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Abstract: The recent global health emergency caused by the coronavirus disease 2019 (COVID-19)
pandemic has taken a heavy toll, both in terms of lives and economies. Vaccines against the disease
have been developed, but the efficiency of vaccination campaigns worldwide has been variable
due to challenges regarding production, logistics, distribution and vaccine hesitancy. Furthermore,
vaccines are less effective against new variants of the SARS-CoV-2 virus and vaccination-induced
immunity fades over time. These challenges and the vaccines’ ineffectiveness for the infected
population necessitate improved treatment options, including the inhibition of the SARS-CoV-2 main
protease (Mpro). Drug repurposing to achieve inhibition could provide an immediate solution for
disease management. Here, we used structure-based virtual screening (SBVS) to identify natural
products (from NP-lib) and FDA-approved drugs (from e-Drug3D-lib and Drugs-lib) which bind
to the Mpro active site with high-affinity and therefore could be designated as potential inhibitors.
We prioritized nine candidate inhibitors (e-Drug3D-lib: Ciclesonide, Losartan and Telmisartan;
Drugs-lib: Flezelastine, Hesperidin and Niceverine; NP-lib: three natural products) and predicted
their half maximum inhibitory concentration using DeepPurpose, a deep learning tool for drug–
target interactions. Finally, we experimentally validated Losartan and two of the natural products as
in vitro Mpro inhibitors, using a bioluminescence resonance energy transfer (BRET)-based Mpro sensor.
Our study suggests that existing drugs and natural products could be explored for the treatment
of COVID-19.

Keywords: COVID-19; SARS-CoV-2 main protease; structure-based virtual screening; molecular
docking; FDA-approved drugs; natural products; deep learning; BRET

1. Introduction

COVID-19 has caused a devastating effect on global economy and well-being. With
633,750,838 total cases and 6,604,764 total deaths as of 10 November 2022 [1], COVID-19
has led to recession in most countries and strained healthcare systems. The causative agent
SARS-CoV-2 is an RNA-virus belonging to the β-coronaviruses with greater infectivity and
transmissibility compared to SARS and MERS-CoVs [2]. Early diagnosis of SARS-CoV-2
infection using various diagnostic techniques is crucial to mitigate its community-wide
spread [3]. Structural components of coronaviruses include the spike proteins, extracellular
membrane, envelope, nucleocapsid and non-structural proteins [4,5]. Infection is initiated
by the binding of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor
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on the host cell membrane, followed by internalization of viral RNA. The strategic plan for
COVID-19 research by the NIH-NIAID (National Institute of Health-National Institute of
Allergy and Infectious Diseases) emphasizes interpretation of the disease characteristics,
development of rapid diagnostic kits and effective vaccine development, along with repur-
posing available drugs to combat COVID-19. A number of vaccines have been developed
against the disease.; however, they cannot be used for treatment of the infected segment
of the population. While vaccines could protect only the unaffected cohort by initiating
immune response against the pathogen, drug repurposing could be an immediate solution
for disease management and alleviation in the affected population.

Researchers have investigated the SARS-CoV-2 RNA-dependent RNA polymerase
(RdRp), SARS-CoV-2 main protease (Mpro or 3CLpro) and SARS-CoV-2 receptor binding
domain (RBD) as prospective therapeutic targets involved in viral proliferation. The key
enzyme SARS-CoV-2 Mpro cleaves viral polyproteins translated from the viral mRNA into
functional polypeptides required for the assembly of viral progeny [6].

The SARS-CoV-2 Mpro is comprised of 306 amino acids encompassing three domains
(I-III) with 11 cleavage sites in its substrate, large polyprotein 1ab. Substrate binding is
facilitated by the active site harboring the catalytic dyad (His41 and Cys145) in the cleft
between domains I and II (Figure S1). In addition, the catalytic activity is induced by
dimerization of the enzyme which is prompted by the key residue Glu166 [6]. Targeting
the catalytic dyad and the residues in its vicinity and blocking the substrate-binding pocket
with an inhibitor lead molecule could render the enzyme inactive.

Thus, the strategy to inhibit the activity of SARS-CoV-2 Mpro can greatly mitigate
disease progression. Structure-based virtual screening (SBVS) can be used to identify the
lead inhibitor molecules against SARS-CoV-2 Mpro. SBVS for drug discovery involves
computational prediction of interactions between a target biological macromolecule serving
as the receptor and its lead compounds. Docking algorithms, such as AutoDock [7],
calculate the likelihood of a ligand binding to the target macromolecule. High-affinity
ligands thus identified could be designated as potential inhibitors of SARS-CoV-2 Mpro.

