 pathway [104]. Polyphenol-rich fraction (PRF) has an obvious
protective effect on cerebral ischemia injury, which is manifested in PRF’s ability to improve
the neurological deficit after transient middle cerebral artery occlusion (tMCAO) and to
reduce the infarction rate and improve the cell morphology of the hippocampal CA1 area.
PRF regulated oxidative stress by regulating the Keap1/Nrf2/HO-1 pathway and exhibited
a good protective effect against CIRI [105]. To summarize, Keap1/Nrf2 signaling pathway is
an effective mechanism to regulate brain injury.

4.2. Phosphatidylinositol-4,5-Bisphosphate 3-Kinase (PI3K)/Protein Kinase B (Akt)-Nrf2 Signaling
Pathway

The PI3Ks are a family of lipid kinases. The PI3K/Akt pathway is associated with
proliferation, cancer, and longevity. Akt is a serine/threonine kinase, which serves an
important role in apoptosis, cell proliferation, transcription, and cell migration. There are
three Akt subtypes: PKBα (Akt1), PKBβ (Akt2), and PKBγ (Akt3) [106]. In general, PI3K is
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mainly activated directly and indirectly through the focal adhesion kinase (FAK) pathway.
Akt is the downstream signal molecule of PI3K [107].
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Figure 2. Keap1-Nrf2-ARE signaling pathway. Under normal physiological conditions, Keap1
binds to Nrf2 and makes it inactive. When oxidative stress occurs in the body, Nrf2 and Keap1 are
dissociated and activated, transferred to the nucleus, and combined with the ARE in the nucleus. Fur-
thermore, they can promote the activation of various target genes (GCLC, NQO-1, SOD-1, HO-1, CAT,
GST, etc.) and inhibit oxidative stress in feedback. Keap1, cytoplasmic kelch-like epichlorohydrin-
associated protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; sMAF, small musculoaponeu-
rotic fibrosarcoma; ARE, antioxidant response element; cul3, cullin-3; GCLC, glutamate–cysteine
ligase catalytic; NQO1, NADPH quinone oxidoreductase enzyme; SOD-1, superoxide dismutase-1;
HO-1, heme oxygenase-1; CAT, catalase; GST, glutathione S-transferase.

Studies have shown that the PI3K/Akt pathway plays a key role in ischemic damage
of other organs. Studies have shown that hyperbaric oxygen preconditioning protects
myocardial ischemia-reperfusion injury, and its effect is related to the regulating of the
PI3K/Akt/Nrf2 pathway [108]. PI3K/Akt signaling pathway is involved in Nrf2 transloca-
tion, and upregulation of PI3K and Akt can activate Nrf2 [109,110]. Studies on ischemic
stroke have found that the PI3K/Akt signaling pathway can promote cell survival and
inhibit cell apoptosis, and play an important role in neuroprotection during cerebral
ischemia-reperfusion [111]. Compared with a model group, the cognitive impairment and
neurological deficits of a Rehmannioside A group were significantly improved, and the pro-
tective role was related to the inhibition of ferroptosis and activation of the PI3K/AKT/Nrf2
pathway [112]. Another study showed that diterpene ginkgolides meglumine injection
(DGMI) could improve CIRI by activating Nrf2 mediated by PI3K/Akt [113]. A study
showed that 6′-O-galloylpaeoniflorin (GPF) could improve the neurological deficit of CIRI
rats. Further research shows that this process can be inhibited by PI3K inhibitor Ly294002.
In conclusion, GPF possesses neuroprotective effects against oxidative stress after CIRI by
activation of the PI3K/Akt/Nrf2 pathway [114]. A study showed that hydrogen sulfide
(H2S) preconditioning could protect mice against CIRI by regulating the PI3K/Akt/Nrf2
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pathway [115]. The role of the PI3K/Akt-Nrf2 signaling pathway in cerebral ischemia
stroke is shown in Figure 3.
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Figure 3. PI3K/Akt-Nrf2 signaling pathway. Under oxidative stress conditions, the phosphorylation
expression of PI3K increases. Akt is a downstream target of PI3K. Akt promotes the dissociation of
Nrf2 and Keap1 and transfers them to the nucleus. Nrf2 translocates into the nucleus, where in it
heterodimerizes with small Maf proteins (sMaf) and binds to an enhancer sequence termed ARE.
Furthermore, Nrf2 can promote the activation of various target molecules (HO-1, CAT, SOD-2, etc.)
and inhibit oxidative stress in feedback. AKT can also promote the expression of C-Jun and the
combination of Nrf2 with sMaf and ARE. Keap1, cytoplasmic kelch-like epichlorohydrin-associated
protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; sMAF, small musculoaponeurotic fi-
brosarcoma; ARE, antioxidant response element; PI3K, phosphatidylinositol 3-kinase; PIP2, Lipid
phosphatidylinositol 4,5-bisphophate; PIP3, Phosphatidylinositol 3,4,5-triphosphate; cul3, cullin-3;
HO-1, heme oxygenase-1; SOD-2, superoxide dismutase-2; CAT, catalase.

