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Abstract: People with Down syndrome (PWDS) are more at risk for developing obesity, oxidative
stress disorders, metabolic disorders, and lipid and carbohydrate profile disorders than the general
population. The presence of an additional copy of genes on chromosome 21 (i.e., the superoxide
dismutase 1 gene (SOD1) and gene coding for the cystathionine β-synthase (CBS) enzyme) raises the
risk for cardiovascular disease (CVD). As a result of disorders in metabolic processes and biochemical
pathways, theoretically protective factors (low homocysteine level, high SOD1 level) do not fulfil their
original functions. Overexpression of the CBS gene leads to the accumulation of homocysteine—a
CVD risk factor. An excessive amount of protective SOD1, in the case of a lack of compensatory
increase in the activity of catalase and peroxidase, leads to intensifying free radical processes. The
occurrence of metabolic disorders and the amplified effect of oxidative stress carries higher risk of
exposure of people with DS to CVD. At present, classic predispositions are known, but it is necessary
to identify early risk factors in order to be able to employ CVD and obesity prophylaxis. Detailed
determination of the metabolic and lipid profile may provide insight into the molecular mechanisms
underlying CVD.
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1. Introduction

Diagnosing a disease before its first symptoms appear poses a great challenge in
medicine. In the past, it was believed that only genes affected the maintenance of home-
ostasis and health in the body. After many years of research and genome sequencing, we
are still unable to diagnose numerous diseases or to design an effective therapy at an early
stage. It was assumed that the organism is a complex structure, at the base of which is
the genome, and its subsequent levels being transcripts, proteome and metabolome [1].
Metabolism plays a key role in all areas of biology, which is why more and more of those
areas are being studied from its perspective. Many adult conditions, such as cardiovascular
and metabolic disease, originate during childhood, therefore the knowledge of risk factors
for these diseases will allow for the implementation of an early and effective prophylaxis.

Down syndrome (DS, trisomy 21, T21) is the most common chromosome abnormality
(caused by trisomy of the whole or a part of chromosome 21) with a worldwide incidence
rate of 1:1000–1100 in newborns [2]. The extra chromosome 21, or at least a portion of it, re-
sults in a constellation of clinical features (cardiac defects, delayed growth, hematology and
endocrine abnormalities, autoimmune diseases, intestinal, stomatognathic disturbances,
vision and hearing defects and obstructive sleep apnea, and others) [3,4]. Additionally,
people with DS (PWDS) are at increased risk for cardiovascular diseases (CVD) (mitral
valve prolapse, endocarditis, atherosclerosis (AS) and congestive heart failure [5]), pul-
monary hypoplasia, muscle hypotonia, osteoporosis, arthritis, osteoarthritis, and diabetes
mellitus [6,7]. There is no specific DS phenotype. Individuals may differ from each other
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both in terms of external features and chronic diseases. Such a complex condition con-
tributes to the demand for profound medical care. Advancements in medicine have led
to a marked improvement in life expectancy of PWDS, with the estimated median age of
survival approaching 60 years [8]. Obesity-related diseases (CVD, cancer, type II diabetes,
and others) have received more attention [9]. The problem of body weight disorders among
PWDS is complex and challenging, concerning mainly the rapid transformation between
undernutrition in the first period of life and excessive weight gain in later years. For the
purposes of this review, however, we will focus on the problems of excess body weight in
children and adolescents with DS. The appearance of new disease entities in this population
is a challenge for health practitioners. Due to the burden of many conditions, PWDS should
be monitored from an early age with the constraints associated with their health status.