Several virtual screening studies attempted to identify potential inhibitors from the
available approved drug repositories against SARS-CoV-2 Mpro. Some of the potential
approved drugs which could be repurposed as anti-COVID therapeutics include disomin,
hesperidin, MK-3207, dihydroergocristina, bolazine, R228, ditercalinium, etoposide, tenipo-
side, UK-432097, irinotecan, lumacaftor, velpatasvir, eluxadoline, ledipasvir, remdesivir,
saquinavir, darunavir, lopinavir, oseltamivir, and ritonavir as predicted by in silico stud-
ies [8–10]. Additionally, natural products such as flavone and coumarin derivatives [10];
peptides derived from lactoferrin [11] and whey protein [12]; and food components such
as sesamin, ellagic acid, epicatechin and capsaicin [13] have also been predicted to have
inhibitory activity against SARS-CoV-2 Mpro. However, most studies did not analyze these
predicted inhibitors further.

The current study identifies effective hit inhibitor molecules from the FDA-approved
drug library and the natural products library using docking studies with SARS-CoV-2
Mpro, and predicts these candidate’s effective concentration. Further, the protein–drug
interactions were experimentally validated using a BRET-based Mpro sensor in vitro.

2. Materials and Methods
2.1. Retrieval and Preparation of Mpro for Virtual Screening

High-resolution X-ray crystal structures of the Mpro protein in unliganded (PDB code:
6Y2E at 1.75 Å resolution [6]) and liganded form (PDB code: 6WNP at 1.44 Å resolu-
tion) complexed with Boceprevir were retrieved from the Protein Data Bank (PDB) [14].
The extracted PDB coordinates were prepared for docking studies by removal of lig-
and/heteroatoms/water molecules, and further protonated and Gasteinger charges added
using AutoDock tools (Version 1.5.6, Center for Computational Structural Biology, The
Scripps Research Institute, La Jolla, CA, USA) [7].
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2.2. Library Selection

The chemical compound collections of the FDA-approved purchasable drug library
(Drugs-lib) and natural products library (NP-lib) inherent in the MTiOpenScreen web-
server [15] were chosen, along with the e-Drug3D FDA-approved drug database (https:
//chemoinfo.ipmc.cnrs.fr/MOLDB/index.php, accessed on 16 August 2020) [16] for the
virtual screening.

2.3. Ligand Extraction and Preparation

Ligands were extracted from the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/, accessed on 15 September 2020) [17] and prepared using AutoDock tools [7].

2.4. Docking Parameters

Both 6Y2E and 6WNP were prepared for docking studies as described in Section 2.1.
Ligand Boceprevir was downloaded separately from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/, accessed on 3 June 2020) and prepared using AutoDock
tools. The prepared Boceprevir ligand was docked with both 6Y2E (free enzyme) and
6WNP (ligand removed) following site direction using grid calculation based on active
site/catalytic dyad, and the residues in its vicinity (His 41, Cys 145, His 163, His 164,
Met 165, Glu 166) [6] were then compared with the crystal structure 6WNP (Mpro-Boceprevir
complex) for similarity of the interacting amino acid residue environment.

2.5. Virtual Drug Screening through Molecular Docking Studies

Preliminary drug screening was performed using the MTiOpenScreen webservice
(https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/, accessed on 31
August 2020), and the derived optimal drug molecules were further downloaded from the
PubChem database to be subjected to molecular docking studies using the MTiAutoDock
webservice in-built in the MTiOpenScreen webserver [15].

2.6. Analysis and Visualization of Mpro-Drug Complex

Mpro-Drug complexes were analyzed and visualized using PyMoL Molecular Graph-
ics System (Version 2.3, Schrödinger, LLC, New York, NY, USA) and UCSF Chimera
(Version 1.15, University of California, San Francisco, CA, USA) [18]. Moreover, the
Mpro-Drug interactions were visualized using Ligplot+ (Version 2.2.4, written by Roman
Laskowski, European Molecular Biology Laboratory, European Bioinformatics Institute,
Cambridge, UK) [19].

