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Abstract: Machine learning has become an important research field in genetics and molecular biology.
Survival analysis using machine learning can provide an important computed-aid clinical research
scheme for evaluating tumor treatment options. However, the genomic features are high-dimensional,
which limits the prediction performance of the survival learning model. Therefore, in this paper, we
propose an improved survival prediction model using a deep forest and self-supervised learning.
It uses a deep survival forest to perform adaptive learning of high-dimensional genomic data and
ensure robustness. In addition, self-supervised learning, as a semi-supervised learning style, is
designed to utilize unlabeled samples to improve model performance. Based on four cancer datasets
from The Cancer Genome Atlas (TCGA), the experimental results show that our proposed method
outperforms four advanced survival analysis methods in terms of the C-index and brier score. The
developed prediction model will help doctors rethink patient characteristics’ relevance to survival
time and personalize treatment decisions.

Keywords: survival prediction; machine learning; deep forest; self-supervised learning

1. Introduction

In the last two decades, bioinformatics technology has obtained rapid development to
provide efficient computer-aid ways to diagnose diseases, and bioinformatics with machine
learning can make significant breakthroughs in the tumor diagnosis [1]. The rapid develop-
ment of high-throughput sequencing technology has demonstrated that gene expression
profiling may be used to predict various clinical phenotypes [2]. A survival prediction
model has been used to analyze and grasp the relationships between medical characteristics
and survival time of patients in recent years [3]. Cancer prognosis was assessed by the
survival analysis method to provide valuable information [4]. As usual, high-dimensional
candidate genomic features severely reduced the performance of treatments of various
predicted clinical phenotypes [5,6]. There is a key challenge to improving the prognostic
accuracy in survival prediction models. The cox proportional hazard (CPH) model, com-
monly known as the cox model, is widely used in survival analysis tasks [7]. It can predict
a risk score according to the characteristics or covariates of a set of patient data and correct
censored data effectively. Even if the cox model as a linear model has many advantages, a
disadvantage of it is that it cannot express the complex nonlinear relationship between the
logarithmic risk ratio and static covariates [8].

Therefore, a machine learning-based CPH model was utilized to solve a complex
nonlinear survival analysis problem [9]. Support vector machine (SVM) is a classical
machine learning approach to process high-dimensional features by incorporating ranking
and regression constraints [10]. Thus, an SVM-based CPH method can enhance the learning
of high-dimensional data, whereas the hazard was not directly incorporated into data in
the model. Deep learning networks are used to determine gene expression data that predict
cox regression survival in breast cancer [11]. A broad analysis was performed on TCGA
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cancers using a variety of deep learning-based models applied to the survival prognosis
of cancer patients [12]. The random forest is an ensemble learning method that can find
the mating survival rate of each patient accurately. Therefore, a random survival forest
methodology was investigated through the extended the random forest method, which can
analyze the right-censored survival data [13].

A deep forest (DF) model is a decision-tree-based ensemble learning method including
a deep nonneural network type, which has good performance in many tasks [14]. Addi-
tionally, deep forests have developed two types, namely, random forests and completely
random-tree forests, which can help to improve diversity of the learning model. A deep
survival forest based on deep forest was proposed to construct a model and replace the
original random forest with the corresponding survival analysis model. As a tracking
algorithm implemented in a deep survival forest and elastic network cox cascade, it can be
regarded as a link between deep forest levels [15].

Any dataset will contain a large number of unlabeled samples because genome-wide
gene expression profiling is still too expensive to be used with academic laboratories to
research the rich gene expression analysis method [16]. Thus, in order to improve the
model’s learning ability, semi-supervised learning (an incremental learning technique) is
investigated to obtain more labeled data from unlabeled samples. Self-supervised learning,
an intuitive pseudo-labeling SSL technique, is a general learning framework that relies on
a prelearning task formulated by unsupervised labeled data. In this study, we employed
self-supervised learning techniques that are designed to learn a useful global model from
labeled data. Many recent self-supervised methods have received increasing attention to
solve the dilemma of a lack of labels. For example, a twin self-supervision–semi-supervised
learning approach is presented to embed self-supervised strategies into a semi-supervised
framework to simultaneously learn from few-shot-labeled images and vast unlabeled
images [17]. Liu et al. [18] proposed a self-supervised mean-teacher method for semi-
supervised learning which combines the pre-training of self-supervised mean with semi-
supervised fine-tuning to improve the representativeness of the mean-teacher. To tackle
these problems, Song et al. [19] proposed a self-supervised semi-supervised learning
framework to tackle the problem of sparsely labeled hyperspectral image recognition.

