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ABSTRACT: Estrogens and estrogen-mimicking compounds in the aquatic environment are known
to cause negative impacts to both ecosystems and human health. In this initial proof-of-principle study,
we developed a novel vertically oriented silicon nanowire (vSiNW) array-based biosensor for low-cost,
highly sensitive and selective detection of estrogens. The vSiNW arrays were formed using an
inexpensive and scalable metal-assisted chemical etching (MACE) process. A vSiNW array-based p−n
junction diode (vSiNW-diode) transducer design for the biosensor was used and functionalized via 3-
aminopropyltriethoxysilane (APTES)-based silane chemistry to bond estrogen receptor-alpha (ER-α)
to the surface of the vSiNWs. Following receptor conjugation, the biosensors were exposed to
increasing concentrations of estradiol (E2), resulting in a well-calibrated sensor response (R2 ≥ 0.84,
1−100 ng/mL concentration range). Fluorescence measurements quantified the distribution of
estrogen receptors across the vSiNW array compared to planar Si, indicating an average of 7 times
higher receptor presence on the vSiNW array surface. We tested the biosensor’s target selectivity by
comparing it to another estrogen (estrone [E1]) and an androgen (testosterone), where we measured
a high positive electrical biosensor response after E1 exposure and a minimal response after testosterone. The regeneration capacity
of the biosensor was tested following three successive rinses with phosphate buffer solution (PBS) between hormone exposure.
Traditional horizontally oriented Si NW field effect transistor (hSiNW-FET)-based biosensors report electrical current changes at
the nanoampere (nA) level that require bulky and expensive measurement equipment making them unsuitable for field
measurements, whereas the reported vSiNW-diode biosensor exhibits current changes in the microampere (μA) range,
demonstrating up to 100-fold electrical signal amplification, thus enabling sensor signal measurement using inexpensive electronics.
The highly sensitive and specific vSiNW-diode biosensor developed here will enable the creation of low-cost, portable, field-
deployable biosensors that can detect estrogenic compounds in waterways in real-time.

■ INTRODUCTION
The presence of estrogens and natural and synthetic estrogen-
mimicking compounds in aquatic environments is deleterious
to ecosystems and human health and has become an emerging
water quality concern.1,2 For example, the sex distribution of
fish can be skewed female downstream from wastewater
treatment plant outfalls, and the formation of intersex
individuals (possessing both male and female reproductive
organs) occurs due to the presence of estrogen-mimicking
compounds.2,3 Despite the potential ecological impacts,
estrogens in the aquatic environment are currently evaluated
in a haphazard manner. Individual estrogens can be measured
by standard chemical analyses (e.g., mass spectrometry), if the
compound is known and characterized a priori.4 Nevertheless,
biologically active metabolites or emerging contaminants can
be “masked” during chemical analysis,5 thus underestimating
the impacts to organisms compared to a receptor-binding
perspective. A number of in vitro assays, such as those based on
enzyme-linked immunosorbent assays (ELISA) and the
recombinant yeast estrogen receptor binding assays (YES),6

have been developed as an alternative to chemical analysis to
measure the estrogenic activity of unknown, complex mixtures
relative to 17β-estradiol (E2), which is the most potent natural

estrogen in vivo.7 Unfortunately, in vitro assays are laborious,
expensive, and incapable of providing real-time information
under dynamic environmental conditions. Bioassays involving
live organisms are a gold-standard in ecotoxicology but are
slow and expensive, do not provide real-time responses, can
raise ethical concerns, and may not well represent effects to
other organisms.8 Chromatographic techniques, such as liquid
or gas chromatography−mass spectrometry (LC or GC−MS),9
while being highly sensitive and accurate quantitatively, have
shortcomings, such as the needed analytical instruments being
expensive, a large number of samples and pretreatments and
much organic solvent being required, and trained personnel
being required to operate the complex systems. Notably, none
of these techniques allow for real-time in vivo monitoring of
waterways. Therefore, the current paradigm for assessing
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estrogens in aquatic systems is inadequate to protect water
supplies and human exposure in drinking water. Thus, there is
a critical need to develop new cost-effective technologies and
tools, such as biosensors, that enable rapid, sensitive, and
selective detection of estrogens in water.
Nanomaterials-based biosensors for water quality sensing