4.3. MAPK/Nrf2 Signaling Pathway

Mitogen-activated protein kinase (MAPK) can transmit extracellular signals from cell
surface to nucleus. It is widely involved in a variety of signal transmission processes in
the cell and plays a role in the activation and expression regulation of the Nrf2/HO-1
pathway [116]. MAPKs respond to a variety of stimuli, including a variety of endogenous
and exogenous stress signals. Thus, they are traditionally classified in mitogen and stress
activated MAPKs, with classic representatives being extracellular signal-regulated kinase
(ERK) as mitogen responsive and C-Jun N-terminal kinase (JNK) and p38 as stress respon-
sive MAPKs (Figure 4). p phosphorylates Nrf2 to separate it from Keap1 in the cytoplasm,
thereby promoting Nrf2 activation [117]. p38-specific inhibitors prevent degradation of
Keap1 and nuclear translocation of Nrf2 and subsequent expression of HO-1 by inhibiting
phosphorylation of p38 [118].
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Figure 4. Mitogen-activated protein kinase (MAPK) pathway. It consists of three pathways which
involve extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and
p38 MAPK signaling pathways. Phosphorylated MEK1 and MEK2 promote the expression of ERK1
and ERK2, and then promote the dissociation of Nrf2 and Keap1. Phosphorylated MKK4 promotes
the expression of JNK, and then promotes the dissociation of Nrf2 and Keap1. Phosphorylated MKK3
and MKK6 promote the expression of p38 MAPK, and then promote the dissociation of Nrf2 and
Keap1. Nrf2 translocates into the nucleus, wherein it heterodimerizes with small Maf proteins (sMaf)
and binds to an enhancer sequence termed ARE. This, in turn, promotes the expression of HO-1
and Oxygenase-1, and inhibits oxidative stress in feedback. MEK, mitogen-activated protein kinase;
MKK4, MAPK kinase 4; MKK3, MAPK kinase 3; MKK6, MAPK kinase 6; ERK1/2, extracellular
signal-regulated kinase 1 and 2; JNK, c-Jun N-terminal kinase; ER stress, endoplasmic reticulum stress;
Keap1, cytoplasmic kelch-like epichlorohydrin-associated protein 1; Nrf2, nuclear factor erythroid
2-related factor 2; sMAF, small musculoaponeurotic fibrosarcoma; ARE, antioxidant response element;
cul3, cullin-3; HO-1, heme oxygenase-1.

Phosphorylated ERK is the activated form of ERK. Studies have shown that downregu-
lating the expression levels of phosphorylated ERK and Nrf2 can prevent diseases related to
oxidative stress and inflammatory response [119]. ERK 1/2 inhibitor can significantly inhibit
quercetin-induced expression of Nrf2 and HO-1, indicating that ERK 1/2 activation is neces-
sary for Nrf2 stabilization and HO-1 transcription [120]. The JNK family is encoded by three
genes: JNK1, JNK2, and JNK3 [121]. Under the stimulation of oxidative stress or other injury
effects, the body produces cytokines such as IL, which can activate MAPK molecules [122],
promote the transfer of Nrf2 [123], and thus upregulate the expression of HO-1 [124]. Carbon
monoxide (CO), the product of HO-1 degradation of heme, may regulate many MAPKs [125].
Through this series of reactions, the balance of oxidation and antioxidation, proinflammatory,
and anti-inflammatory reactions is finally achieved in the body.

Studies have shown that some Chinese herbs or compounds play a protective role
in ischemic lesions by regulating the MAPK/Nrf2 signaling pathway. Shengmai formula
(SMF) is a traditional Chinese medicine with antioxidant properties. Pretreatment of a
myocardial ischemia model with SMF significantly relieved heart injury, which was related



Antioxidants 2022, 11, 2377 12 of 29

to the regulation of the PI3K/AKT/p38 MAPK/Nrf2 signal pathway [126]. Studies have
shown that during ischemic stroke, p38 MAPK is transferred from cytoplasm to nucleus,
thus promoting apoptosis [127]. Another study showed that artesunate has a protective
effect on cerebral ischemia injury, which may be regulated by activating the Nrf2-dependent
p38 MAPK signaling pathway. Study showed that artesunate could inhibit the occurrence
of CIRI by inhibiting oxidative and inflammatory processes, and the protective effect of
artesunate is related to the activation of the p38 MAPK pathway [128]. The study showed
that in the MCAO model, lupeol activated Nrf2, inhibited caspase-3 activity, inhibited
phosphorylation of p38 MAPK, and played a protective role against cerebral ischemia [129].

4.4. Nrf2/Nuclear Transcription Factor-Kappa B (NF-κB) Signaling Pathway

NF-κB is widely involved in cell proliferation and differentiation [130]. It is a very
classical signaling pathway in vivo and plays an important role in the processes of inflam-
mation [131,132], cell proliferation [130], and oxidative stress [133]. The NF-κB family is
mainly composed of five members: p65 (Rel A), Rel B, C-Rel, p52/P100, and p50/P105.
Under normal conditions, the NF-κB family is usually associated with inhibitor κB(IκB)
in the form of homo- or heterodimer binding. Members of the family then form stable
NF-κB/IκB complex and exist in the cytoplasm in an inactive form. The main role of IκB
protein is to shield the nuclear localization site of NF-κB dimer, and prevent it from entering
the nucleus. On the other hand, the IκB in the nucleus can also dissociate NF-κB from the
DNA binding site, bringing it back to the cytoplasm [134].