2. Omics Techniques: Metabolomics and Lipidomics

Omics techniques are a rapidly evolving field of molecular sciences. Metabolomics, a
relatively young branch of omics science, is an interdisciplinary approach that encompasses
biology, chemistry, and bioinformatics. The metabolomic examination should enable the
detection of abnormalities in the patient’s health at an early stage of the development of
clinical symptoms or even before their manifestation [10]. The advantage of metabolomics
research is its low invasiveness, thanks to the use of mainly readily available body fluids,
i.e., blood serum, plasma, saliva, urine, and tissues after prior preparation. It provides a
modern bioanalytical tool to define perturbations in metabolic pathways and enables the
detection of predictive biomarkers. Thus, metabolomics can contribute to more efficient
diagnosis, treatment, and disease prevention. The definition of metabolomics officially
appears in the literature in 1999 as “the quantitative measurement of the dynamic multi-
parametric metabolic response of living systems to pathophysiological stimuli or genetic
modification” [11]. Metabolomics is based on the qualitative and quantitative study of
small-molecule (<1.5 kDa) compounds that are intermediates and products of metabolism
(lipids, amino acids, short peptides, nucleic acids, sugars, alcohols, or organic acids) and
reflects in endogenous metabolism and exogenous sources such as, among others, diet or
physical activity. Metabolites are involved in all biochemical reactions (any process that
occurs in the body is reflected in the metabolome) and measuring them can potentially eval-
uate the state of the organism. There are two approaches in metabolomics: untargeted and
targeted. The untargeted approach makes it possible to identify metabolic new biomarkers;
the targeted approach identifies and quantifies a limited number of known metabolites.
Both the presence and absence of specific metabolites can be the source of information
about possible disorders in the patient’s health and draw attention to a medical problem.

Lipid homeostasis is essential for maintaining full health; therefore its evaluation is
of fundamental importance. Any abnormalities in lipid metabolism play an important
role in many diseases, including metabolic syndrome, diabetes, CVD, lipodystrophies,
neurological/neurodegenerative disorders, and central nervous system damage [12]. Most
cases of CVD are difficult to associate with well-known risk factors. Many patients, despite
having optimal blood lipid levels, are exposed to CVD [13]. Therefore, it is important to
search for new biomarkers that will enable the very early diagnosis and effective prevention
of CVD. Single biomarkers in cardiology are very effective in confirming the occurrence of
an acute event. However, it is very difficult to precisely estimate the risk of atherosclerotic
disease at an early stage. So far, researchers have relied on well-established risk factors,
such as smoking, hypertension, dyslipidemia, and diabetes as risk factors of developing
CVD [12,14–16]. Detailed determination of the metabolic profile may provide insight into
the molecular mechanisms underlying AS [13,17–20].

2.1. Metabolomics

Metabolomics is a very promising tool for investigating human health, however, the
analysis of the metabolome is challenging for many reasons, among others, different ana-
lytic approaches and the lack of standardization. The techniques used in metabolomics are
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magnetic resonance (NMR) spectrometers, mass spectrometers (MS), gas-chromatography
(GC), liquid chromatography (LC) systems, ion mobility systems (IMS), capillary elec-
trophoresis (CE) systems, integrated liquid chromatography-mass spectrometry (LC-MS),
integrated capillary electrophoresis-mass spectrometry (CE-MS), integrated ion mobility
spectrometry-mass spectrometry (IMS-MS) and gas chromatography-mass spectrometry
(GC-MS) [21].

As a novel technique, metabolomics can provide insight into obesity and the risk of
cardio-metabolic complications, and be used to uncover pathways underlying diet–disease
associations. The heart, being a metabolically active organ [22], and its diseases constitute
one of the main targets of the omics’ techniques of today. The results of metabolomics
studies help to clarify the pathophysiology of many diseases, optimize treatment, and
distinguish specific diagnostic biomarkers, which is especially important in the case of
asymptomatic diseases [23]. In 1991, the first biomarkers of coronary heart disease using
NMR spectroscopy [24] were discovered. The introduction of metabolomics to epidemio-
logical research is of great importance for the understanding of pathophysiology and the
discovery of new biomarkers for the early prevention and detection of AS and CVD [25]. In
2017, the American Heart Association published a statement on potential health and CVD
effects of metabolomics and its current challenges in clinical practice [26].