have recently become an active area of research.10 Nano-
technology-based biosensors offer advantages over conven-
tional analytical techniques, including miniaturization, high
specificity for real-time analysis in complex mixtures, high
sensitivity, simple operation without extensive sample pretreat-
ment, and low cost. Nanowire (NW)-based materials have a
high surface area to volume ratio, thus improving sensitivity.
The use of silicon (Si) NW field effect transistor (FET)
(SiNW-FET)-based biosensors was first introduced in 200111

and has since been further developed by numerous research
groups.12 In these works, 1−10 horizontally oriented Si NWs
(hSiNWs) are biofunctionalized with receptors13 and electri-
cally probed using the FET device structure, which typically
requires two electrical contacts: source and drain on each end

of the hSiNW. This device design constraint (i.e., electrical
source and drain contacts) results in a complex and expensive
nanofabrication process, thereby limiting the number of NWs
per device.13,14 Due to the small number of hSiNWs in the
hSiNW-FET biosensors, electrical current change as a function
of target-compound concentration is on the order of
nanoamperes (nA);15 such a small electrical change current
response requires expensive and bulky measurement equip-
ment that is not suitable for scalable field deployment.
In this work, we present initial results on a novel vertically

oriented Si NW (vSiNW)-based p−n junction diode device
architecture (vSiNW-diode) biosensor prototype, which can be
developed into a portable sensor system suitable for field
measurements of estrogens in waterways. The goal of this
initial proof-of-principle study is to demonstrate the vSiNW-
diode biosensor’s feasibility in a controlled lab environment.
Our biosensor design features an array consisting of millions of
n-doped vSiNWs, all electrically contacted to each other using
a single metal contact. Each of the vSiNWs in the array is
functionalized with the hormone receptor and acts as an

Figure 1. (a) Schematic of the MACE process that results in vertically oriented arrays of Si NWs on the surface of a Si(001) substrate. (b) Cross-
sectional and top-view (inset) scanning electron microscopy (SEM) images of Si NW arrays fabricated using the MACE process. Scale bars in the
images represent 500 nm.

Figure 2. (a) Schematic (not to scale) of the Si NW biosensor showing the key components of the p−n junction device, including the n+ doped Si
NWs that are around 500 nm long, Ag top metal contact electrically connecting all the NWs, SiNx/SiOx dielectric stack that protects the metal
contact from degrading during biofunctionalization steps, p-type Si substrate that is around 280 μm thick, and Al bottom contact. (B) Optical
image of the top-view of the fabricated NW biosensor. The total sensor area is 11.5 mm by 11.5 mm, and after the SiNx/SiOx protective coating on
the top metal contact, the exposed NW area is 6.2 mm by 6.2 mm. (C) Enlarged detail schematic (not to scale) of the cross-section of the biosensor
showing the various doped regions, metal contacts, and ER-α functionalized NW surface. ER-α will become functionalized not only on the tip of
the vSiNWs but also across the entire length of the vSiNWs. The schematic is simplified for clarity.
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anchor for the target hormone species. This vSiNW-diode
biosensor design results in much higher electrical current
change [on the order of hundreds of microamperes (μA),
which can be measured using inexpensive equipment], making
our biosensor suitable for real-time highly sensitive and specific
field measurements. An additional advantage of the presented
vSiNW-diode biosensor is that possible biofouling that could
occur on in vivo water monitoring sensors will likely be
minimized because NWs can reduce fouling coverage by up to
∼60% mainly due to two geometric effects: reduced effective
settlement area and mechanical cell penetration.16

