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Abstract: The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient,
yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and
improves platelet count. Platelets dysfunction results in several disorders, including inflammation,
atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin
on platelets and hence proved it is an important candidate for the treatment of the aforementioned
diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conven-
tional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory
eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally
also reduced rats’ acute inflammation brought on by carrageenan. Curcumin has also been proven to
prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue.
In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion.
It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expres-
sion and mice survival after cecal ligation and puncture were improved by curcumin, which also
altered platelet and leukocyte adhesion and blood–brain barrier dysfunction. Through regulating
many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable
antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet
activation as possible therapeutic agents. This review article proposes to highlight and discuss the
regulatory effects of curcumin on platelets.

Keywords: curcumin; platelets; antioxidants; anti-inflammatory; therapeutic potential

1. Introduction

The chemical name of curcumin, a phenolic molecule, is (1E,6E)-1,7-bis (4-hydroxy-3-
methoxyphenyl)-1,6-heptadiene-3,5-dione [1]. It is also known as diferuloylmethane. It has
been classified as both a PAINS (pan assay interference compounds) and an IMPS (invalid
metabolic panaceas) candidate [2]. The rhizome and roots of the turmeric plant contain sig-
nificant levels of this biologically active chemical (Curcuma longa) [3]. Demethoxycurcumin
and bis-demethoxycurcumin are two more curcuminoids found in this plant in addition to
curcumin (Figure 1). It has been found that 2–4 percent of the dry turmeric root powder
is made up of curcuminoids. Curcumin is a yellow substance that has a variety of uses,
including herbal dietary supplements and culinary coloring and flavoring agents in various
preparations [4].
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Curcumin was first isolated in an impure form in 1815. Curcumin demonstrates keto-
enol tautomerism in its position as a bis-α, β-unsaturated β-diketone. While curcumin’s
keto form is more common in acidic and naturally occurring pH, the enol form is more
common in alkaline solutions [5,6]. It is important to note that Curcumin is employed
in the food, pharmaceutical, and textile industries. According to evidence dating back
2500 years, curcumin has long been used to cure different diseases in traditional Indian
medicine and throughout Asia. Curcumin has been considered a potent remedy for various
ailments, including rheumatism, dyspepsia, and irritable bowel syndrome as well as
infection treatments for eye and skin conditions [7,8].

Since 1937, when the first study on curcumin’s medicinal effects was published, much
effort has gone into illuminating the compound’s unique pharmacological properties [9].
According to reports, curcumin has beneficial biological and therapeutic properties in-
cluding antioxidant, hepatoprotective, cardioprotective, neuroprotective, anti-microbial,
anti-tumor and improvement of dyslipidemia and ischemia-reperfusion [10]. In oil-based
solutions, curcumin is very soluble. Curcumin is soluble at alkaline pH despite being insol-
uble in water at acidic and neutral pH levels. As was already established, although having
outstanding therapeutic effects, curcumin’s effectiveness has been significantly constrained
by several factors [11]. Its limited solubility in aqueous environments and quick conversion
into an inactive metabolite are the biggest obstacles. Due to this, numerous studies have
focused on improving the solubility of curcumin or encapsulating it to create targeted drug
delivery systems for biological uses [12].
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Platelets are non-nucleated cells of the blood generated continuously by the human
body (1011 cells daily) from megakaryocytes via differentiation, maturation, and fragmen-
tation [13]. Usually, their normal life span ranges from 8 to 10 days in the blood [14].

Thrombopoiesis (the formation of platelets) occurs in bone marrow that involve the
formation of megakaryocytes (50–100 µm in diameter) from hematopoietic stem cells [15].
The mature megakaryocytes shed long-branching cytoplasmic protrusions, called pro-
platelets [16]. When the platelet count is reduced, thrombopoietin is secreted by the liver
that activates thrombopoietin receptor of megakaryocytes resulting in the proplatelets gen-
eration [17]. Situations requiring thrombopoiesis, for instance during inflammation, IL-6
increases the thrombopoietin level, thereby increasing the formation of proplatelets [18].
The generation of proplatelets involves the redistribution of granules, vesicular structures,
and organelles from the cell body of megakaryocytes into proplatelets. The proplatelets
subsequently give rise to platelets. It has been found that proplatelet formation is inhibited
by collagen I (via glycoprotein VI (GPVI) and integrin α2β1) and stimulated by fibrinogen,
type IV collagen, and fibronectin [19].