The transcription factor NF-κB is a key regulator involved in inflammation [132].
NF-κB participates in the pathophysiological process of ischemic stroke [135]. Protein
arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme. In cerebral
ischaemia/reperfusion (I/R) injury, PRMT5 activates the NF-κB/NLRP3 axis to play a
pro-inflammatory and pro-pyroptotic role. The administration of the PRMT5 inhibitor
LLY-283 alleviated the neurological deficit [136]. Fingolimod (FTY720) FTY720 has protec-
tive effect on rats with ischemic stroke injury, which is related to the inhibition of the p38
MAPK/NF-κB signal pathway [137]. The study showed that Luteoloside reduced neurolog-
ical deficit and brain edema in MCAO rats. Its protective effect is related to the inhibition
of the PPARγ/Nrf2/NF-κB pathway [138]. In the model of CIRI, Eriocitrin attenuated ox-
idative stress and inflammatory response in CIRI rats by regulating the Nrf2/HO-1/NF-κB
pathway [139]. Another study showed that the protective effect of Dl-3-n-butylphthalide
(NBP) on neuroinflammation in mice with CIRI was related to Nrf2. Nrf2 regulates the
TLR4/MyD88/NF-κB pathway to participate in this neuroprotective effect [140].

Nrf2 can negatively regulate the NF-κB signaling pathway (Figure 5). The expression
of toll-like receptor 4 (TLR-4) and NF-κB in Nrf2 knockout mice was higher than that of wild-
type mice treated with tMCAO, and there were more severe neurological defects, infarct
size, and inflammatory damage. Deletion of Nrf2 may lead to enhanced NF-κB activity and
thus promote cytokine production, while NF-κB can also regulate the expression of Nrf2
in turn, and they crosstalk with each other. Keap1 plays a key role in the two signaling
pathways [141].

4.5. Nrf2/HO-1 Signaling Pathway

HO-1 is the rate limiting enzyme in the process of heme catabolism. It can degrade
heme into CO, biliverdin, and iron ion (Fe2+) (Figure 6). These enzymatic products generally
have anti-inflammatory and antioxidant effects [142], which are important mediators for
Nrf2 to exert anti-inflammatory and antioxidant effects [143]. The Nrf2/HO-1 signaling
pathway is an important mechanism for the body to defend against oxidative stress. Nrf2
can help maintain the physiological function of mitochondria, cellular redox reaction,
and the normal function of proteins [144]. The expression of HO-1 gene is regulated by
Nrf2. When Nrf2 is activated, it can promote the expression of HO-1. The upregulation of
HO-1 expression can regulate these enzymes, such as SOD, GSH-Px, and CAT. Antioxidant
enzymes can decompose free radicals in the body into water and molecular oxygen, reduce
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oxidative stress damage, and reduce the production of oxidation products, thus playing an
anti-inflammatory and antioxidant role [143].
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Figure 5. NF-κB is usually associated with IκB and forms stable NF-κB/IκB complex. Inflammatory
reaction promotes the dissociation of NF-κB/IκB complex and separates active NF-κB. NF-κB can
promote the expression of NLRP3, and then promote the inflammatory response. NF-κB can also
promote the release of inflammatory factors (TNF-α, IL-1, IL-6, and IL-1β). Nrf2 can negatively
regulate the NF-κB signaling pathway. Keap1, cytoplasmic kelch-like epichlorohydrin-associated
protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; sMAF, small musculoaponeurotic fibrosar-
coma; ARE, antioxidant response element; cul3, cullin-3; NLRP3, nod-like receptor family pyrin
domain-containing 3; HO-1, heme oxygenase-1; NQO1, quinine oxidoreductase 1; SOD-1, superoxide
dismutase-1; CAT, catalase; NF-κB, Nuclear factor-kappa B; IκB, inhibitor κB; IL-1β, interleukin-1 β;
TNFα, tumour necrosis factor-alpha.

In recent years, more and more studies demonstrate that the Nrf2/HO-1 pathway
can enhance the tolerance of brain tissue to ischemic oxidative damage [145,146]. As a
target gene of Nrf2, HO-1 has a protective effect on brain injury. Studies have shown that
pelargonidin can reduce cerebral ischemic volume, and improve memory and learning
ability in MCAO rats. And the protective effect of pelargonidin is related to the activation
of Nrf2/HO-1 signaling pathway [147]. Studies have shown that Rutaecarpine (Rut)
can inhibit apoptosis, inflammation and oxidative stress, and then reduce CI/R-induced
neuronal damage. And the protective effect is achieved by activating the expression of
Nrf2/HO-1 pathway [77]. The activation of Nrf2/HO-1 signaling pathway can inhibit
the expression of reactive oxygen species and pro-inflammatory factors, and significantly
reduce the oxidative damage of ischemic brain tissue [148,149]. Wang. et al. demonstrated
that when HO-1 decomposes heme, the produced CO can treat CIRI and permanent
ischemic stroke stroke [150]. Geraniin is a kind of polyphenol isolated from Phyllanthus
amarus. A study has shown that Geraniin can activate Nrf2/HO-1 signaling pathway,
inhibit oxidative stress and neuronal apoptosis, and thus play a protective role in cerebral
ischemia injury [88]. β-Caryophyllene (BCP) is a natural bicyclic sesquiterpene. Study has
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proved that BCP can improve the neurological function score, infarct volume after CIRI.
The mechanism is related to the activation of Nrf2/HO-1 axis [151].
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are feedback inhibited. Keap1, cytoplasmic kelch-like epichlorohydrin-associated protein 1; Nrf2,
nuclear factor erythroid 2-related factor 2; sMAF, small musculoaponeurotic fibrosarcoma; ARE,
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5. The Role and Mechanism of Nrf2 in Cerebral Ischemic Stroke