■ EXPERIMENTAL SECTION
We employ standard complementary metal−oxide−semi-
conductor (CMOS)-compatible microfabrication process
steps, such as high-temperature doping of the front and back
of monocrystalline Si wafers, dry etching for edge isolation,
photolithography and e-beam evaporation for front metal
contact patterning, and sputtering of the dielectric films for
front contact protection, to manufacture our biosensors. For
the Si NW array biofunctionalization, we applied 3-amino-
propyltriethoxysilane (APTES)-based wet-chemistry, demon-
strated by other research groups17 to successfully attach
estrogen receptor-alpha (ER-α) to the surface of the Si NWs.
We then measured fluorescence intensity and J−V response to
quantify the biosensor. Details of the microfabrication,
biofunctionalization, and testing are presented in the
Supporting Information, Sections S.1−S.3. Next, we present
a brief summary of the microfabrication and biofunctionaliza-
tion of our vSiNW-diode sensors.
The vSiNW array in our biosensor is fabricated using metal-

assisted chemical etching (MACE)18,19 (Figure 1a) where a
metal salt (here, silver nitrate [AgNO3]) is reduced by
hydrofluoric acid (HF) into silver (Ag) nanoparticles (NPs)
that then locally catalyze the oxidation of Si into silicon dioxide
(SiOx) in the presence of an oxidant (here, hydrogen peroxide
[H2O2]). The scanning electron microscopy (SEM) images of
the resulting vSiNW array (Figure 1b) confirm that the average
length of the NWs is ∼500 nm. Our recent works18−22
extensively characterize the MACE-generated vSiNWs and, for
example, confirm the reproducibility of the NW lengths from
the same MACE recipe batch to batch19 and the vSiNW-diode
architecture as an effective biosensor transducer.21,22

The nanofabrication process steps for our vSiNW biosensor
are inexpensive and scalable and are detailed in the Supporting
Information, Section S.2. The electrical design of our vSiNW
biosensor employs a p−n junction as its transducing element,
resulting in a vSiNW-diode (Figure 2). A p-type Si wafer is
used as the substrate on which ∼500 nm long vSiNWs are
etched using the MACE process, which are then doped n+
using phosphorus doping, to form an n+ emitter. Based on our
previous reported work20 for which we used the same
ammonium dihydrogen phosphate (ADP)-based proximity
doping process, the junction depth achieved is around 700 nm
based on secondary mass ion spectroscopy (SIMS) analysis.
This junction depth ensures that the vSiNWs are not depleted
of carriers. A patterned top metal contact based on 50 nm thick
titanium (Ti) and 1 μm thick Ag is deposited to electrically
connect to the top vSiNWs array. The 50 nm thick Ti is
deposited to improve the adhesion of the 1 μm Ag top metal
contact. Ti is commonly used as an adhesion layer for low-
contact-resistance metal contacts on silicon-based (opto)-
electronic devices.23 This Ti/Ag metal contact is then covered

with a silicon nitride/silicon oxide (SiNx/SiOx)-based
dielectric stack to eliminate degradation during wet bio-
functionalization steps. A p+ back surface field (BSF) and the
bottom contact are formed by painting and annealing with
aluminum (Al) paste. The top-view of the fully fabricated
biosensor is shown in Figure 2b, with a total sensor area of
11.5 by 11.5 mm while the exposed vSiNW area is decreased to
6.2 by 6.2 mm after the SiNx/SiOx protective dielectric stack is
deposited on the top metal contact to reduce contact
degradation through extensive fluid exposure during bio-
functionalization.
After the vSiNW-diode sensor is microfabricated, it is