Platelets contain different cell organelles, including ribosomes, mitochondria, micro-
tubules, glycogen granules, occasional Golgi elements and enzyme systems for aerobic as
well as anaerobic respiration [20,21]. In addition, one of the important organelles is their
granules, which are of three types known as α-granules, δ-granules (dense granules), and
lysosomes. The α-granules are the largest and most abundant (50–80 α-granules/platelet) [22],
heterogenous in content and function that contain adhesive proteins including von Wille-
brand Factor (vWF), platelet factor 4 (PF4), fibronectin, fibrinogen, platelet derived growth
factor (pdGF), tetraspanins (e.g., CD 9) and immunoglobulin family receptors (e.g., PECAM,
GPVI) [23]. The δ-granules are smaller, less in number (3–8/platelet), electron-dense, con-
taining non-protein molecules involved in platelet activation and vasoconstriction such
as calcium, serotonin, histamine, ATP, and ADP [24,25], while the lysosomes are scanty,
membrane-bound vesicles containing lysosomal enzymes (e.g., hexosaminidase and cathep-
sins). These act in the digestion of cytosolic components and extracellular functions, such
as degradation of extracellular matrix, cleavage of receptors and fibrinolysis [26]. Recently,
a novel, electron-dense, secretory granule designated as T granule has been reported [27],
which behaves similar to the Toll-like receptors (TLR). Defects or deficiency in platelet gran-
ules have been linked to several bleeding disorders, such as Hermansky-Pudlak Syndrome
(dense granule deficiency) and Grey Platelet Syndrome (α-granule deficiency) [28].

Platelets form a platelet plug, thus blocking bleeding during vascular injury [29]. It
plays an important role in infection, tumor growth, vascular repair and constriction, inflam-
mation, and tissue homeostasis [30–33]. Platelets help to regulate the tone of blood vessels,
re-formation of neointima after injury to wall of the vessels, and pathological processes
such as atherosclerosis, cancer metastasis, and thrombosis [34]. Oxidative stress has been
implicated in the modulation of platelet function resulting in platelet aggregation [35].
The elevated ROS concentration reduce the amount of NO., an antiplatelet and vasore-
laxant agent, forming a cytotoxic substance, peroxynitrite [36]. Oxidative stress and the
subsequent chronic inflammation are involved in several diseases including cardiovascular
disorders (CVDs), and cancer.

It has been observed that curcumin prevent platelet activation and aggregation, most
likely through inhibition of lipoxygenase and cyclo-oxygenase pathway (thus blocking
thromboxane B2 and 12-HETE production) [37], interfering with cytosolic Ca2+ which is
necessary for platelet activation and aggregation [38]. Other mechanisms of curcumin
mediated platelets inhibition involve reduction of mitochondrial membrane potential,
microparticle formation, and increased annexin-V binding [39]. According to some reports,
curcumin prevents its formation of fibrinogen and thus, lowers plasma levels of fibrinogen.
Thus, curcumin administration to HFD-rats resulted in lower fibrinogen and platelet counts,
indicating a physiological response to preventing thrombosis and lowering CVD risk [40].
In the present review, we aimed to highlight the regulatory effects of curcumin on platelets.
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2. Functions of Platelets
2.1. Hemostasis

Hemostasis is the ability to prevent bleeding from an injured blood vessel. It may be
primary, secondary, or fibrinolysis [41]. Primary hemostasis involves stopping of blood
loss via formation of platelets plug [27]. Secondary hemostasis involves the deposition
of insoluble fibrin produced through coagulation cascade. Fibrinolysis is the breakdown
of fibrin clot through several enzymes that occur during wound healing [41]. In normal
healthy vessels, the endothelium is intact and offers a non-adhesive surface to platelets,
while in case of damage, the platelets adhere to the extracellular matrix of the exposed
endothelial surface and thus form a platelet plug, which is a three-step process including
platelet adhesion, platelet activation and secretion, and platelet aggregation [42].

