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Abstract: Cyclophosphamide (CYP) is used to treat different malignancies and autoimmune disorders
in men. This chemotherapy frequently reduces tumors, which is beneficial, but also causes infertility
because of severe oxidative stress, inflammation, and apoptosis in the bladder and testes brought
on by its metabolite, acrolein. The goal of this study was to assess the efficacy of a novel food, açai
berry, in preventing CYP-induced damage in the bladder and testes. Methods: CYP was adminis-
tered intraperitoneally once during the experiment at a dose of 200 mg/kg body weight diluted in
10 mL/kg b.w. of water. Açai berry was administered orally at a dose of 500 mg/kg. Results: The
administration of açai berry was able to reduce inflammation, oxidative stress, lipid peroxidation,
apoptosis, and histological changes in the bladder and testes after CYP injection. Conclusions: Our
findings show for the first time that açai berry modulates physiological antioxidant defenses to
protect the bladder and testes against CYP-induced changes.

Keywords: Nrf2; oxidative stress; inflammation; cyclophosphamide; bladder; testes

1. Introduction

One of the most serious illnesses in the world is cancer, and researchers have tried
to find strategies to stop it or enhance patients’ quality of life. A healthy lifestyle, which
requires an adequate diet, is thought to be able to prevent more than two-thirds of hu-
man cancers [1]. Cyclophosphamide (CYP; N,N-bis(2-choloroethyl)tetrahydro-2H-1,3,2-
oxazaphosphorin-2-amine-2-oxide) is an alkylating agent with excellent cytotoxic effects
that is frequently used as an anticancer or immunosuppressive treatment [2–4]. Specifically,
it is used as chemotherapy for the treatment of lymphoma, multiple myeloma, leukemia,
prostate and breast cancer, neuroblastoma, and sarcoma [5,6].

Although it has a wide range of clinical applications, CYP has several side effects,
including anorexia, vomiting, hair loss, and bladder hemorrhage. The most severe ad-
verse effects can include a higher chance of developing cancer, miscarriage, allergic re-
actions, and pulmonary fibrosis [3,4,7]. Male and female infertility as well as premature
menopause have both been linked to CYP, with the risk increasing with cumulative med-
ication dosage and patient age. This type of infertility is typically transient, but it can
also be permanent [5,6]. CYP is metabolized by cytochrome P450 into two unstable inter-
mediates, 4-hydroxycyclophosphamide and aldophosphamide, and then into two stable
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toxic intermediates, phosphoramide mustard and acrolein [8,9]. Phosphoramide mustard
prevents cell division by forming cross-linkages both between and within DNA strands at
the guanine N-7 position. This is irreversible and leads to cell death [10].

Conversely, acrolein, a reactive aldehyde, possesses the ability to generate toxic reac-
tive oxygen species (ROS) and subsequently affect surrounding tissue [11,12]. Multiple
effects of ROS, including the inhibition of several enzymes, DNA and membrane damage,
and lipid peroxidation, contribute to infertility [12,13]. Oxidative stress (OS) plays a ma-
jor role in the pathogenesis of idiopathic male infertility [14]. In fact, elevated testicular
oxidative stress is a major contributor to increased germ cell apoptosis and eventual hypo-
spermatogenesis, making it a major factor in the etiology of male infertility. It can cause
changes in the patterns of testicular microvascular blood flow and endocrine signaling [15].
Recent investigations have demonstrated that OS affects the gene expression of somatic
cells and gametes as well as epigenetic markers. Epigenetic processes that have been
demonstrated to influence gene expression include chromatin remodeling, histone changes,
noncoding RNA production, and DNA methylation [14,16–18].

Superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), heme oxygenase-1
(HO-1), and NAD(P)H dehydrogenase (quinone) 1 (NQO1), primary enzymes that the
body uses to fight OS, are activated by nuclear transcription factor-erythroid 2 related factor
(Nrf2) [19,20]. When the body is functioning normally, Nrf2 is found in the cytoplasm
linked to its antagonist, Kelch-like ECH-associating protein 1 (Keap1). The antioxidant
response element (ARE), a regulatory enhancer area found in gene promoters, is where Nrf2
sequentially attaches after being released from the Keap1–Nrf2 complex in response to ROS.
As a result of this interaction, numerous genes for detoxifying and antioxidant enzymes
are induced, protecting cells from oxidative stress and a variety of toxins [21,22]. Extensive
lipid peroxidation and protein oxidation result from ROS production that is greater than
the antioxidant response system’s ability to scavenge it, which leads to improper cellular
function [23]. For instance, it has been proposed that Nrf2 expression can be lowered
when spermatozoa are exposed to high amounts of ROS and is necessary for normal
spermatogenesis and sperm-specific capabilities, including motility [24–27].

The scientific community has been increasingly supporting the idea that food can
serve as medicine and that diets high in plant foods and low in processed foods can prevent
or reduce the severity of many diseases [19,28–37]. It is imperative to carry out research
to identify natural substances that can potentially protect against CYP-induced oxidative
stress while also lowering chemotherapy-related toxicity.

Açai berry has recently piqued the interest of scientists. This berry offers several
healthy nutritional benefits and may have potential medical applications. The fruit of the
açai palm, Euterpe oleracea, which grows only in the Amazon, has a tart flavor. It is said to
be a high-energy fruit and has been used by Amazonian Indians for millennia as a food
source and a natural treatment for a number of ailments [38–46].

Because the pulp of açai fruit contains a significant amount of bioactive nutrients
and phytochemicals, it has been the subject of much research. In addition to a variety of
physiologically active phytochemicals, the composition of açai berry pulp also has high con-
centrations of mono- and polyunsaturated fatty acids, which are uncommon in most fruits
and berries. Açai pulp contains phytochemicals such proanthocyanidins, anthocyanins, and
other flavonoids. Additionally, phytochemical tests showed that açai fruit contains consid-
erable amounts of anthocyanins, such as cyanidin, delphinidin, malvidin, pelargonidin, and
peonidin, as well as other polyphenolics, such as luteolin, quercetin, dihydrokaempferol,
and chrysoerial. Five forms of carotenoids—carotene, lycopene, astaxanthin, lutein, and
zeaxanthin—are found in the pulp of açai fruit [47–53].

The bioactive ingredients of açai berry extract have a wide range of pharmacological
advantages, including anti-inflammatory and anti-anxiety activity, by modifying oxidative
stress, inflammation, autophagy, and Nrf2 expression in the hippocampus and frontal
cortex [54–62]. To confirm the protective, anti-inflammatory, and antioxidant effects, more
evidence is required. For this reason, we looked at the possible health benefits of açai



Antioxidants 2022, 11, 2355 3 of 18

supplementation and the molecular mechanism by which it functions using a well-known
experimental model of CYP-induced toxicity in the genitourinary axis.

2. Materials and Methods
2.1. Animals

For this experiment, 8-week-old, 18 to 24 g male CD1 mice were purchased from
Envigo (Milan, Italy), put in a controlled environment, and given free access to water and
normal rodent food. They were kept in a 12:12 h light–dark cycle at 21.1 ◦C and 50.5%
humidity in cages with five mice each. The University of Messina Review Board for animal
care approved the study.

2.2. Experimental Design and Groups

We employed a validated mouse model, using a single intraperitoneal (i.p.) injection
of CYP (200 mg/kg b.w) in distilled water (10 mL/kg b.w) to induce cystitis and testicular
damage [19,36,63,64] (See Supplementary Material Figure S1 for a graphic illustration of
the experimental design).