Many studies have shown that Nrf2 is significantly overexpressed in the acute phase
of stroke, and the content of Nrf2 is higher in the peri-infarct area than in the central
area [152]. Compared with wild-type mice, after transient middle cerebral artery occlusion
was established in Nrf2 knockout mice, the basic and induced activities of antioxidant
enzymes and detoxification enzymes were decreased, the infarct area was larger, and the
neurological function score was lower [153]. The mechanism of action of Nrf2 in cerebral
ischemic stroke (Figure 7) may include the following points:

Nrf2, nuclear factor erythroid 2-related factor 2; sMAF, small musculoaponeurotic
fibrosarcoma; ARE, antioxidant response element; ROS, reactive oxygen species; ER stress,
endoplasmic reticulum stress; BBB, blood–brain barrier.

5.1. Nrf2 Regulates Oxidative Stress and Antioxidant Effect

Previous studies have confirmed that oxidative stress is a key mechanism for brain
tissue injury during cerebral ischemic stroke [58,59]. Oxidative stress is induced by elevated
production of ROS and RNS, which cause damage to all components of the cell, including
proteins, lipids, and DNA [154]. The Nrf2 pathway is one of the important mechanisms
involved in antioxidant stress. When oxidative stress occurs in cells, the Nrf2 signaling
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pathway is activated first, and then a large number of antioxidants and related enzymes are
induced to reduce ROS production and resist cell damage caused by oxidative stress [155].
It has been confirmed that Nrf2 expression increases after cerebral ischemia and reperfusion
(I/R), which induces the production of many endogenous antioxidant enzymes, such as
NQO1, HO-1, SOD, GST, GSH-Px, etc., thus reducing or eliminating oxygen free radicals
and improving the antioxidant capacity of cells and tissues [156].
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genes, which can inhibit ER stress, oxidative stress, inflammation, iron death, BBB, mitochondrial
homeostasis, and brain protection.

Thioredoxin-1 (Trx1) is a redox regulatory protein that widely exists in organisms.
The expression of Trx1 decreased during ischemic stroke. Adiponectin peptide (APNp)
increased the expression of Trx1 and suppressed the activation of the NLRP3 inflamma-
some. Study has shown that APNp can reduce the volume of cerebral infarction, improve
neurological function, and have antioxidant and antiapoptosis effects in a CIRI model [157].
Previous studies have shown that in the CIRI model, the transcription of Nrf2 and its
downstream gene NQO1 in the treatment group increased, the activities of SOD and cat
increased, and CIRI decreased. However, these protective effects were inhibited after
knockdown of Nrf2. It indicates that the activation of Nrf2 can upregulate the activities of
SOD, cat, and NQO1, thereby inhibiting oxidative stress and alleviating CIRI [75].

A study showed that after CIRI, the activities of SOD, GSH, and GSH-Px were signifi-
cantly decreased and the level of MDA was significantly increased. However, phloretin
pretreatment significantly inhibited these oxidative stress processes, reduced infarct volume,
and improved neurological score. This indicates that phloretin exhibits neuroprotective
effects in CIRI, and its mechanism is related to the inhibition of oxidative stress and the
activation of the Nrf2 defense pathway [158]. Carvacryl acetate (CA) has an antioxidant
effect. Studies have shown that CA can reduce CIRI in MCAO rats. The mechanism may
be to increase the expression of Nrf2 and decrease the expression of ROS and MDA [80].
Biochanin A is a natural phytoestrogen. Biochanin A can enhance the activities of SOD
and GSH-Px and inhibit the production of MDA. Biochanin A promotes nuclear transloca-
tion of Nrf2, promotes the expression of HO-1, and inhibits the activation of NF-kappaB.
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Pretreatment with Biochanin A can significantly alleviate brain injury and reduce infarct
size and cerebral edema. Biochanin A protects the brain against ischemic injury through
antioxidant and anti-inflammatory effects [78]. Geraniin may play a protective role against
brain ischemia-reperfusion injury by regulating the Nrf2/HO-1 pathway and inhibiting
oxidative stress and neuronal apoptosis [88]. Studies have shown that in cell models,
diosmetin increased cell viability, decreased lactate dehydrogenase (LDH) release and
ROS levels, and inhibited oxidative stress. In addition, diosmetin increased the protein
expression of Nrf2, NQO1, and HO-1. This indicates that diosmetin can inhibit oxidative
stress and alleviate CIRI through the SIRT1/Nrf2 signaling pathway [159].