Understanding the pathogenesis of childhood obesity with the help of molecular
studies is one of the major challenges of current medicine. Metabolomic studies on obesity
and comorbidities are conducted in adults on a large scale. Unfortunately, little research
has been completed on groups of children and adolescents [27]. Hellmuth et al. combined
metabolomics data from four large European cohorts finding a strong positive association of
sphingomyelin (SM) 32:2 (molecular species containing myristic acid and sphingadienine)
and lyso-phosphatidylcholine (LPC) 14:0 with BMI z-score (this metabolite was found to
have a positive association with BMI adults [28]) and no association of non-esterified fatty
acid (NEFA) 16:1 with BMI z-score [29]. An LPC 14: 0 was considered a predictor of obesity
at 6 years of age (study of serum in 6-month-old infants) [30]. The rate of FA 14:0 was also
elevated in phospholipids (study among obese 15-year-old children) [31]. The authors [29]
additionally concluded that the concentration of lipids with 14:0 (exception of NEFA 14:0)
is seemingly higher in children with high BMI and may subsequently be used more often
for the synthesis of SM. In addition, the 14:0 synthesis can be enhanced by a high-calorie
diet and high glycemic load of food. SM 32:2 may be a potential biochemical marker for
the combined effect of genetic predisposition, high dietary intake of total energy, glycemic
load, and linoleic acid [29]. Atherosclerosis, the major cause of CVD, is often attributed to
lifestyle factors [32]. A high risk of the early development of AS has been proved in people
with hyperhomocysteinemia, hypermethioninemia, and homocystinuria [33]. Wurtz et al.
identified phenylalanine and various fatty acids as biomarkers for CVD [34]. Biomarkers
related to insulin resistance and energy metabolism have also already been identified [35].
A consistent metabolic profile of childhood obesity was observed including amino acids
(particularly branched chain and aromatic), carnitines, lipids, and steroids [36,37].

2.2. Lipidomics

Lipidomics, a discipline belonging to metabolomics, is described as the quantitative
characteristic of the complete lipid complex [17]. The subject of research in this subdiscipline
is lipids, i.e., a functional unit characterizing the molecular lipid image of a biological
sample under study. However, thanks to lipidomics, it is possible to quantify various lipid
molecules (acylglycerols, sterols, sphingolipids, and others) [17,19]. Lipidomic evaluation
allows for a picture of lipid concentrations, for example, the total plasma lipidomics
of the tested total plasma shows a detailed and much more complete picture of lipid
metabolism and possible abnormalities of lipid metabolism—as opposed to studies of
isolated lipoproteins [12]. Lipidomics had identified ceramides and sphingolipids as
potential mediators of cellular dysfunction.
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Lipidomics study the structural, signaling and metabolic functions of lipid compounds.
Due to the large variety of lipid types in cells/tissues, the lack of homogeneity and their fre-
quent biochemical modifications, detailed characterization may be a difficult task [38]. For
these reasons, data on lipidomics rarely appear in the scientific literature when compared
with other “omics” technologies. Thus, a sufficient amount of data on the relationship
between lipid metabolites with CVD are still lacking [39]. Lipids are presented as CVD risk
factors only in major classes and not as individual molecular entities in diabetes [40].

The main challenge of lipidomics is the demonstration of new risk factors and the
early detection of the risk of atherogenesis at the clinical level. It seems necessary to identify
early risk factors in order to undertake CVD prophylaxis.

3. Down Syndrome
3.1. Cardiovascular Disease

In 1977, Murdoch et al. found a complete absence of atherosclerosis in five posthu-
mously examined PWDS [41]. In addition, Pueschel et al. confirmed the lack of significant
differences in the level of total cholesterol (TC), low-density lipoprotein (LDL), apolipopro-
tein B (apoB), and apoB/apolipoprotein A (apoA) between the examined group of PWDS
and the control group [42]. As a result of conducted research in the 1970′s, it was thought
that people with DS were no more at risk of atherosclerosis than the general population.
However, the lifestyle and eating habits differed significantly from those present, and
life expectancy was much shorter. Recently, there have been scientific studies that may
suggest that significant and known risk factors for CVD and AS have been observed among
people with DS: diabetes [43,44], obesity [43,45–47] and hypertension [44], and lipid dis-
orders [48,49]. At the same time, it has been shown that PWDS have a lower incidence of
AS [41,44,50–56]. Additionally, lower BPs at rest may have a protective role against the
development of atherosclerosis in PWDS [53,57].