After CYP injection, animals were randomly split into three groups:

(1) Sham: animals were administered injections of saline and treated orally with açai
berry dissolved in saline;

(2) CYP: animals were administered CYP injections as described above and treated by
oral gavage with saline;

(3) CYP+Açai Berry: animals were administered CYP injections as described above and
treated with açai berry dissolved in saline (500 mg/kg) by oral gavage 1 h after
injection and for the following 5 days.

At the end of the experiment, animals were anesthetized with ketamine (2.6 mg/kg)
and xylazine (0.16 mg/kg) and subsequently beheaded. The bladder, testes, blood, sperm,
and serum were collected. The dose of açai berry was calculated based on our previously
published works [65–67].

2.3. Evaluation of Sperm

To obtain the sperm, the entire mouse epididymis was minced in a sperm-washing
medium and incubated for 30 min at room temperature. The sperm parameters were
evaluated as previously described in our other work [63,68]. To count the sperm, we
used a Neubauer hemocytometer with 20 µL of sperm suspension. One drop of sperm
suspension was placed on a slide to measure the percentage of sperm motility, which was
then assessed under a light microscope at a magnification of 10× in three fields for each
sample, and the proportion of sperm with normal and abnormal motility in each field
was recorded. One drop of sperm suspension and 10 mL of eosin were mixed together to
assess the percentage of sperm morphology. A drop of 12 µL of the prepared sample was
smeared onto a glass slide after 1 min of incubation. Sperm morphology was evaluated
after drying. The prepared slides were examined for abnormal sperm head and tail shapes,
and mean values were taken. After 20 µL of sperm suspension was mixed with 20 µL of 1%
eosin-Y, stained and unstained cells were counted using a Neubauer hemocytometer and
an inverted microscope at a magnification of 40×. At least 3 measurements were taken on
each sample. The sperm characteristics were determined according to the guidelines of the
World Health Organization (WHO) in the WHO Laboratory Manual for the Examination
and Processing of Human Semen, 2010. These are considered valid and are also used for
evaluating animal sperm.

2.4. Western Blot Analysis of Cytosolic and Nuclear Extracts

Cytosolic and nuclear extracts were prepared from the bladder and testes as previ-
ously described [69,70]. The following primary antibodies were used: anti-NRF-2 (1:500,
Santa Cruz Biotechnology, Heidelberg, Germany, #sc-365949), anti-caspase 3 (1:500, Santa
Cruz Biotechnology, Heidelberg, Germany, #sc-7272), anti-heme oxygenase 1 (HO-1; 1:500,
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Santa Cruz Biotechnology, Heidelberg, Germany, #sc-136960), anti-Bax (1:500, Santa Cruz
Biotechnology, #sc7480), and anti-Bcl-2 (1:500, Santa Cruz Biotechnology, #sc7382). These
were mixed in 1× PBS, 5% w/v nonfat dried milk, and 0.1% Tween-20 at 4 ◦C overnight.
To ensure that blots were loaded with equal amounts of proteins, they were also probed
with antibodies against β-actin protein for cytosolic fraction (1:500; Santa Cruz Biotech-
nology Heidelberg, Germany) or lamin A/C for nuclear fraction (1:500 Sigma-Aldrich,
Milan, Italy). Signals were examined with an enhanced chemiluminescence (ECL) detection
system reagent according to the manufacturer’s instructions (Thermo, Monza, Italy). The
relative expression of the protein bands was quantified by densitometry with Bio-Rad
ChemiDocTM XRS+ software (Version 6.0.1, Milan, Italy) and standardized to the β-actin
and lamin A/C levels [71–75].

2.5. Testosterone Assay

For testosterone assessment, blood samples were collected from the heart. The serum
was separated from blood with 15 min of centrifugation at 3000× g and stored at−20 ◦C for
analysis. Serum testosterone levels were measured in accordance with the manufacturer’s
instructions (Mouse Testosterone ELISA Kit, Bioassay, Cat. #MBS702281, San Diego, CA,
USA). The amount of testosterone is expressed as nmol/L. All samples were analyzed
in duplicate.

