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Abstract: Early diagnosis of lung cancer to increase the survival rate, which is currently at a low
range of mid-30%, remains a critical need. Despite this, multi-omics data have rarely been applied to
non-small-cell lung cancer (NSCLC) diagnosis. We developed a multi-omics data-affinitive artificial
intelligence algorithm based on the graph convolutional network that integrates mRNA expression,
DNA methylation, and DNA sequencing data. This NSCLC prediction model achieved a 93.7% macro
F1-score, indicating that values for false positives and negatives were substantially low, which is
desirable for accurate classification. Gene ontology enrichment and pathway analysis of features
revealed that two major subtypes of NSCLC, lung adenocarcinoma and lung squamous cell carcinoma,
have both specific and common GO biological processes. Numerous biomarkers (i.e., microRNA, long
non-coding RNA, differentially methylated regions) were newly identified, whereas some biomarkers
were consistent with previous findings in NSCLC (e.g., SPRR1B). Thus, using multi-omics data
integration, we developed a promising cancer prediction algorithm.

Keywords: non-small-cell lung cancer; deep learning; graph convolutional network; cancer prediction;
biomarker; gene ontology enrichment

1. Introduction

Lung cancer is the leading cause of cancer mortality, with the second-highest incidence
rate worldwide as of 2020 [1]. Lung cancer has two major histological subtypes, non-
small-cell lung cancer (NSCLC) and small-cell lung cancer. NSCLC, which accounts for
approximately 85% of all lung cancers, can be further subdivided into lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and large cell carcinoma. At a drastically
low level, lung cancer survival trends have shown some improvements from 26% among
men with NSCLC at the time of diagnosis in 2001 to 35% among men diagnosed in 2014; this
tendency is also true for women with NSCLC, and this improvement in NSCLC survival
has also been confirmed for all races and ethnicities [2]. This observed progress in survival
has taken advantage of targeted therapies and immunotherapies based on targetable or
actionable gene mutations (e.g., EGFR, BRAF, and KRAS) and fusion/rearrangements (i.e.,
ALK, ROS-1, RET, NTRK) [3–9]. However, because a considerable number of patients
are diagnosed at advanced stages and/or are negative for targetable gene alterations,
there remains an immense clinical need for diagnosis as early as possible to increase
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the therapeutic response rate, low recurrence, and, ultimately, increase the survival rate.
Aside from actionable mutations or structural variants, non-idiopathic, common diagnostic
modalities are necessary for successful and effective early diagnosis of cancers.

Particularly in lung cancer, radiological images and histopathological phenotypes are
more adequately considered as gold standards in tumor diagnosis and staging, but are also
crucial predictors of response to therapies and prognosis. Further, artificial intelligence, pri-
marily machine learning (ML) and deep learning (DL), has been successfully implemented
in oncology in collaboration with radiology or histopathology to maximize sensitivity,
specificity, and precision, especially in lung cancer [10–12]. In addition, combined with
the ML/DL model, next-generation sequencing-based single omics, representing a part
of the entire pool of genome, transcriptome, methylome, proteome, and metabolome, has
gradually evolved not only to diagnose lung cancer but also guide therapeutic decision-
making [13–17]. Numerous efforts have been made to develop the ML/DL algorithm,
providing decision support tools that assist clinicians to correctly diagnose cancers. How-
ever, the implementation of classical diagnostic methods and single omics still has not
resulted in sufficient resolution to prove causal relationships among genotypes, molecu-
lar aberrations, and etiological phenotypes. Each set of omics data may present its own
key features associated with aspects such as transcription, post-translational modification,
metabolic pathways, gene–environment interactions, the immune system, and the tumor
microenvironment. Therefore, if integrated adequately, multi-omics analysis is reasonably
expected to provide a more comprehensive view on cancer biomarker signatures and
untangle the complexity of cancer initiation, progression, and metastasis in a synergistic
manner.

Among such attempts, graph convolutional network (GCN)-based models have
proven useful in multi-omics data stratification, correlation learning, weighted value order,
and biomarker feature identification [18,19]. Thus, in this study, by applying the directed
acyclic graph structure into the GCN architecture, we successfully integrated multi-modal
features into a cancer prediction model. We primarily focused on the integration of omics
features derived from RNA sequencing and DNA methylation sequencing. Subsequently,
we evaluated the lung cancer prediction performance of the proposed model by means of
sensitivity, specificity, accuracy, precision, area under the curve–receiver operating charac-
teristic (AUC-ROC), macro F1-score, and weighted F1-score in comparison with those of
other ML/DL models.

Implementing a screening program to diagnose patients at an early stage is a critical
factor to decrease lung cancer-related deaths and improve survival. This multimodal model
may provide a solid basis for early diagnosis of NSCLC.

2. Materials and Methods
2.1. Dataset

The lung cancer patient data comprised DNA sequencing, gene expression, and DNA
methylation (Table 1). Baseline demographic data were retrieved and anonymized (Table 2).

Table 1. Dataset characteristics.

Data RNA Sequencing DNA Methylation DNA Sequencing

Dataset accession ID

TCGA-LUAD,
TCGA-LUSC,
GSE40419,
GTEx v8 Lung

TCGA-LUAD,
TCGA-LUSC

TCGA-LUAD,
TCGA-LUSC

Features 957 423 230
Cancer patients 1122 1117 818
Healthy subjects 763 28 22
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Table 2. Baseline demographics of subjects.