5.2. Nrf2 Regulates Inflammation and Anti-Inflammatory Effects

Inflammation is a host defense mechanism triggered by injury and plays an important
role in ischemic stroke [160]. In addition, the inflammatory process is mainly aseptic in-
flammatory reaction. Thus, endogenous damage-associated molecular patterns (DAMPs)
are the exclusive trigger activating the innate immune system in ischemia [161]. The local
excessive inflammatory reaction is accompanied by the process of cerebral ischemia, and
it is also one of the main causes of brain tissue damage caused by cerebral ischemia [162].
A variety of inflammatory cells and inflammatory factors are involved in it. The main
inflammatory cells involved are leukocytes, astrocytes, and microglia [161]. After cere-
bral ischemia, the blood–brain barrier (BBB) is destroyed, resulting in a large number of
neutrophils infiltrating and attacking the brain [163,164]. In the acute phase of cerebral
ischemia, inflammatory cells are infiltrated to produce different kinds of inflammatory fac-
tors, and participate in the main inflammatory mediators including cytokines, chemokines,
and adhesion molecules. Cerebral ischemic injury and blood flow reperfusion can cause
inflammatory cascades, including oxidative stress, excitotoxicity, and inflammatory cell
infiltration, as well as the production of cytokines and chemokines, which further lead to
nerve tissue injury and apoptosis [165]. The regulation of NF-κB activity by Nrf2 is mani-
fested in inhibiting inflammatory responses. Studies have shown that Nrf2 can regulate
the TLR4/MyD88/NF-κB pathway in CIRI models and play a neuroprotective role [140].
Another target gene of Nrf2, p62, can regulate antioxidant and inflammatory activities. P62,
as a protein scaffold, enhances the activity of Nrf2 by mediating the autophagic degradation
of Keap1. P62 has oligomerization and can promote the ubiquitination and activation of
TNF receptor-related factor 6 (TRAF6), enhance nerve growth factor NGF, and mediate the
NF-κB signaling pathway [166].

The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex located
in the cells. Its main function is to activate the production of caspase-1, IL-1, and IL-18,
thus promoting inflammation and apoptosis, and causing neuronal damage [167]. The
NLRP3 inflammasome plays an important role in ischemia-induced inflammatory injury,
and thioredoxin interacting protein (TXNIP) is closely related to the activation of NLRP3.
Various factors such as ROS, toll-like receptor (TLR) agonists, and pro-inflammatory cy-
tokines can promote NLRP3 expression [168]. It has been shown that knockdown of the
NADPH oxidase subunit or free radical scavenger can inhibit ROS production and thus
reduce NLRP3-induced IL-1 β, which reveals that ROS plays a key role in inflammasome
activation [169]. Bruton’s tyrosine kinase (BTK) is a class of tyrosine kinases involved in
the activation of the NLRP3 inflammatory complex in brain ischemia and reperfusion,
resulting in the expression of mature caspase-1, as well as increased levels of IL-1. An
inhibitor of BTK, ibrutinib, was found to inhibit the activation of the NLRP3 inflammatory
complex and reduce IL-1 expression in the brain I/R model [170]. The study showed that
Pleckstrin homology-like domain, family A, member 1 (PHLDA1) effectively alleviates
CIRI by inhibiting the activation of NLRP3 [171]. Study has shown that Nrf2 downregulates
NLRP3 inflammasome activity by acting on thioredoxin-1 (Trx1)/thioredoxin interacting
protein (TXNIP) complex, thereby inhibiting inflammatory response and playing a pro-
tective role in CIRI [172]. Increasing evidence suggests an interaction between Nrf2 and
the inflammasome. Administration of the Nrf2 activator tert-butyl hydroquinol (t BHQ)
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significantly reduced the expression of TXNIP and NLRP3 inflammasome, as well as the
downstream factors caspase-1, IL-1 β,and IL-18 after t MCAO [172].

Evidence suggests that ischemic stroke triggers a range of cellular responses, including
the accumulation of inflammatory cells in systemic circulation. The progress is linked to
stroke-related secondary brain injury and can lead to further aggravation of infarction.
It is currently known that the expression of Nrf2/HO-1 inhibits cellular inflammation
and thus plays a neuroprotective role in the course of stroke [173]. Local inflammatory
processes in the ischemic brain tissue can cause damage to the brain tissue. In addition,
recent studies showed that peripheral inflammation also plays an important role in stroke
injury. For instance, in rats suffering from MCAO, the spleen size was decreased after a
stroke, mainly due to the upregulation of catecholamines causing the release of monocytes,
and neutrophils [174]. Although most of the damage is caused by inflammation itself, the
ensuing immunosuppression also poses non-negligible challenges. Immunosuppression is
a response to inflammation after stroke, and it can trigger a variety of infections, such as
pneumonia and urinary tract infections [175]. The role of Nrf2 in peripheral inflammation
after stroke is still an exploratory topic, and further research is needed to understand its
interaction and mechanism in the peripheral inflammatory organs of the body.

5.3. Nrf2 and Regulation of Mitochondrial Function

Mitochondria are the sites of oxidative metabolism in eukaryotes, and the sites where
sugars, fats, and amino acids are finally oxidized to release energy. Study has shown
that mitochondrial damage is one of the mechanisms of cell death [176]. Studies have
shown that acute ischemia and hypoxia can cause mitochondrial dysfunction [177]. The
physiological function of mitochondria is important for adult neurogenesis, which helps to
repair neuronal cells damaged by cerebral ischemia. Neurogenesis requires sufficient ATP
to provide energy. As the main source of cellular ATP, healthy mitochondrial function is an
important prerequisite for effective neurogenesis [178]. The balance of mitochondrial fusion
and division plays a crucial role in maintaining the normal function of neurons. CIRI can
disrupt the balance of mitochondrial fusion and division by regulating the expression and
modification of fusion- and division-related proteins, thereby disrupting the homeostasis
of the intracellular environment and leading to neuronal death [179]. Many studies have
shown that mitochondrial dysfunction is involved in the process of ischemic injury, so we
can speculate that ischemic injury can be alleviated by reducing mitochondrial dysfunction.
In the process of ischemic stroke, the lack of nutrition and oxygen promotes cell death [180].
After cell death, it promoted the production of ROS, which in turn aggravates mitochondrial
dysfunction in feedback [181]. At the same time, mitochondrial dysfunction can lead to
severe energy deficiency, increase ROS production in neurons, and ultimately lead to cell
death. Most intracellular ROS are produced in mitochondria, mainly by complexes I and III
of the mitochondrial electron transport chain. Mitochondria stress is accompanied by the
accumulation of unfolded proteins, oxidative phosphorylation, fatty acid oxidation, and
other pathological processes [182].