2.6. Histopathological Evaluation

Bladder and testes were dehydrated, embedded in paraffin, and stained in hema-
toxylin/eosin (H/E), as previously described [69]. Testicular damage was assessed consid-
ering Johnsen’s score (JS), ranging from 0 (no seminiferous epithelial cells; tubular sclerosis)
to 10 (full spermatogenesis) [63,76]. Bladder damage was assessed on a scale from 0 (no
inflammation) to 5 (severe inflammation) as previously described. The degree of bladder
fibrosis was evaluated by Masson’s trichrome method according to the manufacturer’s pro-
tocol (Bio-Optica, Milan, Italy). For staining, sections from each mouse were observed using
a Leica DM6 microscope (Leica Microsystems SpA) and scored in a blinded fashion [77,78].

2.7. Evaluation of Tissue Lipid Peroxidation

Lipid peroxidation levels were assessed via two methods: thiobarbituric acid reactive
substance (TBARS) formation in the testes and malondialdehyde (MDA) levels in the
bladder [77,79].

2.8. Assessment of Tissue Antioxidant Activity

SOD and CAT activity and GSH concentration were examined as previously described
in other works [19,80–82].

2.9. Terminal Deoxynucleotidyl Nick-End Labeling (TUNEL) Assay

TUNEL staining for apoptotic cell nuclei and DAPI staining for all cell nuclei were
performed in lung sections as described previously [31,71–75]. The index of apoptosis is
expressed as the number of positively stained apoptotic cells over the total number of cells
counted, multiplied by 100% [83–89].

2.10. Cytokine Levels

Homogenates of testes and the bladder were prepared according to the manufacturer’s
instructions. Supernatants were used for the estimation of TNF-α, IL-1β, and IL-6 using
ELISA kits [32,90–95].

2.11. Materials

Unless otherwise stated, all compounds were purchased from Sigma-Aldrich (Milan, Italy).
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2.12. Statistical Evaluation

All values are expressed as mean ± standard error of the mean (SEM) of N obser-
vations. For in vivo studies, N represents the number of animals used. The results were
analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for multiple compar-
isons. A p-value less than 0.05 was considered significant.

3. Results
3.1. Açai Berry Limitis CYP-Induced Macroscopic and Microscopic Alterations

After CYP injection, we found macroscopic edema and hyperemia as well as increased
weight compared to sham animals (Figure 1A,B,D,L). Histopathological examination of
the bladder showed important alterations after CYP injection. In particular, with H/E we
observed epithelial denudation, cellular infiltration, and edema with moderate inflamma-
tory exudates in the mucosa (Figure 1E,E′,F,F′,H). Additionally, by Masson’s trichrome
we found a significant increase in collagen deposition after CYP injection compared to
the control group (Figure 1I,J). After daily oral administration of açai berry, we found a
significant decrease in macroscopic damage (Figure 1C) and weight (Figure 1D) compared
to the CYP group as well as a decrease in histopathological alteration (Figure 1G,G′,H) and
collagen deposition (Figure 1K).
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Figure 1. Impact of açai berry on CYP-induced bladder alteration. Macroscopic bladder in (A) sham,
(B) CYP, and (C) açai berry treatments. (D) Bladder weight. Histological evaluation of bladder
stained with H/E in (E,E′) sham, (F,F′) CYP, and (G,G′) açai berry treatments. (H) Histological
score. Masson’s trichrome of (I) sham, (J) CYP, and (K) açai berry treatments. (L) Index of severity.
*** p < 0.001 vs. sham; ### p < 0.001 vs. CYP.