Data RNA Sequencing NSCLC Non-Cancer

TCGA, GSE40419 TCGA, GSE40419 GTEx
Subjects n 1122 185 578

Female, n (%) 451 (40.2) 81 (43.8) 183 (31.6)
Age Mean (SD) 66.09 (9.44) 67.24 (9.87) -

≥50, n (%) 1033 (92.1) 174 (94.1) 412 (71.2)
Race/ethnicity White, non-Hispanic (%) 737 (65.7) 97 (52.4) -

Black, non-Hispanic (%) 84 (7.5) 6 (3.2) -
Asian incl. Hawaiian or
Pacific islander (%) 103 (9.2) 77 (41.6) -

Hispanic (%) 19 (1.7) 0 (0) -
Others (%) 179 (15.9) 5 (2.7) -

Cancer stage I (%) 592 (52.8) - -
II (%) 298 (26.6) - -
III (%) 181 (16.1) - -
IV (%) 37 (3.3) - -
Missing (%) 14 (1.2) - -

Data DNA Methylation NSCLC Non-Cancer

Subjects n 843 74
Female, n (%) 350 (41.5) 28 (37.8)

Age Mean (SD) 66.09 (9.66) 66.86 (10.82)
≥50, n (%) 768 (91.1) 68 (91.8)

Race/ethnicity White, non-Hispanic (%) 624 (74) 58 (78.5)
Black, non-Hispanic (%) 76 (9) 6 (8.1)
Asian incl. Hawaiian or Pacific islander (%) 13 (1.6) 1 (1.3)
Hispanic (%) 16 (1.9) 2 (2.7)
Others (%) 114 (13.5) 7 (9.4)

Cancer stage I (%) 432 (51.2) -
II (%) 250 (29.6) -
III (%) 129 (15.3) -
IV (%) 24 (2.9) -
Missing (%) 8 (1.0) -

Data presented as n.

The Gene Expression Omnibus (GEO) database is used as an authorized array- and
sequence-based database in cancer-related studies. Gene expression and DNA methylation
data were retrieved to build the study dataset from June to August 2021.

The RNA-sequencing data (including mRNA, microRNA, and long non-coding RNA)
of lung cancer were obtained from The Cancer Genome Atlas (TCGA) data repository in
June–August 2021. RNA-sequencing data of patients with LUAD derived from TCGA
contained 504 samples: stage I (n = 274), stage II (n = 120), stage III (n = 84), and stage IV
(n = 26). Patients with LUSC were classified as stage I (n = 242), stage II (n = 160), stage III
(n = 84), and stage IV (n = 7).

DNA methylation data of LUAD retrieved from the GDC Portal (https://portal.gdc.
cancer.gov (accessed on 14 May 2021) included 502 patients: stage I (n = 279), stage II
(n = 120), stage III (n = 81), and stage IV (n = 22). For LUSC patients, the data comprised
stage I (n = 199), stage II (n = 142), stage III (n = 62), stage IV (n = 5). Genomic data,
including single nucleotide variants (SNV), indels, fusions, and rearrangements, from
818 patients with NSCLC were obtained from the same GDC portal. GTEx was developed
in an ongoing effort to establish a comprehensive public resource for studying tissue-
specific gene expression and regulation. In this study, 578 lung samples from nondiseased
GTEx v8 tissues were used.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Somatic mutations, single nucleotide polymorphisms, and gene expression data uti-
lized in this study were mapped to protein-coding regions to make it easier to perceive the
results and integrate all omics data.

2.2. Mathematical Concepts

Considering message passing as information flow, the aim of our main model is to
build a function of data features on a subgraph of a multimodal data graph G = (V, E),
with node set V and edge set E, which assists binary classifications with respect to each
single-omics data item. To train this function, each GCN module in the model utilizes
two types of matrices: the weight matrix W induced from each single-omics data item
and the relation network among nodes in the subgraph. However, to produce matrices of
two different types, one GCN module requires only one single-omics data item, not two
inputs. To input single-omics data into the module, we represent it as a feature matrix
X ∈ Rn×p, where n is the number of samples, and p is the number of input features. We set
n differently with respect to the size of each dataset, and p differently with respect to the
characteristics of the data, as described in Section 3.1.

In this module, an adjacency matrix A ∈ Rn×n is formed with respect to each X. In
this study, we set A such that Aij = sim

(
xi, xj

)
δ̃ij between nodes vi and node vj, where xi,

xj are the rows of X, sim( · , · ) is the cosine similarity, and δ̃ij = 1 if i 6= j and 0 otherwise.
Furthermore, we set sim( · , · ) = 0 if sim( · , · ) < τ for some threshold τ, which was
determined empirically. From this point forward, we focus on the mathematical structure
of our model.