Activation of Nrf2 leads to mitochondrial biogenesis and the enhancement of mito-
chondrial antioxidant reaction [183,184]. Although the activation of Nrf2 is usually related
to the induction of mitochondrial-localized antioxidant enzymes, its regulatory mechanism
is not fully understood. Nrf2 is able to directly bind nuclear respiratory factor 1 (Nrf1) and
the promoter region of PTEN-induced putative kinase 1 (PINK1) [185], which are mainly re-
sponsible for mitochondrial biogenesis and quality control, respectively. Some studies have
shown that ROS induced the activation of Nrf2 in some way [186]. In one study, researchers
found a novel biscoumarin compound, called COM3, which has substantial antioxidant
effects in neurons. Study showed that COM 3 can improve neuronal mitochondrial en-
ergy metabolism after experiencing oxidative stress caused by oxygen-glucose deprivation
(OGD) or MCAO. The mechanism may be that COM 3 activates nuclear transcription of
Nrf2 by interfering with Keap1, thereby balancing endogenous redox activity and restoring
mitochondrial function [187]. Notoginsenoside R1 (NGR1) is a novel phytoestrogen that is
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isolated from Panax notoginseng. The researchers found that NGR1 showed a protective
effect on cerebral I/R injury in vivo and in vitro. The neuroprotective mechanism of NGR1
may be to inhibit mitochondrial dysfunction by regulating the ER-dependent Akt/Nrf2
pathway. In addition, Nrf2 activation can increase the expression of antiapoptotic pro-
tein Bcl-2 and inhibit the translocation of Bcl-2-related x (Bax) protein to mitochondria,
thus alleviating the release of mitochondrial cytochrome c and the activation of down-
stream apoptotic proteases [188]. In conclusion, Nrf2 is a potent mediator to inhibiting
mitochondrial dysfunction of cerebral ischemia through multiple mechanisms.

5.4. Nrf2 and Protection of Blood–Brain Barrier Function

The endothelial blood–brain barrier (BBB) represents a barrier between the circulation
and the CNS compartment [189]. The normal structure and function of the BBB is the key to
maintain the stability of the central nervous system. BBB injury occurs soon after cerebral
ischemia [190]. Cerebral ischemia-reperfusion can damage the integrity of the blood–brain
barrier and increase the permeability, further aggravating the damage of ischemic brain
tissue [191]. The destruction of the BBB after cerebral ischemia leads to the infiltration
of inflammatory factors and cells, which in turn leads to brain edema [192]. Ischemic
preconditioning (IPC) can protect the blood–brain barrier, and the mechanisms underlying
IPC-mediated protection of the BBB involve VEGF, ERK, or inflammatory pathways [193].
Tight junctions (TJs) and adherens junctions (AJs) play a critical role in maintaining BBB
integrity. In a study, IPC directly upregulated the TJ protein claudin 5 and the AJ protein
CDH5 [194]. The content of ROS increased after cerebral ischemic stroke; related research
has shown that ROS production increased BBB permeability [195]. MMPs could destroy
tight junctions of the BBB [196].

In in vivo experiments, the Nrf2 activator dimethyl fumarate (DMF) can prevent the
destruction of tight junctions between endothelium and reduce the activity of matrix metal-
loproteinase in brain tissue. In in vitro experiments, DMF helps to maintain endothelial
tight junctions, inhibit the expression of inflammatory cytokines, and weaken leukocyte
migration. However, knockdown of Nrf2 expression aggravated the delocalization of
tight junction protein ZO-1 under ischemia and weakened the protective effect of DMF,
indicating the protective role of Nrf2 in BBB integrity [197]. Another study showed that
in response to H/R stress, the expression of Abcc1, Abcc2, and Abcc4 mRNA in the BBB
increased, and the expression of Abcc gene was regulated by the Nrf2 pathway [198].

Sulforaphane treatment before stroke activates the Nrf2 pathway. BBB disruption
and brain damage were reduced by sulforaphane treatment. The authors believe that if
the Nrf2 defense pathway in the brain microvascular system can be activated, it will help
to prevent BBB disruption and neurological dysfunction in ischemic stroke [199]. Other
Nrf2 activators, such as sulforaphane (SFN), have also shown protective effects on the
blood–brain barrier [200]. Nomilin (NOM) is a limonoid compound obtained from the
extracts of citrus fruits. NOM protects against cerebral I/R-induced neurological deficits
and BBB disruption by regulating the Nrf2 pathway [201]. Astragaloside IV (ASIV) is
isolated from Astragalus membranaceus. A study showed that ASIV protected the integrity
of the BBB, and the Nrf2 pathway is involved in this process [202]. The destruction of the
BBB after ischemic stroke permits peripheral inflammatory factors or bacteria to easily
enter brain tissue, leading to brain injury. Therefore, focusing on the protection of the BBB
through Nrf2 should be further studied.