2.7. Drug Purchase Information

FDA-approved drugs Ciclesonide (HY-B0625), Losartan (HY-17512), Hesperidin (HY-
15337) and Telmisartan (HY-13955) were obtained from the MedChemExpress LLC (Mon-
mouth Junction, NJ, USA), and the Natural Products (NP1; MolPort-039-052-621, CFN97157)
and (NP2; MolPort-039-141-993, CFN97918) were obtained from the MolPort database/
ChemFaces Biochemical Co., Ltd. (Wuhan, China).

2.8. Prediction of Mpro-Hit Molecule Interactions Using Deep Learning

Drug–target interactions between the candidate hit molecule and Mpro was predicted
using the deep learning tool, DeepPurpose (Version 0.1.5, University of Illinois at Urbana-
Champaign, Urbana, IL, USA) [20]. The DeepPurpose tool uses different drug–protein
encoder pairs to train five models using its inherent training datasets. The binding affinity
of the drug–target pair as one of three binding metrics is predicted using a customizable
classifier by applying each of these five models. In this study, the SMILES data of candidate
hit molecules and the Mpro protein sequence were provided as input to the DeepPurpose
tool. The binding affinity of candidate hit molecules and Mpro as an IC50 metric was
predicted by the DeepPurpose tool using five pre-trained DeepPurpose models trained
using the BindingDB training dataset. The five pre-trained DeepPurpose models include

https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php
https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
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four drug encoders: the convolutional neural network (CNN), multi-layer perceptrons
(MLP) on Morgan, Daylight Fingerprint 1 and the message passing neural network (MPNN),
and two protein encoders—CNN and MLP—on amino acid composition (AAC).

2.9. Cell Lysate Preparation for In Vitro BRET Assay

HEK 293T cells were seeded onto 10 cm dishes and transfected with the BRET-based
mNG-Mpro-Nter-auto-NLuc Mpro sensor [21] plasmid DNA using 150 µg/dish of the
polyethyleneimine (PEI) lipid (Sigma-Aldrich; 408727-100 mL) in Opti-MEM (Invitro-
gen; 31985088). At 48 h post-transfection, cells were lysed in a buffer containing 50 mM
HEPES (pH 7.5), 50 mM NaCl, 0.1% Triton-X 100, 1 mM Dithiothreitol (DTT) and 1 mM
ethylenediamine tetraacetic acid (EDTA) [22] on ice after washing with chilled Dulbecco’s
phosphate-buffered saline (DBPS). Cell lysates were collected in a 1.5 mL Eppendorf tube
and centrifuged at 4 ◦C for 1 h at 18400× g, following which supernatant was collected,
aliquoted and stored at −80 ◦C until further usage.

2.10. Expression and Purification of Recombinant SARS-CoV-2 Mpro

Escherichia coli (E. coli) BL21-CodonPlus cells (Agilent Technologies) were transformed
with the plasmid pETM33_NSP5_Mpro (a gift from Ylva Ivarsson (Addgene plasmid
#156475)) and the selected colony was inoculated in 100 mL of LB medium. Protein
expression was induced by the addition of 0.1 mM isopropyl-β-D-thiogalactopyranoside
(IPTG), followed by incubation at 37 ◦C for 2.3 h. The cells were harvested by centrifugation
(4000× g, 10 min, 4 ◦C) and the pellet was resuspended in 10 mL lysis buffer (50 mM Tris
(pH 8), 300 mM NaCl, 10 mM beta-mercaptoethanol (bME), 1 mM PMSF and 10% (v/v) glyc-
erol), followed by sonication. The supernatant was collected after centrifugation (18,000× g,
90 min, 45 ◦C) and incubated with GSH beads at 4 ◦C for 2 h. The beads were washed
(wash buffer—50 mM Tris (pH 7), 150 mM NaCl, 10 mM beta-mercaptoethanol (bME),
1 mM EDTA, 0.01% Triton X-100 and 10% glycerol) and incubated with PreScission Protease
(GE Healthcare#27-0843-01) in cleavage buffer (50 mM Tris (pH 7), 150 mM NaCl, 1 mM
DTT, 1 mM EDTA, 0.01% Triton X-100 and 10% glycerol) at 4 ◦C for 16 h. The supernatant
containing Mpro was collected after centrifugation at 500× g at 4 ◦C for 10 min.