An original GCN can be constructed by multiple graph convolutional layers,

H(d+1) = f
(

H(d), A
)
= σ

(
AH(d)W(d)

)
, (1)

where H(d) is the input of the d-th layer such that H(0) = X, and W(d) is the weight matrix
of the d-th layer. Here, σ(·) denotes an activation function, for which we choose LeakyReLU
with a slope of 0.25 for the negative x-axis. Using the Kipf–Welling method [20], we can
change A to the rearranged adjacency matrix Â, which is expressed as follows:

Â =
˜

D
− 1

2 ˜
A

˜
D
− 1

2
, (2)

where Ã = A + In with the identity matrix In, and D̃ is a degree matrix such that D̃ii =

∑j Ãij. We take Â as an adjacency matrix for each of our GCN modules.
Using the l-th single-omics data matrix Xl (l = 1, 2) and Xl-optimized GCN module

GCNl(·), we can obtain the predicted label matrix Ŷl = GCN
(

Xl
)

. Here, we denote ŷl
k to

the k-th row of Ŷl . For the common true label matrix Y and its k-th row yk, the cross-entropy
loss function on the GCN–fully connected (FC) module can be written as

Ll
GCN =

n

∑
k=1

CE(yk, ŷl
k) (3)

where CE( · , · ) denotes the cross-entropy function. Similarly, in the terminal FC layer,
namely the Mutation FC layer, the cross-entropy loss can be evaluated as follows:

LF =
n

∑
k=1

CE(yk, F
(

ŷ1
k, ŷ2

k

)
), (4)

where F( · , · ) denotes the layer operation on the Mutation FC layer, which includes two
single-omics feature concatenations and rule-based filtering to match most suitable anti-
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cancer agent derived from DNA sequencing data. In brief, the total loss function L of our
model is as follows:

L = αl

2

∑
l=1

Ll
GCN + λLF (5)

with αl , λ ∈ R. Empirically, we set ∀αl = 1 for the stability of the model.

2.3. DL Model Architecture and Weight Optimization

The preprocessing module was implemented by virtue of the GCN architecture, which
is sufficient to emphasize the directed acyclic graph (DAG) structure. In accordance with
the DAG structure, which represents the data flow from one activity to another and has a
defined direction, we can smoothly parallelize the evaluation with each set of multi-omics
data and can be free of the total number of features (Figure 1). Preprocessing equipped
with a DAG structure can benefit from a decrease in the time required for training a model
standardization of input forms of multi-omics data, which have different numbers of
features (Figure 2a).
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Figure 2. Overview of preprocessing module and graph convolutional network (GCN)-based non-
small-cell lung cancer (NSCLC) prediction deep learning model. (a) GCN-based preprocessing
module for weight optimization. (b) GCN-based NSCLC prediction algorithm. DNA sequencing
data including targetable gene aberrations are served as discriminating predictors to match the most
suitable therapeutic agents in the Mutation FC layer.

After applying a weighted sample similarity computed from the preprocessing module,
each modified weight from the single-omics data is concatenated to an FC layer, and these
vectors are then integrated as a multimodal weight vector in the same layer. In the Mutation
FC layer, it collects all multimodal weight vectors and employs those vectors to generate the
prediction of a binary label. Consequently, an NSCLC prediction model with a GCN–FC–FC
architecture was established using multiple modalities (Figure 2b).

We selected the cosine function as a similarity function and Leaky ReLU with a slope
of 0.25 for the negative x-axis as an activation function. We employed the Adam optimizer
and cross-entropy loss, and Xavier weight initialization. We also pretrained our model
for 500 epochs and then fine-tuned it for 2500 epochs. The number of hidden units in our
model was 400 and the dimension of all FC layers was 200. The search space for all three
learning rates (pre-training, training, and terminal classification) was {1 × 10−7, 5 × 10−7,
1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 0.001, 0.005}. We selected a
dropout rate of 0.5 and a sum method for node neighbor aggregations. The model was
implemented using Python 3.8.10 and PyTorch 1.8.1 on an Intel(R) Core(TM) CPU i7-9800X,
with 126 GB of memory, and a TITAN RTX 24 GB GPU with CUDA 10.2.

To optimize the weights of this GCN-based model, weight vectors of samples were
obtained from the feature data of each sample, whose components were the feature values
of the samples. Furthermore, we evaluated the similarities between two nodes in each
sample–sample graph, especially within the 1-hop network of the graphs. With these
similarities, the preprocessing module can restrict protruded components of the weight
vector by adjusting the marginal value from the mean value of each feature, and hence
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smooth links, or directed edges, from each node to a binary label. For example, if one node
with label 0 is located among nodes, and most nodes have label 1, then the weight of the
link to label 0 decreases, and that of the link to label 1 increases at the same time. In this
process, the similarity threshold τ presented in Section 2.2 is determined as a function with
respect to the numbers of linked nodes.

2.4. Feature Identification

To find the most relevant features while avoiding redundant ones, log2 fold change
and p value criteria were adopted for the selection of features or genes that were hyperme-
thylated or hypomethylated and up- or down-regulated, respectively.

More specifically, after filtering for biomarkers with p value < 0.05 and absolute value
of log2 fold change >0.5, thousands of features or genes were initially identified. To curtail
the total number of biomarker candidates, we used Welch’s t-test for every feature or gene,
on the assumption that the probability distribution is independent, displaying normality,
and having unequal variances, according to the cancer positivity and negativity of the
samples. The data were randomly divided into training, validation, and testing sets in 55%,
15%, and 30% ratios, respectively. The training set was utilized to establish the DL model,
the validation set was used to determine the parameters of the model, and the testing set
was applied to evaluate the performance of the DL algorithm. Five-fold cross-validation
was performed to determine the optimal parameters for each training and validation model.
We conducted the influence test for features by observing the increment of the F1-score
between the inclusion and exclusion of each differentially methylated and expressed genes.
Among the features, the feature for n-th gene is called Gn, and the degree of influence of Gn
on the F1-score is defined as difference between the F1-score including Gn and the F1-score
excluding Gn. The influence on the F1-score was calculated for all features, and features
with high influence were selected according to influence on the F1-score ranking. The top
200 gene expression and 300 methylation features ranked by the GCN-based algorithm
were selected, followed by subsequent analysis (Table S1). The diagnostic potentials of the
model were determined and assessed using sensitivity, specificity, precision, accuracy, ROC
curve, macro F1-score, and weighted F1-score.