Interestingly, Landes et al. showed that PWDS were more likely to die at younger ages
from heart diseases compared with the general population [58]. The study of Hill et al.,
Day et al., and Hermon et al. showed an increased risk of death for PWDS due to CVD in
comparison with the general population [59–61]. However, Torr et al. analyzed morbidity
and mortality among PWDS and indicated ischemic heart disease to be a minor cause of
death [62]. Adelekan et al. found that children with DS have less favorable lipid profiles
than their siblings [8]. Sheela et al. showed that youth with DS had more atherogenic
lipid and lipoprotein particle profiles, including higher LDL-C levels, compared with those
without DS [49]. Buonouomo et al. found high levels of TC, LDL-C, and TG and low
HDL-C in individuals aged 2–9 years old with DS [62]. This study group with DS also had
a higher prevalence of prediabetes and an increased amount of visceral fat [49]. In general,
the increased LDL-C level in youth with DS reveals a greater risk of atherosclerosis. Adults
with DS also have a high risk of stroke, driven largely by high cardioembolic risk [44].

Lipoprotein(a) (Lp(a)) seems to be involved in the pathogenesis of CVD [63]. Krze-
sińska et al. compared lipid parameters, protein composition, antioxidative properties of
HDL, and Lp(a) levels in adolescents with DS and healthy individuals [64], and showed
unfavorable lipid profiles in conjunction with significantly higher Lp(a) levels and quality
changes in HDL particles in adolescents with DS. Serum Lp(a) levels are relatively stable
over a lifetime [65], therefore a once-in-a-lifetime Lp(a) measurement could help identify
those at increased risk of CVD [66]. Data appearing in the literature seem to be contradic-
tory. Most, however, argue for the need to refute the belief that DS is a disease free from
atherosclerosis. In this situation, it is advisable to extend the research on atherosclerosis
risk factors and predisposition to related diseases in people with DS with the use of omics
techniques.