2.11. In Vitro BRET-Based Mpro Proteolytic Cleavage Inhibitor Assay

The inhibitors at various concentrations (ranging from 10−3 to 10−10 M) were pre-
pared from 10 mM stock solutions and incubated with 2 µM of recombinantly purified
SARS-CoV-2 Mpro protease for 1 h at 37 ◦C in buffer containing tris-buffered saline (TBS),
1 M sodium citrate, 1 mM EDTA and 2 mM DTT, followed by the addition of cell lysates
containing the BRET-based Mpro sensor [21]. GC376 (GC376 Sodium; AOBIOUS-AOB36447;
stock solution prepared in 50% DMSO at a concentration of 10 mM) at a final concentration
of 100 µM was used as a control. BRET measurements were performed at 37 ◦C by the
addition of furimazine (Promega, Madison, WI, USA) at a dilution of 1:200. The biolumi-
nescence (467 nm) and fluorescence (533 nm) readings were recorded using Tecan SPARK
multimode microplate reader and used to calculate the BRET ratios (ratio of emission
at 533 nm and 467 nm wavelengths). EC50 values were calculated using the BRET ratio
obtained at 30 min after the addition of the NLuc substrate.

3. Results

The SARS-CoV-2 Mpro crystal structure 6WNP complexed with Boceprevir was pre-
pared such that the ligand coordinates were removed, retaining only the protein coordinates.
Then, the 3D coordinates of Boceprevir were downloaded from the PubChem database. Fur-
thermore, both the protein and ligand were prepared using AutoDock tools as mentioned
in Sections 2.1 and 2.3.

The 6WNP protein was docked with Boceprevir using MTiAutoDock. The docked
6WNP protein–Boceprevir complex was analysed using Ligplot and compared with the
original crystal structure of 6WNP (Mpro–Boceprevir complex). The rationale is to refine
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the docking parameters such that the docked 6WNP protein–Boceprevir complex was
comparable with the crystal structure 6WNP (Mpro–Boceprevir complex) in terms of the
active site interacting residue environment. The same devised parameters have been
applied for docking the unliganded SARS-CoV-2 Main Protease crystal structure 6Y2E to
screen the potential inhibitors. The unliganded (free enzyme) 6Y2E structural coordinates
were taken for further docking studies as the liganded form of 6WNP protein structure’s
catalytic site was influenced by the bound ligand Boceprevir.

We chose the purchasable FDA-approved drug library collections e-Drug3D-lib
(1993 drugs) and Drugs-lib (7173 drugs), along with natural products database, NP-lib
(1228 compounds), as repositories for screening potential inhibitors. To virtually screen
lead-like compounds, only the compounds among the above-mentioned databases that
comply with physio-chemical properties as previously described [23] were docked with
the unliganded (free enzyme) 6Y2E using the refined docking parameters in the MTi-
OpenScreen webserver.

From the virtual screening, drug compounds that had a calculated binding
affinity >−9 kcal/mol were selected. There were 67 drugs from e-Drug3D-lib, 121 drugs
from Drugs-lib and 33 compounds from NP-lib (Table S1). Among these compounds we
selected those that are used as anti-virals, respiratory ailments, anti-asthmatics or anti-
hypertensives. Further, analogous compounds and those without 3D co-ordinates were
also removed from the selected drug list. Thus, we shortlisted 12, 14 and 19 compounds
from e-Drug3D-lib, Drugs-lib and NP-lib, respectively (Table S2). Individual 3D structural
coordinates for the shortlisted compounds were downloaded from the PubChem database
and site-specific docking simulation was performed with 6Y2E using the MTiAutoDock
webservice in-built in the MTiOpenScreen webserver.

From the docking results, the top three compounds exhibiting the highest calculated
binding affinity and at least two poses at the active/catalytic site were chosen [24]. Figure 1
summarizes each stage of the virtual screening cascade. The molecular docking simulation
was carried out in triplicates. Additionally, we also conducted blind docking in triplicates
to predict the unconstrained protein–drug binding interactions shown in the docking sum-
mary in Table 1 and Figures 2–4. The shortlisted hit inhibitor molecules were Ciclesonide,
Losartan and Telmisartan from e-Drug3D-lib, Flezelastine, Hesperidin and Niceverine from
Drugs-lib, and natural products (NP)- natural product compound 1 (NP1), natural product
compound 2 (NP2) and natural product compound 3 (NP3) from NP-lib. Further details
of the shortlisted drugs are mentioned in Table 2. The selected molecules (NP1, NP2 and
NP3) were also studied for their physiochemical and medicinal chemistry properties using
the SwissADME server (http://www.swissadme.ch/, accessed on 28 February 2021) [25]
shown in the (Figures S2–S4).