Motivated by the lack of relevant research, we attempted to exploit the deep sur-
vival forest with self-supervised learning in survival analysis tasks. Recently, several
survival analysis methods with genomic feature selection have been investigated to pre-
dict the survival time of patients precisely. This has become a key technique to improve
performance in learning models [20]. For example, a deep forest model based on fea-
ture selection is proposed to reduce the redundancy of features, and could be adaptively
incorporated with the classification model [21]. Zhu et al. [22] presented an ensem-
ble feature-selection–deep-forest method which outperformed the traditional machine-
learning methods. In the prediction of protein–protein interactions, elastic net deep forest
is utilized to optimize the initial feature vectors and boost the predictive performance [23].
Stable feature selection can efficiently avoid negative influences from added or removed
training samples [24]. Thus, we identified disease-causing genes by investigating stable
LASSO regularization in survival analysis. In this paper, we propose a self-supervised
method using a deep forest algorithm to improve survival prediction performance—deep
forest can learn from high-dimensional genome data efficiently; and semi-supervised learn-
ing such as self-supervised learning provides more labeled samples to train a global model.

Though extensive testing on the real-world TCGA cancer datasets, the results show
that the proposed DFSC method has high prediction accuracy even if high-dimensional
survival data are used. The rest of this article is organized as follows. Section 2 de-
scribes our method and experimental dataset. The results are displayed and discussed in
Section 3. Finally, conclusions are presented in Section 4.
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2. Methods
2.1. Deep Survival Forest

The training dataset D usually including n triplets (x, σi, Ti)
n
i=1, where x is the vector

of the patient characteristics, T is time-to-event of the patients, i.e., patients’ diagnosis time
interval from the start time to the event time occurs. σ = 1 corresponds to an uncensored
observation, and σ = 0 indicates a censored observation. The deep survival forest learning
goal is to estimate the time to the event T for a new patient using a feature vector x. Thus,
the deep survival forest H(x) is defined as the integral of hazard function h(t); it is given a
rate of events at time t to show that no event happened before time t. The hazard function
h(t|x) at time t given the training data x is defined as follows:

h(t|x) = h0(t)eg(x)bT
, (1)

where h0(t) is a baseline hazard function, b is regression coefficients, and g(x) is deep
forest model. To obtain parameters of the learning model, the partial likelihood is used in
the form:

`(b) =
n

∏
j=1

[
eg(xjbT)

∑i∈Rj
eg(xibT)

]σj (2)

Deep survival forest provides an alternative method for deep survival neural networks
to learn the multilevel structure representations with fewer hyperparameters. Figure 1
describes a brief deep survival forest procedure which directly learns cancer prognosis
prediction with multiple decision trees, rather than learning through the hidden layers
of neural networks. In addition, due to the strong learning ability of random forests, an
ensemble of forests can achieve more accurate cancer prognosis prediction. In this work,
we used the original parameters to iteratively perform the deep survival forest process
in the experiments [15,25]. The convergence condition is that the training samples (the
combination of the original training and the pseudolabeled samples) obtain the optimal
solution by using the pseudolabeled samples (x)n

i . In particular, a deep survival forest with
labeled samples was utilized to train a model to label unlabeled samples. Then, combining
labeled and pseudolabeled samples can achieve higher performances. Deep survival forest
functions are similar to those of the random forest ensemble model.

2.2. Self-Supervised Learning via Unlabeled Examples

To further improve the model, we leverage the unlabeled data. We use a pre-learning
deep survival forest as a teacher model to improve labels for training a student network.
The unlabeled samples distillation loss is minimized as follows:

`distill = ∑
xi∈D

[∑
y

PT(y|xi; τ)logPS(y|xi; τ)] (3)

where P(y|xi) = exp( f (xi)[y]/τ)/ ∑y′ exp( f (xi)[y′]/τ), and τ is a scalar temperature pa-
rameter. The teacher model, which produces PT(y|xi), is fixed during the distillation; only
the student model, which produces PS(y|xi), is trained.