2.5. Algorithm Comparisons

To compare our model with common ML/DL models, we implemented convolutional
neural network (CNN), logistic regression, and naïve Bayes models, and set these models
as the baseline. Although the original Naïve Bayes is an ML model, we built this model as
a DL-structured model. We used an activation function, optimizer, and loss function for
all baseline models, similar to our model, namely, Leaky ReLU, Adam, and cross-entropy
loss. Moreover, we set the number of baseline hidden units to 400 and the dimension of the
baseline FC layer to 200, based on the construction of our model. Furthermore, we attached
baselines with hidden FC layers, whose numbers were the same as the hidden layers in our
model.

For the CNN model, we chose a one-dimensional filter for convolution layers, max
pooling with a kernel size of two, stride of one, and zero padding as the pooling method.
Since we obtained better metric results when the dropout method was used, we used it at a
rate of 0.5, instead of batch normalization. For the logistic regression model, we applied
the batch normalizations for each batch and used a dropout method at a rate of 0.5. For the
naïve Bayes model, we implemented each layer in a manner similar to the FC layer, using a
standard normal distribution as a prior probability distribution.

The three baseline algorithms were compared for their prediction performance on this
study’s NSCLC multimodal data. Seven metrics were adopted to compute the classification
performances of the competitor methods. By applying the same preprocessed data, the
performances of the implemented algorithms were compared pairwise via five-fold cross-
validation.
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2.6. Functional Annotation and Pathway Analysis

To further investigate the etiologic and molecular biological characteristics of NSCLC
biomarkers revealed by this study, we conducted enrichment and pathway analysis imple-
menting Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
REACTOME, which were performed using DAVID 6.8 or analyzed using Cytoscape 3.9.0.
GO terms and pathways derived from enrichment were visualized using the ClueGO v2.5.8
and CluePedia v1.5.8 plug-ins. The enrichment library used for GO Biological Process
terms is “GO_BiologicalProcess-EBI-UniProt-GOA-ACAP-ARAP_13.05.2021_00h00.” GO
selection criteria for representative pathways included three–eight GO levels, a minimum
of three genes/term, and mapped genes representing at least 4% of the total associated
genes. The Kappa score was used to define term–term interactions and associate terms and
pathways into functional groups based on the shared genes between the terms. Ensemble
gene ID was used as a gene identifier for all analyses. FDR and p values corrected with
Bonferroni less than 0.05 were considered significant. These analyses were performed and
accessed between November and December 2021.

2.7. Statistics

All statistical data were confirmed using SPSS Statistics (version 22.0; IBM, Armonk,
NY, USA) and MedCalc Statistical Software version 14.8.1 (MedCalc Software Ltd., Ostend,
Belgium). Model performance comparisons were visualized using GraphPad Prism version
8.0.1 (GraphPad Software, San Diego, CA, USA). ROC curve analysis was performed
to measure the area under the ROC curve (AUC), sensitivity, specificity, accuracy, and
precision.

3. Results
3.1. Multi-Omics Datasets, Preprocessing, and Model Training

In the algorithm training step, we used the TCGA-LUAD, TCGA-LUSC, and Korean
lung carcinoma datasets (GSE40419). These sets contain three types of data, including
mRNA gene expression, DNA methylation, and genomic data, which are suitable for
disease classification. We primarily focused on transcriptomics and DNA methylation in
the identification of lung cancer prediction signatures. Genomic data, including SNVs,
indels, and fusions/rearrangements, are expected to discriminate between the predictors
that match the most suitable chemo- and/or immune-therapeutic agents.

The datasets were split into 777 training datasets (55.7%), 195 validation datasets
(14.0%), and 423 test datasets (30.3%). These data included more than 10,000 features,
which may affect the classification performance and undermine the algorithm training. To
remove noise and redundant features from each multi-omics dataset, we first employed
Welch’s t-test (p < 0.05) on reliable assumptions. Then, we employed the influence test for
features by observing the increment of the F1-score between the inclusion and exclusion of
each feature. Using these approaches, we were able to specify 200 RNA-sequencing and
300 methylation features.

We used the macro F1-score, weighted F1-score, and accuracy as performance metrics,
and the AUC-ROC score as sub-metrics. For efficient training and validation, we used
five-fold cross-validation. Training was performed to carry out initial class prediction using
omics features and the corresponding sample similarity generated from omics data.

Our GCN-based algorithm with DAG structure can diagnose lung cancer, more specif-
ically NSCLC, based on two single omics data, transcriptomics, and DNA methylation.

Major RNA expression and DNA methylation features identified by this GCN-based
prediction algorithm were parallel to the GO enrichment and pathway analysis (Table 3).
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Table 3. Major RNA sequencing and DNA methylation features for NSCLC prediction.