Table 1. SARS-CoV-2 Mpro–drug docking summary.

e-Drug3D-lib Ligand Ciclesonide Losartan Telmisartan

Site-Specific Docking Calculated Binding
Affinity Score (kcal/mol)

1 −11.41 −9.14 −8.94

2 −11.06 −9.14 −8.29

3 −11.03 −9.14 −8.02

Blind Docking Calculated Binding
Affinity Score (kcal/mol)

1 −11.35 −9.14 −8.62

2 −11.09 −9.13 −8.72

3 −10.88 −9.14 −8.08

Drugs-lib Ligand Flezelastine Hesperidin Niceverine

Site-Specific Docking Calculated Binding
Affinity Score (kcal/mol)

1 −10.58 −9.87 −9.60

2 −10.38 −10.61 −8.90

3 −10.43 −10.72 −10.63

http://www.swissadme.ch/


Biomolecules 2022, 12, 1754 6 of 16

Table 1. Cont.

Drugs-lib Ligand Flezelastine Hesperidin Niceverine

Blind Docking Calculated Binding
Affinity Score (kcal/mol)

1 −10.29 −10.98 −9.62

2 −10.10 −9.78 −9.05

3 −10.00 −9.16 −9.42

NP-lib Ligand NP1 NP2 NP3

Site-Specific Docking Calculated Binding
Affinity Score (kcal/mol)

1 −11.73 −10.55 −10.28

2 −10.66 −10.37 −10.28

3 −10.12 −10.47 −10.28

Blind Docking Calculated Binding
Affinity Score (kcal/mol)

1 −10.43 −10.70 −10.28

2 −10.14 −10.84 −10.28

3 −10.34 −10.65 −10.28
Biomolecules 2022, 12, 1754 6 of 16 
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In addition to the molecular docking studies, the IC50 of shortlisted hit molecules was
predicted by using the deep learning tool, DeepPurpose, with the help of five pre-trained
models trained using the BindingDB training dataset. BindingDB is a public database
containing experimentally determined binding affinities of drug–target interactions with
small or drug-like molecules. DeepPurpose predicted median IC50 values are listed in
Table 3. The predicted median IC50 values range between 2–24 µM, with Flezelastine having
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the lowest predicted IC50 value of 2.04 µM and NP1 having the highest predicted IC50
value of 23.19 µM. We have also calculated the affinity Kd values from the blind docking
scores as represented by Zhang et al. [26].
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Figure 4. NP-lib docking summary. Surface representation of Mpro complexed with (a,b) NP1,
(c,d) NP2 and (e,f) NP3 resulting from site-specific and blind docking studies, respectively. The
corresponding LigPlot interaction maps (polar residue names in blue font and non-polar residue
names in brown font) are shown adjacent to the complexes.

Furthermore, we validated the inhibitors in vitro using our recently reported BRET-
based Mpro sensor [21]. BRET is a highly sensitive technique that involves a non-radiative
transfer of energy from a donor, a luciferase protein, to an acceptor, a fluorescent protein,
depending primarily on their spectral overlap and proximity [27–30]. It has now been



Biomolecules 2022, 12, 1754 10 of 16

utilized in a number of ways including detection of small molecule ligands [28,30] confor-
mational changes in proteins [29] and monitoring the activity of proteases [31]. In the Mpro

sensor, the NanoLuc (NLuc) luciferase was used as the energy donor while mNeonGreen
(mNG) was used as the energy acceptor and the Mpro N-terminal auto-cleavage peptide
sequence was included in between the two proteins (Figure S5A). While the intact sensor
displays high BRET, proteolytic processing of the cleavage peptide results in a decrease in
the BRET. Cell lysate prepared from HEK293T cells expressing the BRET-based Mpro sensor
and a recombinantly purified Mpro protein was used in the assay. BRET measurements
were performed after addition of the NLuc substrate. As shown in Figure S5B,C, the BRET
ratio of the sensor decreased in the presence of Mpro, whereas it remained high in the ab-
sence of Mpro. Further, the pharmacological inhibition of SARS-CoV-2 Mpro by the known
inhibitor-GC376-abrogated the Mpro-mediated decrease in the BRET ratio (Figures S5B,C).

Table 2. Drug information.