2.3. TCGA Gene Expression Data

In this study, four gene expression datasets from non-currently embargoed TCGA
projects were obtained from the TCGA data portal (https://portal.gdc.cancer.gov/, ac-
cessed on 20 June 2022). Only GEP obtained using Illumina HiSeq 2000 were retrieved.
Table 1 describes aspects of the experimental datasets.

https://portal.gdc.cancer.gov/
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Figure 1. Flowchart of the learning method. Each level of the cascade consists of deep survival forests,
which directly learn cancer prognosis prediction with multiple decision trees. All connected features
will be optimized to obtain a more compact feature set and then transferred to the next level. Our
model can use both labeled and unlabeled datasets. Deep survival forest can labels unlabeled data to
augmented training datasets.

Table 1. Four tumor experimental datasets.

Dataset Disease Type No. of Samples No. of Genes

BRCA Breast 613 20,502
CESC Cervical carcinoma 290 20,502
COAD Colorectal 255 20,501
PAAD Pancreas 176 20,502

3. Results
3.1. Experimental Brief

To test model robustness, fivefold cross-validation was used to estimate the different
survival prediction algorithms; i.e., the dataset was divided into five folds of approximately
equal sizes. Next, each fold was used as a test separately, and other data were utilized as
the training dataset. Additionally, four SOTA methods were used to evaluate the perfor-
mance of our method: LASSO-COX, survival SVM (support vector machine), RSF (random
survival forest), and EXSA (survival analysis of gradient boosting). In the comparison of
survival analysis, the concordance index (CI or C-index) and brier score, key metrics of the
survival prediction model, were used to evaluate the performance [26]. If the predicted
survival time of a patient with a longer life span is larger, the prediction of the patient
is considered to be consistent with the outcomes. The C-index is a generalization of the
area under the ROC curve (AUC) that can take into account censored data. The C-index
can predict the data (consist of right-censored data) to measure the overall the survival
model prediction performance, which ranges in an interval [0,1]. The higher the value of
C-index, the higher the predictive accuracy of the survival prediction model. Brier score
represents the average squared distances between the observed survival status and the
predicted survival probability, which is influenced by both discrimination and calibration
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simultaneously. The two main components decomposed from brier score are reliability and
resolution, which, respectively, measure the closeness between the predictive probabilities
and true probabilities and the difference between the conditional probability and the pre-
dicted average value [27]. The brier score range is [0,1], and smaller values reflect excellent
prediction performance.

In the setting of the experiment, portions of the four cancer datasets were treated as
unlabeled samples to evaluate the learning performance of the proposed approach. Then,
labeled and unlabeled samples were randomly selected in every iteration; furthermore,
details about the dataset are shown in Table 2.

Table 2. Details of the experimental dataset.

Dataset Disease Type Labeled Samples Unlabeled Samples Testing Samples No. of Genes

BRCA Breast 248 245 120 20,502
CESC Cervical carcinoma 120 110 60 20,502
COAD Colorectal 110 85 60 20,501
PAAD Pancreas 65 61 50 20,502

The averaged C-index and brier score were used to display the performances of various
survival prediction models on each experimental dataset by fivefold cross-validation. The
average results of C-index and brier score are shown in Figures 2 and 3 over multiple
different test data.

Lasso-coxSVM RSF EXSA DFSC
CI BRCA 0.58 0.56 0.634 0.6 0.65

CESC 0.68 0.545 0.61 0.65 0.7
COAD 0.52 0.54 0.6 0.57 0.61
PAAD 0.56 0.54 0.55 0.58 0.6

Lasso-coxSVM RSF EXSA DFSC
BR BRCA 0.18 0.16 0.17 0.165 0.15

CESC 0.195 0.2 0.21 0.195 0.17
COAD 0.2 0.21 0.195 0.19 0.18
PAAD 0.19 0.185 0.199 0.19 0.175

Dataset

Dataset

B
rie

r s
co

re
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 C
-in

de
x

Methods

Methods

Methods

Figure 2. Average C-index achieved by learning model (higher is better) over multiple different
train/test splits of each dataset.