Ensemble Gene ID Gene Symbol Log2 Fold Change Chromosome GRCh38,
Start GRCh38, End Length Strand Gene Type

ENSG00000171564 FGB 8.861 4 154,563,011 154,572,807 9796 + Protein coding
ENSG00000110680 CALCA 8.266 11 14,966,668 14,972,351 5683 - Protein coding
ENSG00000164266 SPINK1 6.680 5 147,824,572 147,831,671 7099 - Protein coding
ENSG00000169469 SPRR1B 5.858 1 153,031,203 153,032,900 1697 + Protein coding
ENSG00000176153 GPX2 5.854 14 64,939,152 64,942,905 3753 - Protein coding
ENSG00000167656 LY6D 5.698 8 142,784,882 142,786,539 1657 - Protein coding
ENSG00000143320 CRABP2 5.559 1 156,699,606 156,705,816 6210 - Protein coding
ENSG00000205420 KRT6A 5.473 12 52,487,176 52,493,257 6081 - Protein coding
ENSG00000099953 MMP11 5.135 22 23,768,226 23,784,316 16,090 + Protein coding
ENSG00000196611 MMP1 5.042 11 102,789,401 102,798,160 8759 - Protein coding
ENSG00000204305 AGER −5.001 6 32,180,968 32,184,322 3354 - Protein coding
ENSG00000168484 SFTPC −4.729 8 22,156,913 22,164,479 7566 + Protein coding
ENSG00000165197 VEGFD −3.585 X 15,345,596 15,384,413 38,817 - Protein coding
ENSG00000164530 PI16 −3.539 6 36,948,263 36,964,837 16,574 + Protein coding
ENSG00000133800 LYVE1 −3.304 11 10,556,966 10,611,689 54,723 - Protein coding

CpG
site_ID Abs. Diff. 1 Methyl. Pattern Chromosome UCSC_RefGene_Name UCSC_RefGene_Group UCSC_CpG_Islands_Name 2

cg25774643 0.561 Hypermethylation 11 SCT TSS200 chr11:626728-628037
cg03502002 0.464 Hypermethylation 18 GALR1;GALR1 1stExon;5′UTR chr18:74961556-74963822
cg22674699 0.532 Hypermethylation 2 HOXD9 1stExon chr2:176986424-176988291
cg18322569 0.495 Hypermethylation 1 BARHL2;BARHL2 5′UTR;1stExon chr1:91182509-91182857
cg19760241 0.501 Hypermethylation 17 LHX1 Body chr17:35291899-35300875
cg20399616 0.474 Hypermethylation 12 BCAT1 Body chr12:25055599-25056246
cg21472506 0.517 Hypermethylation 2 OTX1 3′UTR chr2:63283936-63284147
cg04415798 0.490 Hypermethylation 14 PAX9 5′UTR chr14:37126786-37128274
cg18077971 0.469 Hypermethylation 2 PAX3 TSS1500 chr2:223162946-223163912
cg27071152 0.474 Hypermethylation 7 LOC646999 Body chr7:39649253-39649510
cg07860213 0.486 Hypermethylation 8 PRDM14 Body chr8:70981873-70984888
cg26799474 0.387 Hypomethylation 2 CASP8 5′UTR Not applicable
cg25247520 0.432 Hypomethylation 8 MIR1204;PVT1 TSS200;Body chr8:128806081-128806899
cg07551060 0.399 Hypomethylation 10 GRK5 Body chr10:121075133-121075401
cg06051311 0.404 Hypomethylation 6 TRIM15 5′UTR;1stExon chr6:30130969-30131093

1 Absolute differences in beta-value between cancer and non-cancer samples.2 CpG sites is based on the reference human genome (GRCh37/hg19) assembly.
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3.2. NSCLC Prediction Model Validation

Regarding accuracy and specificity, five-fold cross-validation of this NSCLC prediction
model (Figure S1) showed that the performance of DNA methylation single-omics data
was slightly better than that of RNA-sequencing unimodal data. Notably, in the case of
specificity, the metric values were recorded as 1.0, in most folds, after rounding-off. This
case implies that the influence of methylation data is exiguously significant, where our
model correctly predicts a healthy subject as non-cancerous. Conversely, we observed that
the F1-scores using each data point are almost the same on average. Because the F1-score is
a discrimination score for both non-cancer/cancer cases of NSCLC, the observation clarifies
that the effect scales of both data are nearly equal in the simultaneous classification of both
cases.

3.3. Comparison of NSCLC Prediction Model with Other Classifier Models

The prediction performance of this model was compared with that of existing DL
and ML algorithms: CNN, logistic regression, and naïve Bayes. All four methods were
compared using the same preprocessed data and the mean ± standard deviation of the
evaluation metrics (Figure 3 and Table S3). Actual prediction results of this model based on
TCGA samples were compared with those of other classifier models (Table S4).
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Figure 3. Performance comparisons of NSCLC prediction model with alternative classifier models.
Pairwise comparisons of the implemented algorithm performances were analyzed via five-fold cross-
validation. To improve discrimination, the metric cut-off was set at 90%. The standard deviation of
each performance is illustrated by a vertical error bar. AUC of ROC denotes area under the receiver
operating characteristic curve.