Drug Library Drug/Ligand Name Drug ID Clinical Application/Use

e-Drug3D-lib

Ciclesonide CAS 126544-47-6 Anti-Asthma

Losartan CAS 114798-26-4 Anti-Hypertensive

Telmisartan CAS 144701-48-4 Anti-Hypertensive

Drugs-lib

Flezelastine CAS 135381-77-0 Anti-Asthma/Anti-Allergic

Hesperidin CAS 520-26-3 Antioxidant/Anti-Inflammatory

Niceverine CAS 2545-24-6 Anti-Hypertensive

NP-lib

NP1
(2,3,2′′,3′′-Tetrahydroochnaflavone)

CAS 678138-59-5
MolPort-039-052-621 -

NP2
(Furowanin A)

CAS 911004-72-3
MolPort-039-141-993 -

NP3
(3S,6bS,8aR,12aR,12bS,14bS)4,4,6b,8a,11,11,12b,

14b-octamethyl
1,2,3,4,4a,5,6,6b,7,8,8a,9,10,11,12,12a,12b,13,14,

14b-icosahydropicen-3-ol

MolPort-002-527-314 -

Table 3. Summary of BRET-based SARS-CoV-2 Mpro inhibition assay and DeepPurpose results.

Library Drugs Determined EC50
(µM)

Predicted IC50
(µM)

Blind Docking
Score (kcal/mol)

Calculated Affinity
(Kd) from Blind

Docking Score (µM)

e-Drug3D-lib

1 Ciclesonide (CS) Not determined 6.4 −11.35 0.00469

2 Losartan (LT) 260.05 ± 88.60 9.11 −9.14 0.196

3 Telmisartan (TM) Not determined 3.67 −8.72 0.399

Drugs-lib

1 Flezelastine Not tested 2.04 −10.29 0.0281

2 Hesperidin (HP) Not determined 8.37 −10.98 0.00876

3 Niceverine Not tested 3.4 −9.62 0.0872

NP-lib

1 NP1 901.1 ± 10.60 23.19 −10.43 0.0222

2 NP2 124.8 ± 207.5 3.45 −10.84 0.0111

3 NP3 Not tested 7.73 −10.28 0.0286

We then determined the impact of the compounds on SARS-CoV-2 Mpro activity by
incubating the protease (2 µM) with a range of concentrations of the inhibitors (from 10−3

to 10−10 M) at 37 ◦C for 1 h and then monitored time-dependent cleavage of the Mpro
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sensor through BRET (Figure 5). Out of the six compounds, Losartan showed an effective
concentration-dependent Mpro inhibition with an increase in BRET value (0.69 ± 0.072
at 100 µM and 1.27 ± 0.32 at 1 mM) (Figures 5 and S6) and an approximate 50% re-
duction in protease activity at 100 µM and 1000 µM (Figure S6), and an EC50 value of
260.05 ± 88.60 µM. Additionally, the compound NP1 showed Mpro inhibition with an
EC50 value of 901.1 ± 10.60 µM (Figure 5) with an increase in BRET ratio to 1.22 ± 0.37
(Figures 5 and S6) and a decrease in protease activity to 26% (Figure S6). NP2, on the other
hand, showed a lower EC50 value (124.8 ± 207.5 µM) and an approximate 50% reduction
in Mpro activity. Ciclesonide and Hesperidin showed Mpro inhibition only at 1 mM concen-
tration and, thus, largely failed to inhibit the protease (Figure 5). Telmisartan completely
failed to inhibit Mpro (Figure 5).
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Figure 5. Screening of SARS-CoV-2 Mpro inhibitors using a BRET-based sensor. Graph showing time-
dependent difference in BRET ratio for various concentrations (10−3 to 10−10 M) of each inhibitor (CS:
Ciclesonide, HP: Hesperidin, LT: Losartan, TM: Telmisartan, NP1: 2,3,2′′,3′′-Tetrahydroochnaflavone
and NP2: Furowanin A) along with GC376 as the control. Graphs also show the decrease in BRET in
the presence of Mpro and absence of inhibitors.

4. Discussion

The main aim of the study is to repurpose FDA-approved drugs, as well as to identify
natural product compounds that could inhibit SARS-CoV-2 Mpro activity and eventually
diminish viral replication. Molecular docking based virtual screening studies help in
narrowing down the plausible inhibitory hit molecules against a target from large datasets.
The review by Macip et al. [32] have indicated that additional confirmation of docking study
results by other computational methods prior to experimental validation is the ideal route
in identification of inhibitors against SARS-CoV-2 Mpro. In this study, we have performed
molecular docking studies and prediction of potential inhibitors of SARS-CoV-2 Mpro using
deep learning followed by experimental validation.