3.2. Effect of Açai Berry Administration on CYP-Induced Bladder Oxidative Stress and Lipid Peroxidation

To determine whether açai berry could modulate CYP-induced oxidative stress, we
investigated Nrf-2 pathways in the bladder. By Western blots, we observed a significant
perturbation in Nrf-2 expression (Figure 2A,A′) and HO-1 (Figure 2B,B′). These increases
in oxidative stress also induced a critical perturbation in SOD (Figure 2C), CAT (Figure 2D),
and GSH/GSSG (Figure 2E) activity, as determined by ELISA. However, after açai berry
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administration at a dose of 500 mg/kg, we found a significant improvement in endogenous
antioxidant defense.
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Figure 2. Effect of açai berry administration on CYP-induced bladder oxidative stress. (A) Western
blot analysis and (A′) densitometric analysis of Nrf-2; (B) Western blot analysis and (B′) densitometric
analysis of HO-1; (C) SOD; (D) CAT; (E) GSH/GSSG. *** p < 0.001 vs. sham; ### p < 0.001 vs. CYP.

3.3. Effect of Açai Berry Administration on Apoptosis Pathways after CYP

Injection of CYP induced serious damage to the bladder, leading to apoptosis. By
TUNEL, staining we found that after CYP injection (Figure 3B) there was an increase
in apoptotic cells compared to the sham group (Figure 3A); however, after açai berry
administration, we noticed a decrease by co-staining with DAPI-TUNEL (Figure 3C).
To further analyze cell death, we performed Western blot analysis for Bax, Bcl-2, and
cleaved caspase 3. After CYP injection, we found a significant increase in BAX expression
(Figure 3D,D′) and cleaved caspase 3 expression (Figure 3D,D′′′), and, on the contrary,
a decrease in Bcl-2 (Figure 3D,D′′). Additionally, we investigated lipid peroxidation in
bladder after CYP injection by MDA levels. As shown in Figure 3E, we found a significant
decrease in CYP-induced MDA levels after açai berry administration.

3.4. Effect of Acai Berry Administration on Cytokyne Storm in Bladder and Testes after CYP

Cytokine storm may be the connection point between bladder and testis inflammation
after CYP. For this reason, we investigated by ELISA the levels of TNF-α, IL-1β, and
IL-6 in bladder (Figure 4A–C) and testes (Figure 4D–F). In agreement with the literature,
we found that CYP injection induced a significant increase in cytokine levels in bladder
and testes. However, after açai berry administration, the levels in both organs were
significantly diminished.
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Figure 3. Açai berry modulates CYP-induced apoptosis pathways. TUNEL staining of (A) sham,
(B) CYP, and (C) açai berry treatments. Western blot analysis of Bax, Bcl-2, and caspase 3 (D) and
densitometric analysis (respectively, D′,D”,D′′′). (E) MDA levels. *** p < 0.001 vs. sham; ## p < 0.01
vs. CYP; ### p < 0.001 vs. CYP.
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3.5. Effect of Açai Berry Administration on Sperm Parameters and Testosterone Levels after CYP

Administration of CYP resulted in significant modification of sperm parameters. We
specifically saw a decline in sperm viability (Figure 5A), motility (Figure 5B), and count
(Figure 5C); we also noticed an increase in sperm abnormalities (Figure 5D). The consid-
erable difference in testosterone levels between CYP-treated and control groups further
demonstrated the damage to the testicles (Figure 5E). All sperm parameters considered, as
well as testosterone levels, were restored after açai berry administration to almost the same
level of the control group.
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3.6. Effect of Açai Berry on Histological Alteration in Testes after CYP

The information from the sperm analysis inspired us to carry out more research on
the morphological changes resulting from CYP treatment. The control group (Figure 6A,D)
exhibited the typical architecture of the testes, with distinct seminiferous tubules at various
stages of spermatogonial cells. Additionally, spermatozoa and interstitial cells could be
seen inside a lumen. Leydig cells and Sertoli cells, both of which have distinct nuclei and
substantial cytoplasm, were also discernible in various sections. Following CYP, testicular
tissues showed a reduction of spermatozoa in the lumen and disordered spermatogenic
cells with fewer spermatids. Additionally, it was found that the epithelial wall of the
seminiferous tubules was disturbed and injured, and there was more interstitial edema
(Figure 6B,D). Testicular tissue looked repaired after the administration of 500 mg/kg
açai berry, with a normal amount of spermatozoa, decreased edema, and reduced luminal
disruption (Figure 6C,D).