3.2. Excessive Body Weight and Physical Activity

The literature repeatedly reports that DS children are predisposed to obesity [67–72],
abnormal or excessive fat accumulation caused by a positive energy balance, which has
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been associated with a negative impact on health [73]. Adults with DS are twice as likely
to be obese and nearly four times more likely to be extremely obese in comparison with
adults without DS [74]. The literature describes potential causes of obesity tendency
among children and adolescents with DS: decreased energy expenditure at rest; increased
leptin levels; untreated hypothyroidism; unhealthy diet; and low physical activity [70,75].
Additionally, children and adolescents with DS show less physical activity than their
peers without DS [76–78], although the tested level of physical activity in adolescents
without DS turned out to be insufficient in 80% of them [79]. What is worse, PWDS tend
to become less active as they become older, with higher rates of obesity in girls [80–84].
Although the activity level among children with DS was lower, the caloric intake was
higher in this group [75]. The greatest acceleration in obesity occurs between the ages of
2–6 years [84]. In the teenage period, when PWDS gain more independence and the ability
to choose the type and amount of food (with the predominance of processed products
with excessive amount of salt and sugar), obesity begins to be most visible. Yahia et al.
pointed out that prepubertal obese-DS displayed excess body adiposity with pronounced
central fat distribution, atherogenic lipid profile, and higher insulin resistance compared
with matched obese-control [85,86]. Wernio et al. pointed out that overweight children
with DS were characterized by higher levels of triglycerides, atherogenic index of plasma,
and apoA2 and apoE levels [87]. Obesity also contributes to the worsening of obstructive
sleep apnea symptoms and the burden of congenital heart disease [70,88,89]. With age, it
becomes more and more difficult to persuade teenagers to play sports regularly. However,
the DONUT STUDY showed that, despite potential difficulties in the pursuit of a correct
diet and inadequate approach to physical activity, children with DS could achieve results
that are substantially the same as those of non-DS children [90]. Moreover, some children
and adolescents with DS are limited by reduced respiratory efficiency and congenital
heart diseases [81]. An additional obstacle to increasing physical activity among PWDS
is the COVID-19 epidemic that has been present for over 2 years. Amatori et al. showed
a negative impact of COVID-19: decreased physical activity and increased sedentary
behaviors [91]. It is worth remembering that the patterns of proper nutrition should
function throughout a household. Stefanowicz-Bielska et al. proved that in families of
overweight and obese children with DS, other members had nutritional disorders more
frequently [92]. Caregivers and siblings should be equally involved in shaping healthy
habits and lifestyle. Different levels of intellectual disability can also make it difficult to
make correct food choices. Hence the repeated emphasis on the importance of the role of
the family as a promoter of a healthy lifestyle. Roccatello et al. analyzed meals of choice of
the people with DS finding bread, pasta and sweets as their favorite go-to foods [92]. The
least-liked food was vegetables. Fruit juices and ready-to-drink tea were the main sources
of simple sugars [92], which can contribute to liver steatosis and hypertension (the impact
of fructose) [75]. Introducing healthy eating habits may be fundamental to sustaining
good health. Jobling et al. conducted an intervention study (education program) [93].
The program was successful in convincing people with DS to reduce their consumption
of sweets but the researchers’ actions did not change other unhealthy eating habits [93].
However, Naczk et al. enrolled adolescents with DS in a thirty-three weeks swimming
program that resulted in decreases in body mass, body fat, and BMI [94]. Because regular
physical activity is recommended to reduce the risk of developing health conditions such as
heart disease, cancer, type 2 diabetes, high blood pressure, osteoporosis, and obesity [95,96],
sports programs of this type play a very important role in acquired heart-disease prevention.
As children and adolescents with DS are predisposed to overweight and obesity, and also
tend to be physically inactive, they are at a significant risk of mortality and many serious
diseases. Me et al. have shown that breastfeeding may be a protective factor for obesity
and high body fat in children [97]. In 2022, a systematic review of DS and breastfeeding
was conducted: around 50–23.3% of the children with DS were never breastfed and rates of
breastfeeding in infants with DS were lower than those in controls in three studies [98].
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3.3. Oxidative Stress