Lasso-coxSVM RSF EXSA DFSC
CI BRCA 0.58 0.56 0.634 0.6 0.65

CESC 0.68 0.545 0.61 0.65 0.7
COAD 0.52 0.54 0.6 0.57 0.61
PAAD 0.56 0.54 0.55 0.58 0.6

Lasso-coxSVM RSF EXSA DFSC
BR BRCA 0.18 0.16 0.17 0.165 0.15

CESC 0.195 0.2 0.21 0.195 0.17
COAD 0.2 0.21 0.195 0.19 0.18
PAAD 0.19 0.185 0.199 0.19 0.175

Dataset

Dataset

B
rie

r s
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re
s

 C
-in

de
x

Methods

Methods

Figure 3. Average brier score achieved by learning model (lower is better) over multiple different
train/test splits of each dataset.
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Compared with the baseline algorithms Lasso–Cox, SVM, RSF, and EXSA, the av-
erage C-index of DFSC was 5.7% lower. DFSC outperformed EXSA, which is based on
XGBoost; its average C-index was higher by 4%. These results indicate that DFSC achieves
comparable accuracy to other models when using deep forest to predict patient survival
rates. Therefore, the application of ensemble random forest can enable DFSC to analyze
high-dimensional genomic features and achieve optimal performance.

In addition, the brier scores of the four different methods on four cancer datasets verify
the effectiveness of the proposed algorithm in Figure 3. Meanwhile, Figure 3 indicates
that DFSC is superior to the other models and the average brier score is 0.168—2.25%, 2%,
2.47%, and 1.62% lower than Lasso–Cox, survival SVM, RSF, and EXSA, respectively. That
is, the DFSC model is optimal compared to other survival models according to the average
brier score.

3.2. Discussion

Stable LASSO, as a computer-aided learning approach, was used in this work to
further illustrate the advantage and interpratable nature of our method [28]. The top-20
genes selected by stable LASSO in the various datasets are listed in Tables 3–6. When the
stability scores of these genes are close to 1; the selected genes are robust. Additionally,
the p-values are less than 0.05 in Tables 3–6, which indicates that selected these genes are
significant. Many studies consider functional analysis for gene expression. For example,
MAGED1 in Table 3 acts as a tumor antigen and putative regulator of p53 transcription, as a
candidate marker of acquired tamoxifen resistance [29]. TRIP12 in Table 4 leads to increased
RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci, and enhanced
radioresponsiveness [30]. CBLN2 in Table 5 is a CBLN family member and has been found
to stabilize synapses by acting as a trans-synaptic link, binding with beta-neurexins of
granule neurons and delta 2 glutamate receptors of Purkinje cells in the cerebellum [31].
TNNI1 in Table 6 shows the highest overexpression in cancers, showing the functional
relevance of overexpression for developing novel therapies and diagnostic markers [32].

Table 3. The top-20 genes found in the BRCA (breast cancer) dataset.

Gene Symbol Stable Score p-Value

A2M 0.99 <0.01
MGLL 0.98 <0.01
MTHFR 0.74 <0.01
PTGDR 0.79 <0.01
IL23A 0.79 <0.01
PSMB3 0.95 <0.01
HTR1F 0.97 <0.01
DHRS9 0.90 <0.01
MAGED1 0.99 <0.01
SLC6A3 0.84 <0.01
MED8 0.96 <0.01
LAMB2 0.91 <0.01
GK 0.91 <0.01
ALOX5 0.89 <0.01
ETFDH 0.90 <0.01
PKMYT1 0.93 <0.01
PRKAB1 0.91 <0.01
MAX 0.95 <0.01
EGF 0.97 <0.01
SLBP 0.97 <0.01
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Table 4. The top-20 genes found in the CESC (cervical carcinoma cancer) dataset.

Gene Symbol Stable Score p-Value

TBCD 0.86 <0.01
CDC7 0.87 <0.01
ALDH3A2 0.96 <0.01
OAT 0.96 <0.01
FTL 0.94 <0.01
TRIP12 0.97 <0.01
NUP62 0.97 <0.01
DHFR 0.91 <0.01
AASDHPPT 0.90 <0.01
MAN1B1 0.89 <0.01
SNAI1 0.94 <0.01
ACSM3 0.84 <0.01
TMLHE 0.89 <0.01
PDGFD 0.81 <0.01
IFIT2 0.83 <0.01
GOSR1 0.79 <0.01
CPA3 0.78 <0.01
PTGIR 0.84 <0.01
NTRK2 0.83 <0.01
TXN 0.85 <0.01

Table 5. The top-20 genes found in the COAD (colorectal cancer) dataset.