3.7. Açai Berry Administration Improved Endogenous Oxidative Defense in Testes

The findings from Western blot examination demonstrated a significantly lower level
of Nrf2 expression in CYP-injected mice than in sham animals (Figure 7A,A′). We also
investigated the expression of HO-1 using Western blotting, because it is an Nrf2-regulated
gene that is essential for preserving oxidant/antioxidant balance. Similar to Nrf2, HO-1
was diminished following CYP (Figure 7B,B′). Following oral administration of açai berry
at a dose of 500 mg/kg, these decreases were entirely reversed. Additionally, we used
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an ELISA kit to evaluate endogenous antioxidant system markers and discovered that
açai berry at a dose of 500 mg/kg was sufficient to considerably counteract CYP-induced
decreases, nearly restoring physiological levels of SOD (Figure 7C), catalase (Figure 7D),
and GSH (Figure 7E).
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Figure 7. Açai berry administration improves endogenous oxidative defense. (A) Western blot
of testicular tissue for Nrf2 and (A′) densitometric analysis; (B) Western blot of HO-1 and (B′)
densitometric analysis. Analysis of (C) SOD, (D) catalase, and (E) GSH in testis. *** p < 0.001 vs.
sham; ### p < 0.001 vs. CYP.
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3.8. Açai Berry Administration Limits CYP-Induced Apoptosis and TBARS in Testes

In line with previous results found in the bladder, we discovered a large rise in TBARS
in the CYP-induced group compared to the control group (Figure 8E); however, there was
a significant decrease after oral administration of açai berry at a dose of 500 mg/kg. It
is commonly known that apoptosis and oxidative stress are strongly related. By TUNEL
staining, we found that there was a significant increase in apoptotic cells in testes of the
CYP-injected group (Figure 8B) compared to the sham group (Figure 8A). On the other hand,
after açai berry administration we noticed a significant decrease in cell death (Figure 8C).
By using Western blot, we additionally looked at the expression of Bax, cleaved caspase 3,
and Bcl-2 and discovered that, in comparison to control groups, Bax (Figure 8D,D′) and
cleaved caspase 3 (Figure 8D,D′′′) expression was higher in CYP-induced testicular injury.
However, açai berry was able to greatly reduce Bax and cleaved caspase 3 expression and
increase Bcl-2 expression (Figure 8D,D′′).

Antioxidants 2022, 11, x FOR PEER REVIEW 11 of 19 
 

 
Figure 8. Açai berry administration limits CYP-induced apoptosis and TBARS in testes. Representa-
tive TUNEL photos of (A) sham, (B) CYP, and (C) açai berry treatments. Western blots and quanti-
fication of testicular tissue for (D) Bax, Bcl-2, and caspase 3 and respectively densitometric analysis 
(D’,D’’,D’’’) . (E) TBARS quantification in testes. ** p < 0.01 vs. sham; *** p < 0.001 vs. sham; # p < 0.05 
vs. CYP; ### p < 0.001 vs. CYP. 

4. Discussion 
CYP, a bifunctional cytotoxic alkylating agent from the nitrogen mustard drug class, 

is used to treat a range of cancers as well as organ transplant rejection and autoimmune 
diseases [96–99]. It is extremely poisonous to both people and animals, especially the liver, 
urinary tract, and reproductive organs, despite having a wide range of medical benefits 
[3,35,100–107]. CYP is quickly processed in aldophosphamide mustard and acrolein, 
which inhibit cellular DNA synthesis [108]. Acrolein induces toxicity and substantial oxi-
dative stress that result in the loss of cell lipids, proteins, and DNA [109]. The unexpected 
toxicity of CYP in cells limits its therapeutic efficacy. Therefore, it is essential to avoid 
CYP-induced cell DNA breakage in therapeutic settings [110].  