biofunctionalized (described in detail in the Supporting
Information, Section S.2) with APTES-based silane chemistry
followed by glutaraldehyde, which is a bifunctional linker
containing two aldehyde terminals, which enables one end to
bind to the amine-terminated APTES and the other end to
immobilize the ER-α protein. The ER-α protein is covalently
bound onto the surface of the Si NWs, unbound ER-α protein
removed with a 0.01× phosphate buffer solution (PBS) buffer
wash and passivated with ethanolamine to minimize non-
specific binding. Next, the sensors are tested with the
hormones of interest. The current density−voltage (J−V)
electrical measurements are performed immediately following
when the estrogen receptor is bound on the Si NW surface;
this measurement serves as the tare. Next, target hormones,
such as estrone (E1), 17β-estradiol (E2), and testosterone
(Figure S3), are exposed on the sensor surface, and the
subsequent change in electrical current is measured and
quantified. Figure 2c shows an enlarged schematic of the p−n
junction biosensor with the receptor bound on the surface
(more detailed biofunctionalization process steps in Figure
S2).
In this work, we develop an initial prototype of the vSiNW-

diode biosensor and demonstrate that vSiNWs yield a
significantly higher fluorescence signal than a planar surface,
indicating a higher number of estrogen receptors present on
the vSiNWs relative to an untextured planar Si surface. We also
confirm the biosensor sensitivity using an estrogen concen-
tration dependent J−V response. Furthermore, we probe the
impact of the doping density of the Si NWs on the biosensor
response. We test the biosensor selectivity response by
comparing it between an estrogen and an androgen. Finally,
sensor regeneration tests demonstrate reusability and potential
for development of our vSiNW-diode biosensor for field
deployment.

■ RESULTS AND DISCUSSION
Fluorescence Measurements. Fluorescence measure-

ments confirm that vSiNWs amplify the sensor signal relative
to planar biosensors (Figure 3). The details of the preparation
of the sensor surfaces for these measurements are provided in
the Supporting Information, Section S.3.3. We analyzed the
fluorescence images of the vSiNW surface (Figure 3a) and
planar surface (Figure 3b) using ImageJ software and plotted
the image analysis results (Figure 3c), which indicate that the
vSiNWs exhibited a between 4 and 10 times brighter
fluorescence signal than the planar Si surface. The brighter
intensity fluorescence signal for the NWs confirms that the
nanostructured Si surface conjugates a higher concentration of
the hormone receptor than the planar surface due to the
increased surface area of the NWs and can consequently result
in a greater electrical signal change for the same concentration
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of target analyte. In our recent work,22 we indeed confirmed
this advantage of vSiNW-diode over planar-diode biosensors,
where we reported that vSiNW biosensors exhibit an around
20% relative current density change as compared to a 5%
change in planar sensors functionalized with the same
concentration of a cancer antigen. These results confirm the
advantage of using vSiNWs as a biosensor surface.

NW Array Doping Density and Biosensor Sensitivity.
We fabricated the biosensors with varied doping levels and
measured the NW sensor response to a range of E2
concentrations (1, 10, and 100 ng/mL). The biosensor had
the largest current density response when the NW array

doping was low, which resulted in effective sheet resistivity
(Rsheet) values in the 1000−1200 Ω/sq range. Doping levels are
directly related to sheet resistivity, where a high Rsheet value
corresponds to a low doping concentration, and vice versa. The
effects of both E2 concentration and NW array Rsheet were
evaluated by the change in biosensor current density response.
We also compared the current density change of our vSiNW
array biosensors and the conventional hSiNW biosensors to
demonstrate up to 100-fold electrical signal amplification in
our biosensors relative to the conventional ones.
We quantified the relationship between changes in current