5.5. Nrf2 Regulates Ferroptosis

Ferroptosis is a recently identified nonapoptotic-programmed cell death process. Fer-
roptosis is a form of cell death that depends on iron and oxidative stress [203]. It is character-
ized by increased lipid peroxidation, which leads to cell death by destroying the integrity of
the cell membrane. The pathological process of ferroptosis can be regulated by glutathione
peroxidase 4 (GPX4). Study showed that oxidative stress and iron metabolism are both
closely related to ferroptosis initiation [204]. Further studies showed that ferroptosis can be
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inhibited by iron chelators, iron intake inhibitors, and lipophilic antioxidants [205]. Now,
scholars believe that the main cause of cell death caused by ferroptosis is the inactivation
of the cellular antioxidant system, the decrease of cellular antioxidant capacity, and the
accumulation of intracellular lipid ROS leading to cell death [206].

Studies have shown that ferroptosis plays a key role in cerebral I/R injury. Moreover,
inhibition of ferroptosis can play a neuroprotective role [207]. Furthermore, studies have
shown that ferroptosis was detected in a mouse model of cerebral ischemia. The application
of ferroptosis inhibitors significantly reduced brain injury [208]. Chen et al. [209] analyzed
and identified ferroptosis-related differentially expressed genes (DEGs) in ischemic stroke
by bioinformatics. A study showed that acute cerebral ischemia induces neuronal fer-
roptosis. Administration of drug therapy can alleviate cerebral ischemia injury, and its
mechanism includes inhibition of ferroptosis through the transferrin receptor 1/divalent
metal transporter 1(TFR1/DMT1) and solute carrier family 7 member 11/glutathione
peroxidase 4(SCL7A11/GPX4) pathways [210].

A previous study showed that proper activation of Nrf2 can promote the reduction
of cerebral ischemia injury [211]. Numerous enzymes and proteins involved in lipid
peroxidation are Nrf2 target genes, including those involved in iron metabolism [212], such
as FPN and heme-oxygenase 1 (HMOX-1) [213]. Furthermore, Nrf2 is strongly associated
with the ferroptosis oxidative stress pathway. Studies have shown that ferroptosis is
involved in the process of injury induced by ischemia-reperfusion. The protective effect of
BCP on ischemic brain injury is related to the regulation of ferroptosis, and its mechanism
is related to the activation of the Nrf2/HO-1 pathway [151]. Another study showed that
rehmannioside A can improve cognitive impairment after ischemic stroke, which may be
related to inhibition of neuroptosis and activation of the PI3K/AKT/Nrf2 pathway [112].

6. Drugs or Compounds Affect Cerebral Ischemic Stroke by Regulating Nrf2 Signaling
Pathways

In recent years, more and more people have found that natural compounds ex-
tracted from plants can protect against cerebral ischemia. These compounds have anti-
inflammatory, antioxidation, and antiapoptosis effects [214]. We speculate that it is possible
to screen out drugs for treating or preventing cerebral ischemia injury from these com-
pounds. There have been many studies on the role of Nrf2 in cerebral ischemic stroke.
It has been found that regulating Nrf2 and related signaling pathways or mechanisms
can alleviate cerebral ischemic stroke injury. In some studies (Table 2), cell survival was
improved by targeting Nrf2-related signaling pathways.

Table 2. Several traditional Chinese medicine/compounds affect cerebral ischemic stroke by regulat-
ing Nrf2 signaling pathways.

Medicine Model (s) Related Signaling Pathway Related Mechanism Effect Reference

β-Caryophyllene
(BCP)

MCAO/R and
OGD/R Activate Nrf2/HO-1 pathway Protect against ferroptosis Protective [151]

Diosmetin MCAO/R and
OGD/R

Activate Keap1/Nrf2/ARE
pathway

Attenuate oxidative stress and
inflammation Protective [215]

Dl-3-n-
butylphthalide
(NBP)

Repeated CIRI Nrf2-modulated
TLR4/MyD88/NF-κB pathway

Antioxidant,
antineuroinflammatory Protective [140]

Edaravone
dexborneol Repeated CIRI Activate Nrf2/HO-1 pathway Antioxidant,

antineuroinflammatory Protective [216]
Rhodiola sacra tGCI Activate AMPK/Nrf2 pathway prevent oxidant stress Protective [217]

Geraniin MCAO/R and
OGD/R Activate Nrf2/HO-1 pathway Suppress oxidative stress and

neuronal apoptosis. Protective [88]

Cajaninstilbene
acid (CSA)

MCAO/R and
OGD/R Activate AMPK/Nrf2 pathway Reduce oxidative stress and

mitochondrial disfunction Protective [218]

Thymus
quinquecostatus
Celak

tMCAO Activate Keap1/Nrf2/HO-1
pathway Antioxidant stress Protective [105]

Isorhapontigenin
(ISO)

MCAO/R and
OGD/R

Activate PKCε/Nrf2/HO-1
pathway Protect against oxidative damage Protective [219]

Palmatine (PAL) tMCAO Activate AMPK/Nrf2 pathway Reduce oxidative stress and
inflammatory response Protective [220]
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Table 2. Cont.