2.2. Platelet’s Role beyond Hemostasis

a. Inflammation and immunity

Platelets play an important role in immunity and inflammation by interacting with
immune cells [43]. The α- and dense granules contain proinflammatory mediators in-
cluding growth factors, TGF-β, P-selectin, and CD40L. These cause stimulation of other
cells to secrete proinflammatory chemokines and cytokines such as TNFα, IL-8, IL-1β, and
CCL2 [44]. Platelets contain several Toll-like receptors (TLR) ranging from TLR1-9 that iden-
tify molecular motifs known as pathogen-associated molecular patterns (PAMPs) and thus
stimulate immune system [45]. Bacteria, via TLR2 stimulation, initiate a pro-inflammatory
response through the PI3K signaling pathway [22]. Likewise, TLR9 stimulation is linked to
oxidative stress and thrombosis [27].

Recently, a link between immune system and platelets has been found that involve
the interaction of platelets with complement system [46–48]. Platelets bind C3b, a key
complement component, via P-selectin and activates the formation of membrane attack
complex and anaphylatoxin C5a, that is responsible the lysis of pathogen cells [49].

Platelets have the intrinsic ability to store and release significant quantities of chemokines
and cytokines involved in inflammation [50]. Platelets are the first cells to reach at the
infection site in blood vessels. They are also indispensable players in infection and immune
response to viral and bacterial infections [51]. Deficiency of platelets (thrombocytopenia)
occur in sepsis, and it has been proved that platelets exhibit important role in multiorgan
failure and sepsis [52].

b. Cancer

Platelets play an important role in the pathogenesis of metastasis [53]. It has been
observed in the in vitro studies that platelets adhere to metastatic cells, thus forming
a “cloak” around the circulating tumor cells and hence, acting as a shield for immune
clearance. This has resulted in epithelia-mesenchymal transition, pro-angiogenic, and
pro-survival effects in cancer cells [54]. Moreover, platelets have been found as the culprits
behind the enhanced tumor growth by secretion of PDGF and VEGF [55].

c. Wound healing

It has been found that platelets are relevant mediators of tissue regeneration and
wound healing. It involves the release of growth factors and several other mediators
of repair and regeneration, including cytokines, fibronectin, vitronectin, and sphingosine
1-phosphate. The different steps involved in wound healing includes hemostasis, inflamma-
tion, proliferation, and remodeling/maturation. Platelets are key players in these steps [56].
As the tissue is injured, platelets quickly form fibrin clot that halts bleeding [57]. Platelets
and neutrophils help to resolve inflammation by secreting several pro-resolving mediators
and polarizing macrophages towards a repair phenotype [58]. Furthermore, platelets play
important role in the proliferative phase of repair by releasing angiogenic and growth
factors. Angiogenesis: an important step to cope with increased metabolic needs of the
healing tissues; is induced by VEGF, Fibroblast Growth Factor (FGF), Hepatocyte Growth
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Factor (HGF); platelets activate the recruitment of CD34+ bone marrow derived endothelial
progenitors [59]. Moreover, platelets release PDGF and TGF-b that act on fibroblasts so
that the initial provisional fibrin scaffold is replaced with a granulation tissue rich in imma-
ture collagens, proteoglycans, and fibronectin [60]. Finally, platelets help to remodel the
extracellular matrix by releasing matrix metalloproteinase and hydrolases. Platelets-rich
plasma (PRP) gels are available that is applied in clinics for healing diabetic ulcers and skin
wounds [61].