PWDS have been identified as having high oxidative stress (the imbalance between
free radical production and the prooxidative state within the cell determines a biological
state [99]), which is connected with the risk of the development of AS, neurodegenera-
tion, cell ageing, cancer, and immunological disorders [100,101]. Oxidative stress, which
damages blood vessel tissues, also plays a role in the pathogenesis of AS. In oxidatively
damaged tissues, the development of AS is facilitated [102]. Endothelial cell function
may be impaired in PWDS despite their protection against AS [103]. Furthermore, high
oxidative stress has been related to elevated insulin resistance, poor insulin sensitivity, and
hypertension [104]. It has been shown that T21 is associated with pro-oxidant status and
increased susceptibility to oxidative damage [105–107]. T21 of the chromosome increases
the representation and expression of Cu/Zn superoxide dismutase (SOD1), the gene which
is located on the distal segment of chromosome 21 (21q22.1) [108]. It has been shown
that PWDS have an increased SOD1 activity by as much as 150% compared with people
without DS [109]. SOD-1 is the main enzyme in the antioxidant defense system. Under
physiological conditions SOD-1, together with catalase and peroxidases, protects the body
against the harmful effects of very reactive free oxygen radicals which are a potential threat
to cellular structures. Radicals and reactive oxygen species (ROS) are formed during normal
cellular metabolism, however, in the conditions of their increased formation or disturbances
in the activity of antioxidant enzymes, free radical damage occurs. It is believed that ex-
cessive SOD-1 activity is responsible for the increased formation of hydrogen peroxide
and it heightens the risk of oxidative stress (prolonged higher SOD activity may lead to
glutathione depletion, deficiencies in catalase and peroxidases’ activity). SOD-1 catalyzes
the conversion of the peroxide anion to hydrogen peroxide, which leads to the continuous
production of two major reactive oxygen species in oxygen cells in the mitochondria [109].
In the pathogenesis of AS, ROS are responsible for the formation of oxidatively modified
LDLs (oxyLDL), which are pro-atherogenic substances [110–112]. The biological effects of
ROS are controlled by a wide spectrum of antioxidant defense mechanisms such as the
action of vitamins E and C, uric acid, glutathione, and antioxidant enzymes. The reduced
concentration of glutathione in the blood along with the overexpression of the SOD-1 gene
in PWDS additionally contributes to elevated exposure to the negative effects of oxidative
stress. The increased activity of SOD-1 as an antioxidant enzyme could explain the pro-
tective role in preventing atherosclerotic lesions. In the situation of disturbed antioxidant
balance, as is the case in DS, due to the lack of compensatory higher activity of catalase
and peroxidase, free radical processes are intensified. It is known that high SOD-1 activity
means a disturbed balance of the antioxidant system: the peroxidation processes of lipid
peroxides, participating in the formation of atherosclerotic plaques, dominate. In people
who experience increased oxidative stress, biologically important molecules such as lipids,
proteins, or nucleic acids are oxidized, which significantly affects the incorrect function
of both individual organs and the entire body. Therefore, it seems that PWDS will be
additionally exposed [111]. Lipid peroxidation (LPO) in free radical reactions is the process
of oxidation of unsaturated fatty acids or lipids in which peroxides of these compounds
are formed. They are an important link in the atherosclerotic process [112]. They modify
physical properties of cell membranes and inhibit the activity of membrane enzymes and
transport proteins. There is also a link between an aerobic modification of LDL-C and in-
flammatory activity of macrophages through the induction of macrophage cyclooxygenase
2 expression by LPO products [110]. Chronic oxidative stress leads to the intensification of
degenerative processes and premature aging of tissues. With age, numerous hormonal and
metabolic disorders appear and worsen, which is the leading problem in older children and
adolescents with DS who require constant and targeted medical care. An earlier description
of DS as a “non-atherosclerotic model” could be justified, inter alia, by increased activity
of the defense enzyme SOD-1 and the altered metabolism of homocysteine. The results of
the current research seem to contradict this assumption. In this situation, it is advisable to
extend the research workshop on atherosclerosis risk factors and predisposition to other
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diseases in people with DS to include metabolomics research. Wernio et al. pointed out
that fat mass, fat mass/height2 index, and visceral fat mass in children with DS corre-
lated with advanced oxidative protein product level [87]. Figure 1 shows the processes
described above.
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3.4. Metabolic and Endocrinological Disorders