Medicine Model (s) Related Signaling Pathway Related Mechanism Effect Reference

Pelargonidin MCAO/R Activate Nrf2/HO-1 pathway Reduce oxidative stress and
inflammatory response Protective [147]

Eriocitrin MCAO/R
Activate
Nrf2/HO-1/NQO1/NF-κB
pathway

Attenuate oxidative injury and
inflammatory response Protective [139]

Lupeol MCAO/R Involve Nrf2 and P38 MAPK
modulation

Suppress oxidative stress and
inflammatory response Protective [129]

A biscoumarin
compound COM 3

MCAO/R and
OGD/R

Modulate Nrf2/Keap1/ARE
pathway Antioxidant stress Protective [187]

Chlorogenic acid
(CGA) CI/R model Activate Nrf2/HO-1 pathway Regulate oxidative stress Protective [221]

Lyciumamide A
(LyA)

MCAO/R and
OGD/R

Activate PKCε/Nrf2/HO-1
pathway

Ameliorate oxidative damage and
neuronal apoptosis Protective [222]

Nomilin MCAO/R and
OGD/R Activate Nrf2/NQO1 pathway Mitigate oxidative stress Protective [201]

Rutaecarpine (Rut) MCAO/R Activate Nrf2/HO-1 pathway Inhibit apoptosis, inflammation,
and oxidative stress Protective [77]

Swertiamarin
(Swe)

MCAO/R and
OGD/R Activate Nrf2/HO-1 pathway Suppress oxidative stress Protective [223]

Ginkgolides and
bilobalide

MCAO/R and
OGD/R Mediate Akt/Nrf2 pathway Inhibit oxidative stress Protective [109]

Icariside II MCAO/R Activate Nrf2/HO-1 pathway Inhibit oxidative stress Protective [76]
Schizandrin A (Sch
A)

MCAO/R and
OGD/R Regulate AMPK/Nrf2 pathway Suppress inflammation and

oxidative stress Protective [75]

Luteoloside MCAO/R Regulate PPARγ/Nrf2/NF-κB
pathway Inhibit neuroinflammation Protective [138]

Total Flavonoids
from A. esculentus TCI-RI model Activate Nrf2-ARE pathway Inhibit oxidative stress Protective [224]
Diterpene
ginkgolides

MCAO/R and
OGD/R

Activate PI3K/Akt/Nrf2
pathway Inhibit oxidative stress Protective [113]

Artesunate CI/RI model Activate MAPK/Nrf2 pathway Suppress oxidative stress and
inflammatory process Protective [128]

6’-O-
galloylpaeoniflorin
(GPF)

MCAO/R and
OGD/R

Activate PI3K/Akt/Nrf2
pathway

Prevent oxidative stress,
inflammation, and apoptosis Protective [114]

Liraglutide MCAO/R Activate Nrf2/HO-1 pathway Antioxidant stress Protective [225]

tGCI: transient global cerebral ischemia; PKC-ε: protein kinase C ε; TCI-RI: transient cerebral ischemia-reperfusion
injury.

7. Concluding Remarks

After cerebral ischemic stroke, the degree of functional damage of nerve cells depends
on the degree of insufficient tissue perfusion. The purpose of cerebral ischemic stroke
treatment is to preserve the neuronal function in ischemic penumbra as much as possible.
Nrf2 plays an important role in maintaining the redox homeostasis of cells. In this review,
we introduced the signaling pathway for regulating Nrf2 in the process of cerebral ischemic
stroke. In addition, the moderate activation of Nrf2 is beneficial to reduce brain tissue
damage after cerebral ischemia, involving mechanisms such as antioxidative stress, anti-
inflammation, regulation of mitochondrial function, protection of the blood–brain barrier,
regulation of iron death, etc., which can reduce neurological deficit. To summarize, we
maintain that Nrf2 is a valuable therapeutic target.

In the future, we need to clarify the specific mechanism behind these phenomena
through more in-depth research. For example, does the specific role of Nrf2 in ischemic
stroke protect or exacerbate ischemic stroke? What is the role of Nrf2 in different cell
types? What is the role and regulatory mechanism of Nrf2 in neuronal cells and microglia?
The role and mechanism of Nrf2 in peripheral inflammation or immune organs deserve
further study. Recently, there are many studies on the role of ferroptosis in ischemic stroke.
What is the relationship between Nrf2 and ferroptosis in the process of ischemic stroke
and reperfusion injury? What are the specific regulatory mechanisms? Further researches
are needed. How does ferroptosis lead to cell death after ischemic stroke? Is it involved
in the process of neuronal cell death? Further research is needed. In addition, what is
the relationship between ferroptosis and oxidative stress? None of this is known yet. In
addition, there are many studies on the mechanism of oxidative stress, but few studies on
the interaction between oxidative stress and endoplasmic reticulum stress. We believe that
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the interaction between these processes deserves further study. Solving these problems will
promote the treatment of ischemic stroke. More researches are needed to transform this
therapy from laboratory to clinical.

More and more evidence shows that the activation of Nrf2 by some Chinese herbs
and may be a promising therapeutic method for ischemic stroke. However, the specific
activation pathway of Nrf2 and the specific mechanism of alleviating cerebral ischemia and
its substrates still need to be further studied. In addition, the time window in which these
drugs function requires more careful study. In conclusion, the treatment targeting Nrf2 in
cerebral ischemic stroke is a promising field, and the development of drugs targeting Nrf2
has important clinical significance for the treatment of cerebral ischemic stroke.
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