To compare the model performances of the baseline and the proposed model, we
adopted sensitivity, specificity, accuracy, precision, AUC-ROC, macro F1-score, and weighted
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F1-score for the binary classification of NSCLC. The best model varied depending on the
performance metric, but the proposed model was at least equal to or higher than that of
the other multi-omics integrative algorithms on six of the seven metrics we analyzed. In
other words, the proposed model outperformed the other algorithms on most performance
metrics.

More specifically, when comparing the models with the same number of hidden
layers and the same activation function, we observed that our model outperformed the
competitors in terms of accuracy, sensitivity, macro F1-score, and weighted F1-score. Precision,
which is the ratio of correctly labeled samples to all labeled samples, can vary depending
on the classifier threshold. Meanwhile, the sensitivity may remain unchanged.

Precision =
True positives

True positives + False positives
(6)

Sensitivity =
True positives

True positives + False negatives
(7)

where true positives indicate the number of NSCLC samples that have been correctly pre-
dicted, false positives denote the number of non-cancer samples that are misclassified as
cancer samples, and false negatives signify the number of NSCLC samples that are misclassi-
fied as non-cancer samples. The F1-score, the harmonic mean of precision and sensitivity, is a
useful measure in binary classification and was calculated according to Equation (8):

F1 score =
2× Precision× Sensitivity

Precision + Sensitivity
(8)

Macro F1 can be computed using the sum of the F1-score for actual positives and actual
negatives, and was calculated according to Equation (9):

Macro F1 =
F1 o f actual positives + F1 o f actual negatives

2
(9)

Our NSCLC prediction model achieved a 93.7% macro F1-score. The highest macro
F1-score indicated that the values for false positives and false negatives were sufficiently low
to prove that this algorithm is best for classifying the correct class (Figure 3).

To calculate the metrics for each label and adjust their macro F1 weighted by both the
actual positives and negatives, weighted F1 was applied as per Equation (10):

Weighted F1 =
(No. o f actual positives× F1 o f actual positives) + (No. o f actual negatives× F1 o f actual negatives)

2
(10)

Weighted F1, considering the number of actual occurrences per label, was 98.3% and it
outperformed the competitor model, with an imbalanced dataset, that is, DNA methylation
in this study. The proposed NSCLC prediction model demonstrated that it outperforms
three other models applied using identical frameworks that are desirable for multi-omics
data classification capability on identical datasets.

3.4. Functional Annotation and Pathway Analysis

Because the biomarkers identified by the NSCLC prediction model were quite di-
verse, further analysis of their molecular functions and biological processes was performed.
LUAD and LUSC not only shared identical biological processes but also exhibited spe-
cific processes. GO term enrichment, KEGG, and REACTOME pathway analyses were
performed on the identified biomarkers using Cytoscape software 3.9.0. and the DAVID
database. In the NSCLC multimodal features, the GO term of cornification (GO:0070268)
originated from LUAD features, whereas epidermis development (GO:0008544) was de-
rived from LUSC features (Table 4, Figures 4–6).
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Table 4. Major enriched GO, KEGG, and REACTOME terms in NSCLC and its subtype LUAD and LUSC.

ID Category Term Group p Value Corrected
with Bonferroni % Associated Genes 1 Nr. Genes 2

NSCLC GO:0070268 GO biological process Cornification 2.7 × 10−6 13.79 16
GO:0008544 GO biological process Epidermis development 2.7 × 10−6 4.03 20
GO:0032732 GO biological process Positive regulation of interleukin-1 production 1.1 × 10−4 6.25 5
GO:0032655 GO biological process Regulation of interleukin-12 production 2.8 × 10−4 8.06 5
GO:0010811 GO biological process Positive regulation of cell-substrate adhesion 1.6 × 10−3 5.22 7
KEGG:04657 KEGG pathway IL-17 signaling pathway 9.3 × 10−4 5.32 5
KEGG:04915 KEGG pathway Estrogen signaling pathway 1.1 × 10−3 5.07 7
R-HSA:6809371 Reactome pathway Formation of the cornified envelope 6.2 × 10−9 12.31 16

LUAD GO:0070268 GO biological process Cornification 2.4 × 10-7 8.62 10
GO:0019730 GO biological process Antimicrobial humoral response 7.0 × 10−6 4.73 7

GO:0045814 GO biological process Negative regulation of gene expression,
epigenetic 1.2 × 10−3 4.84 6

GO:0016266 GO biological process O-glycan processing 1.3 × 10−3 7.58 5

GO:0007091 GO biological process Metaphase/anaphase transition of mitotic cell
cycle 7.8 × 10−3 4.76 3

GO:0071300 GO biological process Cellular response to retinoic acid 9.4 × 10−3 4.17 3
KEGG:04613 KEGG pathway Neutrophil extracellular trap formation 5.5 × 10−5 5.26 10
R-HSA:6809371 Reactome pathway Formation of the cornified envelope 2.8 × 10−6 7.69 10
R-HSA:5173105 Reactome pathway O-linked glycosylation 1.4 × 10−3 5.41 6