Figures 2–4 summarizes the interactions detected in both site-specific and blind dock-
ing methods. Most of the lead molecules potentially occupy the active site by interacting
with the catalytic dyad and its vicinity residues (His 41, Cys 145, His 163, His 164, Met 165,
Glu 166), suggesting strong inhibition of Mpro activity.

Among the candidate hit molecules from e-Drug3D-lib, the anti-asthmatic steroid
Ciclesonide is presently studied for its therapeutic potential as a nasal inhaler [33]. This
was further corroborated by in vitro studies by Matsuyama et al. [34]. Moreover, clini-
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cal case studies by Tsuchida et al. [35] and Nakajima et al. [36] support repurposing of
Ciclesonide as a potential anti-COVID-19 drug candidate. Meanwhile, Losartan and Telmis-
artan are angiotensin receptor blockers widely used as anti-hypertensive drugs. Previous
studies [37,38] have indicated both drugs to be highly effective in reducing morbidity and
mortality in COVID-19 patients. In particular, Losartan has a significant effect on elderly
patients [39]. Efficacy of Losartan against SARS-CoV-2 infection was suggested to be ineffec-
tive in patients with lung injury [40], but was significant in patients with hypertension [41].
This suggests that the effect of Losartan depends on the pre-existing health condition of the
patient, and more clinical studies are required to understand the underlying mechanism.

Among the candidate hit inhibitor molecules from Drugs-lib, Flezelastine is an antihis-
tamine, Hesperidin is an antioxidant/anti-inflammatory agent and Niceverine is an anti-
hypertensive. Recent studies suggest that anti-histamine [42] and anti-hypertensive [43]
drugs are associated with positive outcomes in COVID-19 patients. Interestingly, the
bioflavonoid Hesperidin, prevalent in citrus fruit peels, has been cited to exhibit antiviral
properties and is effective in prevention of COVID-19 [44]. Moreover, Hesperidin is also
available as a dietary supplement.

Apart from the above-mentioned FDA-approved drugs, natural products were also
screened for inhibitory activity against SARS-CoV-2 Mpro. Among the active natural
products screened, Natural Product 1 (NP1) (2,3,2′′,3′′-Tetrahydroochnaflavone) is an
ether-linked bioflavonoid from the Quintinia acutifolia tree, endemic to New Zealand [45],
and NP2 (Furowanin A) is an isoflavonoid from the leaves of Millettia taiwaniana Hayata
(Leguminosae) [46].

NP1 scored the highest predicted IC50 value (23.19 µM) when assessed using the
DeepPurpose deep learning tool, an EC50 value of 901.1 ± 10.60 µM was observed from the
BRET assay and Mpro–NP1 docking calculated a binding affinity score of −11.73 kcal/mol
(site-specific docking) and −10.43 kcal/mol (blind docking). Moreover, NP2 scored a
predicted IC50 value (3.45 µM) when assessed using the DeepPurpose deep learning tool,
an EC50 value of 124.8 ± 207.50 µM was observed from the BRET assay and Mpro–NP2
docking calculated a binding affinity score of −10.55 kcal/mol (site-specific docking) and
−10.84 kcal/mol (blind docking). Thus, these results indicate the potential of NP1 and
NP2 to be a plausible inhibitor against SARS-CoV-2 Mpro. Similarly, Losartan from the
e-Drug3D-lib scored a predicted IC50 value of 9.1 µM by DeepPurpose, an EC50 value
of 260.05 ± 88.60 µM was observed from the BRET assay and Mpro–Losartan docking
calculated a binding affinity score of−9.14 kcal/mol in both site-specific and blind docking.
Losartan could be repurposed as a potential drug to treat SARS-CoV-2 infection. Further,
Losartan, NP1 and NP2 were also checked for complex formation using the EDock program
(https://zhanggroup.org/EDock/, accessed on 17 October 2022), which predicts protein–
ligand complexes by replica-exchange Monte Carlo simulation [47]. The protein–ligand
interacting residue environment was similar to the results obtained from AutoDock, as
illustrated in Figure S7. We evaluated the absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties and pharmacokinetics of Losartan, NP1 and NP2 using
ADMETLab 2.0 (https://admetmesh.scbdd.com/service/evaluation/index, accessed on 19
October 2022) [48] (Table S3). Losartan (Molecular weight: 422.16 g/mol), NP1 (Molecular
weight: 542.12 g/mol) and NP2 (Molecular weight: 438.17 g/mol) are accepted as per
the Lipinski rule, had an optimal volume distribution, had moderate clearance and are
predicted to be respiratory non toxicants.