density (ΔJ) calculated using Equation SE.1 presented in the
Supporting Information, Section S.5, and E2 concentrations for
two different Rsheet values (Figure 4a). We tested sensors with
two different sensor surface sheet resistivities (nominal value of
500 and 1200 Ω/sq, respectively). These results demonstrate a
strong positive relationship between current density change
and E2 concentration (R2 ≥ 0.84; Figure 4a; raw data available
in Table S1 presented in the Supporting Information, Section
S.6). When the biosensor was highly doped (low Rsheet, 250 Ω/
sq), the change in ΔJ was at least 7 times less than that of a
low-doped biosensor (high Rsheet, 1200 Ω/sq) for the same E2
concentration (Figure 4b). Two different concentrations of E2,
10 and 100 ng/mL, were exposed to biosensors at varied levels
of doping. Linear regression fits were performed between Rsheet
and ΔJ for the two concentrations (R2 ≥ 0.84; Figure 4b; raw
data available in Table S2 presented in the Supporting
Information, Section S.6). The biosensors with Rsheet of around
1200 Ω/sq exhibited the largest ΔJ after exposure to E2 as well
as the largest current density difference between the 10 and
100 ng/mL concentrations. No data exists for higher Rsheet
values because the biosensors were unable to generate a
measurable electrical signal with such low doping levels.
Nevertheless, there is a lower limit to doping the Si NWs
because extremely low doping prevents the p−n junction from
being formed, and the device therefore will not be electrically
active. We note that the estrogen levels tested herein are still
orders of magnitude higher than the typical natural aquatic
conditions; thus, further research to lower the detection limits
is needed.
Biosensor sensitivity is known to be affected by the doping

of the NWs.24 Specifically, when the biosensor surface is highly
doped, detection of the target molecule decreases due to the
screening effects and the recombination rate.25 As the doping
concentration of the NWs increases, an electrostatic effect
known as the screening effect26 occurs within the NWs, where

Figure 3. Fluorescence images of (a) a vSiNW surface postfunction-
alization and (b) a planar surface postfunctionalization. (c) Visual
comparison of the intensities, demonstrating the increased number of
receptors present on the Si NW surface. Both the planar and Si NW
samples were functionalized with ER-α and stained by fluorescent-
tagged antibodies. Each sample was imaged over a 3 mm long by 0.85
mm high area to ensure that the increase in intensity was consistent
across a large distance. The red dashed line shows the edges of the
tiles that were joined.

Figure 4. (a) Relationship between current density (ΔJ) and E2 concentration for biosensors at 500 Ω/sq (black dots) and 1200 Ω/sq (blue
squares) showing that ΔJ increases at different rates for the two different Rsheet values. The semilogarithmic regression fits and equations at 500 Ω/
sq (black solid line) and 1200 Ω/sq (blue solid line) are also shown. (b) The relationship between ΔJ and Rsheet for biosensors exposed to 10 ng/
mL E2 (black dots) and 100 ng/mL E2 (blue squares) indicates that, for higher Rsheet values, ΔJ is higher for the same E2 concentration. The linear
regression fits and equations of 10 ng/mL E2 (black solid line) and 100 ng/mL E2 (blue solid line) are also shown.
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a carrier repels other carriers and creates what is known as a
“screening hole” around itself, decreasing the sensitivity of the
NWs to surface charge changes that may occur, due to, for
example, the introduction of charged molecules (such as the
hormones being tested in this work). The electric field within
the screening hole is canceled and leads to a lower current
density response. Furthermore, as NW doping increases, the
carrier recombination rate increases, resulting in a decrease in
minority carrier diffusion length and an overall lower current
density change.
Our vSiNW-diode biosensor exhibited a substantially higher

electrical change compared to traditional hSiNW-FET
biosensors that generate electrical current changes at the
nanoampere (nA) level.15 Such small electrical signals require
expensive measurement equipment, such as that reported in ref
10, which employed an expensive current preamplifier (1211,
DL Instrument, >$10,000) to collect electrical current changes
measured from single hSiNW-FET sensors. For time depend-
ent measurements, the team used a lock-in amplifier (SR830,
DSP dual-phase, Stanford Research Systems, >$20,000) to
collect the nA sensor signal changes. In comparison, our
vSiNW-diode biosensor has electrical current changes in the
microamperes (μA) range, demonstrating up to 100 times
electrical signal amplification relative to traditional NW
biosensors.27 This amplification enables the measurement of
our sensor signal using inexpensive equipment (∼$200),
emphasizing the advantages of our vSiNW-diode biosensors
and the potential to use the biosensors in a nonstandard lab
setting, such as in water streams for real-time data collection.