Gene Symbol Stable Score p-Value

CBLN2 1.00 <0.01
CDC40 0.88 <0.01
CSMD3 0.88 <0.01
CHADL 0.73 <0.01
BOD1L1 0.80 <0.01
BRAP 0.86 <0.01
CLEC6A 0.82 <0.01
CCDC3 0.86 <0.01
C21orf58 0.91 <0.01
CFHR5 0.83 <0.01
C5orf58 0.84 <0.01
CCDC62 0.85 <0.01
CACNA2D3 0.78 <0.01
CERS1 0.87 <0.01
DSCAML1 0.83 <0.01
CLCF1 0.84 <0.01
COL10A1 0.82 <0.01
CHIT1 0.88 <0.01
CABYR 0.77 <0.01
CCDC148 0.81 <0.01

Meanwhile, the heatmap can expresses correlations between the genes, as shown in
Figure 4. Red in Figure 4 indicates a positive correlation, and violet indicates a negative
correlation. Correspondingly, the darker the color, the stronger the correlation. For example,
the PKMYT1 is negatively correlated with the other 13 genes in breast cancer data, and
MED8 is positively correlated with the other four genes.
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Table 6. The top-20 genes found in the PAAD (pancreas cancer) dataset.

Gene Symbol Stable Score p-Value

A2M 0.90 <0.01
GZMA 0.92 <0.01
SEPHS2 0.95 <0.01
ANAPC10 0.96 <0.01
ALOX15B 0.89 <0.01
TNNI1 0.92 <0.01
CDIPT 0.89 <0.01
MCCC1 0.89 <0.01
ZNF3 0.89 <0.01
F3 0.86 <0.01
TLR2 0.85 <0.01
SFRP4 0.84 <0.01
CTNNBL1 0.82 <0.01
GNRH1 0.86 <0.01
MAFF 0.81 <0.01
ARHGEF3 0.80 <0.01
HDAC1 0.82 <0.01
FST 0.83 <0.01
B3GALT2 0.82 <0.01
CA2 0.82 <0.01

Furthermore, to explore the significance of the omics signatures selected by the pro-
posed method, we checked the interactions between the 20 top-ranked signatures from
the mRNA by gene–concept network. Figure 5 shows the application of a gene–concept
network to construct interaction networks between these mRNA of signatures. In each
network analysis, the most important terms are listed, and the relevant genes are connected.

According to the color-mapping gene expression level, the connected terms are
mapped with circles. Each gene is connected as a node, and each node is mapped to
connected terms. The color scale of the related genes indicates the logFC in the highly ex-
pressed genes in the worst states. To find candidate genes as biomarkers for detecting HRA,
each group was compared. For example, the mRNA signatures ETFDH, EGF, PRKAB1,
ALOX5, DHRS9, MTHFR, and MGHH are in the maximum interaction network and are
connected to other breast-cancer-related, frequently altered genes. In particular, ALOX5
plays a presumptive role in the breast cancer progression and patient prognosis [33].

In summary, we have used advanced machine learning to analyze disease genes in
survival data, especially those already validated and deemed essential in oncology research.
Our method and outcomes can be potentially assist clinicians or other medical researchers
to properly explain the results of early-warning disease analysis.
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Figure 4. Relevance display via heat map for the four datasets: (a) BRCA (breast cancer), (b) CESC
(cervical carcinoma cancer), (c) COAD (colorectal cancer), and (d) PAAD (pancreas cancer).
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Figure 5. The gene–concept network depicts the linkages of genes and biological concepts as a
network. (a) BRCA (breast cancer), (b) CESC (cervical carcinoma cancer), (c) COAD (colorectal
cancer), and (d) PAAD (pancreas cancer).

4. Conclusions

In conclusion, our proposed DFSC algorithm can accurately improve the survival rate
in cancer patient diagnosis. DFSC has been verified on four experimental datasets and has
better prediction accuracy than the other four most advanced survival prediction models.
Semi-supervised learning, an effective alternative method in the experimental process, can
alleviate the challenge of over-fitting and improve the robustness of the model. Combining
semi-supervised learning with a deep forest model can obtain better experimental results.
In addition, DFSC can also be used to predict the survival rates of various high-dimensional
and collinear diseases. By considering all categories at the same time in the gene selection
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stage, our proposed extension can identify genes, thereby allowing doctors to make more
accurate computer-aided diagnoses.

The establishment of a model to understand the relationship between genomic features
and patient survival is a challenge for the future. Advanced machine learning methods have
become powerful tools for building an effective survival analysis model. We investigated
current work to accurately identify genomic signatures associated with cancer patient
survival to improve prognostic precision oncology.
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