The idea that “food is the best medicine” refers to the importance of dietary compo-
nents, especially those that support good health [111].  

The fruit from the tropical palm tree of the genus Euterpe, which is native to South 
America and is known as açai, is a new food of interest to scientists. Researchers have 
been investigating the fruit of Euterpe oleracea because it has a high antioxidant content 
compared to other fruits and berries. It has been determined from research on the chemi-
cal makeup of açai pulp that it includes several phytochemicals with physiological activ-
ity. Numerous studies have shown that açai berries have beneficial effects, such as restor-
ing calcium homeostasis and mitochondrial function, preventing the formation of toxic 
protein aggregates, and providing antioxidant and anti-inflammatory activity [112–119]. 

Here, we demonstrate for the first time in a combined model of CYP-induced uro-
genital impairment in mice that treatment with açai berry may have a positive effect. It is 
generally known that CYP-induced cystitis causes oxidation and inflammation in the 
bladder. In our study, after one injection of CYP at a dose of 200 mg/kg, we noticed a 
significant increase in macroscopic and microscopic damage, with a perturbation in the 

,

,

,

,

,

,

,

,

,

,

,

Figure 8. Açai berry administration limits CYP-induced apoptosis and TBARS in testes. Repre-
sentative TUNEL photos of (A) sham, (B) CYP, and (C) açai berry treatments. Western blots and
quantification of testicular tissue for (D) Bax, Bcl-2, and caspase 3 and respectively densitometric
analysis (D′,D′′,D′′′). (E) TBARS quantification in testes. ** p < 0.01 vs. sham; *** p < 0.001 vs. sham;
# p < 0.05 vs. CYP; ### p < 0.001 vs. CYP.

4. Discussion

CYP, a bifunctional cytotoxic alkylating agent from the nitrogen mustard drug class,
is used to treat a range of cancers as well as organ transplant rejection and autoim-
mune diseases [96–99]. It is extremely poisonous to both people and animals, especially
the liver, urinary tract, and reproductive organs, despite having a wide range of medi-
cal benefits [3,35,100–107]. CYP is quickly processed in aldophosphamide mustard and
acrolein, which inhibit cellular DNA synthesis [108]. Acrolein induces toxicity and sub-
stantial oxidative stress that result in the loss of cell lipids, proteins, and DNA [109]. The
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unexpected toxicity of CYP in cells limits its therapeutic efficacy. Therefore, it is essential to
avoid CYP-induced cell DNA breakage in therapeutic settings [110].

The idea that “food is the best medicine” refers to the importance of dietary compo-
nents, especially those that support good health [111].

The fruit from the tropical palm tree of the genus Euterpe, which is native to South
America and is known as açai, is a new food of interest to scientists. Researchers have
been investigating the fruit of Euterpe oleracea because it has a high antioxidant content
compared to other fruits and berries. It has been determined from research on the chemical
makeup of açai pulp that it includes several phytochemicals with physiological activity.
Numerous studies have shown that açai berries have beneficial effects, such as restoring
calcium homeostasis and mitochondrial function, preventing the formation of toxic protein
aggregates, and providing antioxidant and anti-inflammatory activity [112–119].

Here, we demonstrate for the first time in a combined model of CYP-induced uro-
genital impairment in mice that treatment with açai berry may have a positive effect. It
is generally known that CYP-induced cystitis causes oxidation and inflammation in the
bladder. In our study, after one injection of CYP at a dose of 200 mg/kg, we noticed a
significant increase in macroscopic and microscopic damage, with a perturbation in the
oxidant–antioxidant balance. After açai berry administration at a dose of 500 mg/kg, we
found that the histological alterations were significantly reduced, and the NRF-2 pathway
was significantly restored, with decreased oxidative stress, due to the enhancement of
physiological antioxidant enzymes.