LUSC GO:0008544 GO biological process Epidermis development 1.4 × 10−18 6.65 33
GO:1901616 GO biological process Organic hydroxy compound catabolic process 3.0 × 10−7 9.64 8
GO:0030198 GO biological process Extracellular matrix organization 2.2 × 10−6 4.04 18
GO:0019730 GO biological process Antimicrobial humoral response 3.9 × 10−3 4.73 7
GO:0005344 GO biological process Oxygen carrier activity 4.8 × 10−3 15.79 3
GO:0071300 GO biological process Cellular response to retinoic acid 3.0 × 10−2 4.17 3
KEGG:04915 KEGG pathway Estrogen signaling pathway 7.4 × 10−3 5.07 7
R-HSA:6809371 Reactome pathway Formation of the cornified envelope 5.9 × 10−12 15.38 20
R-HSA:1474228 Reactome pathway Degradation of the extracellualr matrix 4.2 × 10−4 7.86 11

1 % Associated Genes indicates percentage of genes found from the input gene lists. 2 Nr. Genes denotes number of genes.
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enriched GO “Biological Process” terms of NSCLC were grouped based on shared genes (Kappa
score threshold = 0.4). Enriched terms by p value corrected with Bonferroni were retained as the
functional description. The node size is proportional to the degree of significance. (b) % terms per
group represents the proportion of GO terms in the NSCLC features.
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Figure 5. GO enrichment and pathway analysis of LUAD features. (a) Enriched GO “Biological
Process” terms of LUAD were grouped based on shared genes (Kappa score threshold = 0.4). Enriched
terms by p value corrected with Bonferroni were retained as the functional description. The node size
is proportional to the degree of significance. (b) % terms per group represents the proportion of GO
terms in the LUAD features.
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Figure 6. GO enrichment and pathway analysis of LUSC features. (a) Enriched GO “Biological
Process” terms of LUSC were grouped based on shared genes (Kappa score threshold = 0.4). Enriched
terms by p value corrected with Bonferroni were retained as the functional description. The node size
is proportional to the degree of significance. (b) % terms per group represents the proportion of GO
terms in the LUSC features.

Genes associated with the two GO terms cornification and epidermis development
showed distinct downregulation in NSCLC (Figure S2). GO terms related to the inflam-
matory response, that is, positive regulation of IL-1 production (GO:0032732), regulation
of IL-12 production (GO:0032655), and the IL-17 signaling pathway (GO:04657), were en-
riched in NSCLC. In this inflammatory response network, up- and downregulation were
intermingled, but upregulated genes prevailed (Figure S2 and Table 4).

Cellular responses to retinoic acid (GO:0071300) and antimicrobial humoral responses
(GO:0019730) were shared by both LUAD and LUSC (Figures 5 and 6 and Table 4). RE-
ACTOME pathway analysis indicated that the formation of the cornified envelope (R-
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HAS:6809371) pathway also had a common term in both LUAD and LUSC (Table 4).
O-linked glycosylation (R-HAS:5173105) was distinctive in LUAD, and degradation of the
extracellular matrix (R-HAS:1474228) was peculiar to LUSC (Table 4). KEGG pathway
analysis revealed that the REACTOME term estrogen signaling pathway (KEGG:04915)
was highly enriched in LUSC features, which was in turn applied to the NSCLC mul-
timodal model. In this estrogen signaling pathway, KRT13, KRT14, KRT15, KRT16, and
KRT17 were enriched genes, which allowed us to predict that these genes contribute to the
downregulation of the estrogen signaling pathway (Table 4).

All the details of the GO terms, KEGG, and REACTOME pathway analyses are dis-
played in Table 4 and Table S2. GO enrichment analysis using Cytoscape and its plug-ins
ClueGO and CluePedia was successfully reproduced in the analysis using the DAVID
database. Representative enriched GO terms (-Log10 p value <2.4; fold change +5–−8)
of NSCLC multimodal features, analyzed from the DAVID database, are summarized in
Figure S3.

4. Discussion

Owing to the exponential growth of omics technologies and NGS-based big consor-
tium studies, labeled omics datasets with comprehensive annotations are continuously
being developed. Therefore, it is increasingly important to employ labeled omics data
to highly accurately predict disease diagnosis, tumor grading, and subtyping. Consider-
ing approximately 85% of lung cancers, NSCLC has two of the most common subtypes,
LUAD and LUSC, which have considerably different biological signatures, although they
are usually treated in the same way and classified identically into NSCLC. There are few
biomarkers of NSCLC based on the implementation of multimodal feature selection meth-
ods. One of the main reasons for this is histologic and molecular heterogeneity, even within
the same histological subtype. Hence, to accurately and robustly predict NSCLC, this study
focused on the multi-omics integrative classification of NSCLC.

Although multi-omics data integration usually leads to better outcomes, some studies
have suggested that this is not always the case. Existing reviews comprehensively cover
this challenging issue [21,22]. Poor performance can arise if the algorithm is not adapted
for a particular aim or for particular multi-omics datasets. Some ML/DL models cannot
handle enormous matrices, noise, and outliers, which are worse in multi-omics studies.
However, as discussed by Picard et al., if an algorithm and integration strategy are chosen
discretely, multi-omics-based models should always outperform single-omics models [21].

A supervised omics integrative model has been reported to take advantage of a GCN
for multi-omics data learning to perform effective disease classification and biomarker
identification. Wang et al. utilized both omics features and correlations among sam-
ples represented by similarity networks for better classification capability in cancers and
Alzheimer’s disease [19]. Ramirez et al. reported that a GCN with prior knowledge in the
form of protein–protein interaction networks and gene co-expression networks was able to
achieve excellent prediction accuracies (89.9–94.7%) among 33 cancer types and normal
tissue on TCGA data [23].