Biosensor Specificity Measurements. We tested detec-
tion selectivity of our biosensor using testosterone and E1, two
additional hormones, as a positive and negative control,
respectively. E1, as another estrogen, was expected to bind to
ER-α, and testosterone, as an androgen, was not expected to
yield a positive signal change. We confirmed that the hormones
were binding only to the receptors (i.e., nothing else on the
biosensor surface, which may lead to false positives) and that
another estrogenic compound not originally tested generated a
positive signal change. The biosensor current density change
was negligible when exposed to the testosterone compared to
E1 (Figure 5, raw data available in Table S3 presented in the
Supporting Information, Section S.6). We also noticed that the
current density changes following testosterone exposure
exhibited a decrease in current density for all three biosensors,
a behavior not observed in biosensors exposed to E1. This is

likely because testosterone is known to exhibit negative surface
charge28 and has a bandgap energy of 5.23 eV.29 The excess
negative surface charge generated by the testosterone presence
will decrease the conductivity of n-type Si NWs resulting in the
observed decrease in current density change.

Biosensor Regeneration Measurements. For field-
deployable sensors, demonstration of biosensor reusability is
critical. We tested the current density response of the
biosensor with exposure to 10 ng/mL E1 followed by 5 min
of washing with diluted (0.0001×) phosphate buffer solution
(PBS), then re-exposure to E1, J−V, and another wash and
continued this cycle. The current density response of the
sensor was within a ± 10% difference for the first two rounds
of washing and E1 exposure (Figure 6). During the third round

of washing, the biosensor response decreased, possibly due to
the damage of the sensor surface from repeated regeneration
and functionalization; this observation requires further
investigation. Although the vSiNWs could possibly be
damaged over the course of the repeated experiments, this
appears less likely because the amount of current (J) from each
incubation remains relatively constant. Another explanation
could be that the washing process fails to fully remove the
attached E1. Additional testing could involve the biosensor’s
performance over greater intervals of time, including character-
izing the biosensor shelf life and storage conditions. Previous
biosensors have demonstrated that a brief rinse in buffer
solution will essentially “reset” the device to its original state,
which can be reused for further tests.30

■ CONCLUSION
In this work, we present a novel vSiNW-diode biosensor design
that is sensitive and selective and can be manufactured using a
scalable process. The use of millions of NWs in our design
enables sensor measurements that can be performed using
inexpensive electrical current sensors and thus outperform
hSiNW-FET biosensors. The vSiNW-diode biosensor is a
platform technology that can be easily modified to detect
multiple species concurrently, and we demonstrated the
potential for this design in our initial phase of work presented
here. Receptor-based biosensors offer the promise of being
able to rapidly monitor endocrine-disrupting compounds in
water sources more akin to the perspective of impacted biota
than status-quo approaches (i.e., receptor binding rather than
mass spectrometry). Receptor-bind biosensors also allow for
detection of novel estrogenic metabolites/transformation
products that may otherwise evade traditional detection

Figure 5. Average short-circuit current density (ΔJsc) change and
standard error (shown as error bars) for the six biosensors, three
exposed to testosterone (red bar), and three exposed to estrone
(green bar). Each biosensor was exposed to 10 μg/mL of the
respective hormone.

Figure 6. Current density (J; left y-axis; solid black dots and line) and
changes in current density (ΔJ; right y-axis; solid blue squares and
dashed line) of one biosensor after three rounds of washing and re-
exposure to 10 ng/mL E1.
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methods. Other nanotechnology approaches integrated with
the biosensor could further increase the sensor sensitivity to
environmentally relevant detection levels. In addition, with a
proper microfluidic design, the metal contacts of the biosensor
can be fully protected from the analytes used during the
functionalization process, which could enable regeneration of
the sensors multiple times without performance degradation
over time. The microfluidics will also allow for real-time
measurements in a nonlab environment. Our future studies will
involve systematically conducting tests with field-collected
water samples, to confirm the utility of the reported vSiNW
biosensor for field-based water quality monitoring.
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