The gene coding for the enzyme β-cystathionine synthase (CBS) is located on chromo-
some 21. This enzyme is responsible for converting homocysteine (Hcy) and serine into
cystathionine in the methionine metabolic pathway. Hcy, being a by-product of methionine
metabolism, must be converted back to methionine (by re-methylation or by conversion to
cysteine). In this process, the important part is played by folic acid and vitamins B (B6 and
B12). Three copies of the CBS enzyme genes cause its overexpression; thus, people with DS
have a reduced level of homocysteine, which should result in a reduced risk of AS. The
reduced concentration of homocysteine also means a lower concentration of methionine,
deficiency of tetrahydro folic acid (THF) (the so-called THF trap), and the participation
of B vitamins in the methionine pathways. Additionally, the low concentration of homo-
cysteine results in DNA hypermethylation. The disruption of the methionine metabolism
pathways is caused by a number of unfavorable metabolic disorders that can be detected
using metabolomics studies. Low availability of vitamin B (B6, B12, and folic acid) leads to
impaired re-methylation of homocysteine to methionine and thus accumulation of homo-
cysteine [113]. Recent data indicate that homocysteine accumulates in states of increased
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oxidative stress associated with immune activation [113]. To better understand the above
processes, simplified diagrams have been prepared: Figure 2 shows the correct metabolic
pathways; Figure 3 shows the disorders occurring in DS.
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Children with DS have a higher likelihood of developing endocrine and metabolic
disorders such as thyroid dysfunction, diabetes mellitus, short stature, vitamin D deficiency,
and obesity than the general population [44,89,114–118]. Thyroid dysfunction is the most
common endocrine abnormality in DS children: it is about 38 times more common in
individuals with DS than in other people [119,120]. Thyroid hormones are involved in the
regulation of carbo–lipid metabolism. They are related to oxidative stress by stimulating
cellular metabolism and influencing antioxidant mechanisms as well as regulating oxygen
consumption and producing free radicals [111,121]. It is estimated that the incidence of
thyroid gland disorders in people with DS increases with age [122]. Aslam et al. demon-
strated that at younger ages the incidence of diabetes in patients with DS is four times
higher than that of control patients. Peak mean BMI is higher and established earlier in
DS, contributing to T2DM risk [123]. The prevalence of type 2 diabetes mellitus in children
with DS ranged between 0% and 3.6% [117]. Wernio et al. pointed out that in children with
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DS fat mass, fat mass/height2 index, and visceral fat mass correlated with thiobarbituric
acid reactive-substances and advanced oxidative protein product-levels [87].

3.5. Metabolomics in Down Syndrome

To date, numerous disturbances in the concentration of metabolites in DS have been
described, such as: increased levels of phenylalanine and tyrosine in blood serum [124];
lower plasma levels of free histidine, lysine, tyrosine, phenylalanine, leucine, isoleucine,
and tryptophan [125]; increased plasma concentrations of leucine, isoleucine, cysteine,
and phenylalanine [126]; decreased plasma concentration of serine [127]; increased plasma
lysine concentration [127]; elevated concentrations of metabolites related to the methylation
cycle such as cysteine, cystathionine, choline, and dimethylglycine [125]; and increased
concentrations of S-adenosylhomocysteine and S-adenosylmethionine [125]. Little data
exist on the use of metabolomics among PWZD [125,126]. At the same time, there are no
data on the use of lipidomics in DS. Orozco et al. analyzed metabolomics of 31 PWZD and
observed alterations to methylation metabolism, carnitine/O-acetyl carnitine, dimethyl
sulfone, and myo-inositol in children with DS [128]. Obeid et al. reported similar findings
in methylation pathway metabolites and found elevated blood cystathionine, cysteine,
betaine, choline, and N,N-dimethylglycine in children and young adults with DS [125].
Caracausi et al. analyzed plasma and urine of children with DS and revealed DS/normal
ratio in plasma being 1.23 (pyruvate), 1.47 (succinate), 1.39 (fumarate), 1.33 (lactate), and
1.4 (formate) [126]. As most of the altered concentrations were consistent with the 3:2 gene
dosage model, there is a possibility that the mentioned changes are caused by the presence
of three copies of chromosome 21 [126]. As a result of the use of different methods of omics
techniques, as well as the differences in metabolites among children and adults, it is very
difficult at the present stage to compare the results obtained in the studies mentioned in
the review. However, it is very important to perform metabolomic and lipidomic tests in
children with DS in order to be able to compare and analyze the data.

4. Summary and Conclusions

Trisomy of 21 chromosome affects the cardiovascular system in anatomical and phys-
iological ways. Numerous hormonal and metabolic disorders are a leading problem in
children and adolescents with DS. Those disorders aggravate with age and require constant
targeted medical care. As a result of disorders in metabolic processes and biochemical
pathways, theoretically protective factors (low homocysteine level, high SOD1 level) do
not fulfil their original functions. The results of the current research seem to contradict the
assumption that PWDS are not at risk of developing cardiovascular disease. At present,
some classic predispositions are known but CVD prophylaxis requires identifying early
risk factors. In such case, it is advisable to extend the research of omics techniques on
atherosclerosis risk factors and predisposition to include related diseases in people with DS.
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