As described above, acrolein exerts a toxic effect on cells by several mechanisms,
leading to apoptosis and cell death. In our work, we demonstrated by TUNEL staining that
açai berry is able to counteract CYP-induced apoptosis in the bladder [120].

Connected to oxidative stress and apoptosis is the activation of the inflammatory
response, with the release of pro-inflammatory cytokines in the bladder and the testes.
In our work, we found that the CYP-induced release of TNF-α, IL-1β, and IL-6 was
significantly reduced after açai berry administration. The transient interference with the
healthy functioning of the male reproductive system and testosterone levels that CYP
creates is well recognized [121].

Several histological changes were presumably connected to a decline in sperm via-
bility. CYP leads to perivascular fibrosis, spermatogonia degeneration and vacuolation,
diminished spermatocytes and germ cells, irregular seminiferous tubules, diminished
seminiferous epithelial layers, severe maturation arrest, and decreased size and number
of seminiferous tubules [97,122,123]. In our investigation, açai berry was able to raise
testosterone levels following CYP treatment as well as restore sperm counts and vitality.
The histological structure of CYP-treated mice revealed decreased seminiferous tubule
width, decreased numbers of germinal cells, tubule atrophy, Sertoli cell vacuolization,
interstitial edema, and congestion [63]. Açai berry at a dose of 500 mg/kg was able to limit
CYP-induced histological alterations.

Low levels of ROS, which are necessary for numerous physiological processes in-
cluding capacitation, hyperactivation, and sperm-oocyte fusion, have been shown to be
produced by spermatocytes and spermatids. Because of the high levels of polyunsaturated
fatty acids in their plasma membranes and the low levels of scavenging enzymes in their cy-
toplasm, spermatozoa are particularly susceptible to harm from excessive ROS. Male germ
cell proliferation and development from diploid spermatogonia to mature haploid sperma-
tozoa via meiosis is known as spermatogenesis, which is a complex process [124,125].

The testes have developed a sophisticated antioxidant system that consists of enzymes and
free radical scavengers to reduce this risk. Excessive ROS is mostly eliminated by endogenous
antioxidant enzymes including SOD, GSH, and CAT or by Nrf2 activation [126,127].

As described above for the bladder, when CYP was used, it was found that the levels of
Nrf2 in the testes were decreased. Additionally, CYP treatment interfered with the normal
antioxidant response and molecules in the downstream Nrf2 pathway, including HO-1 and
SOD [128]. It is noteworthy that açai berry greatly increased the amounts of Nrf2 and HO-1
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and significantly enhanced the physiological antioxidant response by increasing catalase
and GSH activity.

Peroxides, alcohol, and lipidic aldehydes can be produced as by-products when ROS
attack the unsaturated bonds in membrane lipids during the autocatalytic process. As a re-
sult of the oxidative degradation of polyunsaturated fatty acids, an increase in free radicals
in cells can cause lipid peroxidation in cell membranes, leading to apoptosis [63,129,130].
Oral administration of açai berry at a dose of 500 mg/kg was sufficient to counteract lipid
peroxidation, as demonstrated by the decrease in TBARS and apoptosis by TUNEL staining
and molecular investigation of Bax and Bcl-2 expression.

5. Conclusions

In our study we demonstrate for the first time that açai berry, by modulating oxida-
tive stress and inflammation, inhibiting the release of pro-inflammatory mediators, and
diminishing apoptosis, could be useful as a dietary supplement to counteract CYP-induced
urogenital toxicity in patients. A limitation of this study is the possible interaction between
CYP and açai berry. Clearly, more studies are needed to investigate whether açai berry has
anticancer or immunomodulatory effects against CYP. For this reason, a follow–up study
is needed to determine the effects of açai berry and CYP, used singly and in combination,
on tumor growth in live animals. If such treatment turns out to have a beneficial effect,
combined treatment would be warranted in a clinical setting.
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