Only a limited number of studies have utilized BRET assay for screening inhibitors
against SARS-CoV-2 Mpro. Hou, Ningke, et al. [49] have recently evaluated the activity
of known SARS-CoV-2 Mpro inhibitors such as Boceprevir and GC376 using the BRET
assay and have concluded its merit in screening potent inhibitors. The study by Ma, Ling,
et al. [50] tested the activity of known HIV/HCV protease inhibitors against SARS-CoV-2
Mpro. They have deduced the potency of simeprevir against both the SARS-CoV-2 Mpro and
the mutant Omicron variant Mpro. Although the SARS-CoV-2 Mpro protein of the Omicron
variant had a P132H point-mutation, there were no significant structural changes [51], and

https://zhanggroup.org/EDock/
https://admetmesh.scbdd.com/service/evaluation/index
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simeprevir exhibited similar inhibition activity in the BRET assay [50]. The current study,
therefore, adds on to the utility of BRET assays for screening inhibitors against Mpro [21].
One of the primary advantages of using the BRET-based Mpro sensor is that the substrate,
which is the sensor, is used at a much lower concentration (~1 nM), likely reflecting the
concentration in vivo during SARS-CoV-2 infection compared to the in vitro FRET-based
assays (typically 20 or 40 µM). This likely allows detection of impact on Mpro activity with
both high as well as low affinity lead compounds.

The hits Ciclesonide, Telmisartan, and Hesperidin had good predicted IC50 values
using the DeepPurpose deep learning tool (Table 3), but no significant activity was observed
in the BRET assay despite the good calculated binding affinity scores in docking studies.
As shown in the table, Flezelastine scored top as per the predicted IC50 values among all
drugs, and was followed by Niceverine. Further, the hits Flezelastine, Nicerverine and NP3
scored high predicted binding affinity values by docking studies and predicted IC50 values
by DeepPurpose, but were not tested in the BRET assay. A notable recent study by Fan
and Shi [52] investigated the effect of training datapoints in the efficiency of protein–ligand
binding affinity prediction by the DeepPurpose tool. We searched for the human SARS-
Corona Virus 3C-like proteinase (3CLpro)–ligand datapoints in the BindingDB training
dataset used in our study. There were 979 3CLpro–ligand pairs present in the dataset, but
none of our hit molecules were present (Table S4). Moreover, 149 datapoints were identified
with ligands Ciclesonide, Losartan, Telmisartan and Hesperidin interacting with other
protein targets. The discrepancy between DeepPurpose and BRET assay results could be
due to the lack of datapoints for SARS-CoV-2 Mpro–hit ligand pairs in the training dataset
of the DeepPurpose tool. Experimental validation of the computational predictions is
required for better interpretation of inhibitory effects of these drugs on SARS-CoV-2 Mpro.
The computational predictions presented in this study can aid in experimental research
activities towards the development of effective SARS-CoV-2 Mpro inhibitors.

5. Conclusions

Inhibitor molecules against SARS-CoV-2 Mpro were identified using structure-based
virtual screening of FDA-approved drug libraries (e-Drug3D-lib and Drugs-lib), along
with a purchasable natural products library (NP-lib). Among the candidate hit inhibitor
molecules, the antihypertensive drug Losartan, the natural product compound 1 (2,3,2′′,3′′-
Tetrahydroochnaflavone; a bioflavonoid) and natural product compound 2 (Furowanin
A; an isoflavonoid) exhibited significant inhibitory activity against SARS-CoV-2 Mpro as
validated by our in-house developed BRET assay. Clinical validation of the efficacy of these
compounds against SARS-CoV-2 would be needed to assess their utility as potential drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12121754/s1, Table S1: Virtual screening results data, Table S2:
Shortlisted drug compounds after initial virtual screening, Table S3: ADMET results, Table S4: Data
points from the BindingDB database, Figure S1: SARS-CoV-2 Mpro domain architecture, Figure S2–S4:
ADME analysis of NP1, NP2 and NP3; Figure S5: Schematic diagram of BRET-based Mpro sensor;
Figure S6: Screening of SARS-CoV-2 Mpro inhibitors using BRET-based sensor; Figure S7: Comparison
of protein–ligand docked complexes.
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