Numerous multi-omics integration studies have proposed the applicability of DL for
cancer diagnosis and prognosis. However, there are a few challenges and limitations to
the extensive implementation of multi-omics DL in clinical practice. First, the fundamental
problem encountered is the difficulty in resolving the relationship between the compressed
features and biological meanings. Therefore, to verify the explainable performance in
real-world applications, a clinical study must be carried out with external cohorts, followed
by complete functional analysis. Second, owing to the large number of parameters, DL
algorithms are difficult to train, must be tuned accurately, have unclear methods concerning
handling data variability derived from data transformation and normalization, and often
experience overfitting. In addition, their performance depends heavily on the size of the
samples, which is limited [21,24]. Strict performance evaluation is particularly demanding
owing to the innate high complexity of artificial intelligence networks, as apparently well-
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performing DL models might use inadvertent and possibly false features and respond
unexpectedly to seemingly irrelevant changes in input data. Failure to perform a strict
evaluation might have diminished the credibility of the research findings and would be
worthless in the clinical field [25].

Another issue likely to be encountered when incorporating ML models trained using
multi-omics data is the expense. It might not be practical to perform multimodal sequencing
or microarray analyses routinely for all new patients. To implement cost-effective and
high-throughput analysis for NSCLC diagnosis and/or prognosis, we further differentiate
central or core biomarkers (approximately 30–50) out of a few hundreds of multi-omics
feature pools, while maintaining comparable performance in NSCLC prediction.

The superior performance of the macro F1 metric of this NSCLC prediction model can
be explained by a previous DL cancer classification study. The macro F1-score has been
applied as a useful measure of the effectiveness of individual algorithms on the rare classes
because macro F1 is more heavily influenced by performance on the minority classes, that
is, cancers vs. non-cancers [26]. There is a need for further evaluation of this NSCLC
prediction performance by training and testing on different patient cohorts from different
institutions and ethnicities.

Gene Ontology (GO) annotates genes (i.e., features) using ontology. GO analysis is
widely used for specifying cellular location, molecular function, and biological process.
One of main purpose of implementing GO is to perform enrichment analysis on a given
feature list [27]. GO annotations smoothen the way for capturing the complexity of gene
and function relationships. Pathway analysis (e.g., KEGG, STRING, PANTHER) groups
genes or features into ‘pathways’ which basically enlist them to participate in the same
biological process. Thus, it can identify the specific protein functions, biological pathways,
and physical interactions that are enriched in a given feature panel [28]. This study
unveiled genes that were more correlated with LUAD, or more specifically to LUSC,
and universally contributed to both subtypes (Table 4). A particularly enriched GO term
in this NSCLC algorithm is cornification (GO:0070268), which is a distinct type of cell
death featuring terminal keratinocyte differentiation with a slow, coordinated process time
spatially, allowing the formation of a dead cell (corneocyte) layer to create a physical barrier
for the skin [29]. The SPRR family of proteins is located in the region of the epidermal
differentiation complex. Wang et al. demonstrated that SPRR1A expression in LUAD
indicates a more advanced stage and unfavorable prognosis [30]. Further, Zhang et al.
reported that SPRR1B expression in LUAD may predict poor prognosis [31]. Additionally,
Patterson et al. stated that the loss of SPRR1B expression disrupts or alters the cornification
process, resulting in irreversible malignant transformation [32]. We intend to investigate
the molecular functions of the SPRR family genes (Table 4) unveiled from this study and
their correlation with NSCLC.

This study demonstrated that KRT6A (log2FC −5.47), KRT14 (log2FC −3.71), S100A2
(log2FC −3.23), and KRT17 (log2FC −2.56) have significant diagnostic potential for NSCLC
(Table S1), consistent with a previous study using overlapping feature selection methods
in which these genes were ranked as having one of the highest diagnostic potentials for
classifying LUAD and LUSC [33]. In alignment with top-ranked features, GO biological
processes were similarly concatenated with “Epidermis development,” “Intermediate
filament cytoskeleton organization,” and “Intermediate filament-based process.” These
GO terms, originating from LUSC, suggested that LUSC expresses more genes related to
epidermal development and cytoskeleton organization, which is different from LUAD.

Novel microRNA, long non-coding RNA, and differentially methylated regions, which
regulate or are the nearest genes to these RNAs, were unveiled. The exact mechanisms
underlying these novel RNA biomarkers in NSCLC development should be clarified in
future studies.
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5. Conclusions

In this study, we developed a novel NSCLC biomarker identification framework
through multi-omics data integration using a GCN-based algorithm and demonstrated
the high precision and accuracy of its binary classification (cancer vs. non-cancer). This
algorithm effectively identified salient biomarkers from integrated multi-omics data, which
exhibited superior performance. There are downsides and limitations regarding the im-
plementation of multi-omics DL. This study demonstrated that employing the proposed
model to handle multi-omics data can help eliminate them. The future direction of the
research is to achieve a more applicable DL algorithm and multi-omics-based diagnostic
device, prove its clinical utility in large-scale human clinical trials, and ultimately support
the improvement of the NSCLC survival rate, which remains drastically low.
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