d. Infection

Platelets play an important role in infection ranging from directly killing bacteria to
increasing the differentiation of immune cells [32,62]. Platelets granules contain proteins,
such as thrombocidin 1 and 2 which kill a broad range of bacteria by direct microbicidal
effect [63,64]. It has been proved that platelets detect lipopolysaccharides of bacteria by
toll-like receptor 4 and activate the neutrophil extracellular traps (NET) formation in neu-
trophils [65]. NET is composed of neutrophilic proteins, histones, and DNA that traps
and eliminates fungi and bacteria [66,67]. Moreover, platelets contain β1-defensins that
stimulate the production of NET and stop bacterial growth [68]. P-selectin in platelets
stimulates platelets-dependent NET formation [69]. Likewise, platelets contain a ligand
for leucocyte triggering receptor expressed on myeloid cells 1 (TREM-1). Bacterial struc-
tures upregulate these receptors that enhance the secretion of IL-8 by the neutrophils and
enhance TREM-1-induced respiratory burst [70]. Furthermore, T-lymphocytes are the
main players in modulation of immune response by platelets. In an acute viral hepatitis
model, platelets have been found to trigger cytotoxic T-cells response, resulting in hepatic
injury [71]. Moreover, the interaction of cytotoxic T-cells and platelets depend on platelets
CD154 [72,73]. Similarly, in chronic viral hepatitis model, the serotonin derived from
platelets exacerbated hepatocytes damage by reducing cytotoxic T-cells recruitment and
sinusoidal blood flow [74]. It is noteworthy that serotonin stimulate T-cells through 5-HT
receptors [75]. In addition, a chemokine, Regulated And Normal T cell Expressed and
Secreted (RANTES), released by platelets has been found to play pivotal role in cytotoxic
T-cells function in viral infections [76].

3. Pharmacological Effects of Curcumin

Many in vivo and in vitro model systems were used in past decades to identify the
pharmacological effects of curcumin. However, its poor pharmacokinetics has led to its
limited use in humans following clinical applications. Curcumin exhibits many versatile
pharmacological effects that are schematically shown in Figure 2.

Curcumin exhibits promising antioxidant activity. It has been shown that curcumin
mimics the level of oxidative stress markers systemically thus leads to the modulation of
enzymes responsible for free radical neutralization such as catalase, superoxide dismutase,
glutathione etc. [77] in addition, curcumin also exhibit free radical scavenging activity
and scavenge nitrogen and oxygen reactive species [78]. Results of a recent meta-analysis
study showed that curcumin significantly decreased malondialdehyde concentration in
participant subjects and increased the total antioxidant capacity showing the antioxidant
potential of pure curcumin [79]. In another study, curcumin loaded Zein/carboxymethyl
dextrin nanoparticles were evaluated and results showed impressive antioxidant potential
of curcumin from nanotechnology platform [80]. Results from reducing power assay and
DPPH radical scavenging analysis showed a high in vitro antioxidant activity for curcumin
loaded whey protein micro gels [81]. Curcumin is a well-known anti-inflammatory agent.
In this regard, using ovalbumin-induced allergic asthma mouse model, curcumin was
administered to BALB/c mice in a dose of 20 mg and 100 mg/kg dose. From results, it
was concluded that curcumin showed an anti-inflammatory effect through suppression
of pro inflammatory cytokines and elevation in the expression levels of aquaporin [82].
Glucan particles extracted from yeast were used for loading curcumin and were delivered
in vitro to evaluate its anti-inflammatory potential. The secretion of pro-inflammatory cy-
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tokines, TNF-α and IL-1β, showed the effective anti-inflammatory response of the delivered
curcumin [83].
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Defensive mechanisms of the immune system combat infections [84]. The activity of
the immune system is modulated by immunomodulators that in turn reduce inflammation
through normalization of the immune system [85]. The normal function of the immune
system is affected by many flavonoids posing their pharmacological action [86]. The
expression of proinflammatory cytokines and chemokines was down regulated by curcumin
via NF-kB inactivation [87]. At low doses curcumin showed modulation of immune system
and showed its pharmacological effect in various ailments, i.e., cancer, heart diseases,
asthma, and diabetes [88]. In an experimental multiple sclerosis animal model, curcumin
resulted in decreased production of IL-2 as well as STAT4 activation and showed an
immunomodulatory effect [89]. In addition, data from pre-clinical and clinical trials have
shown the curcumin immunomodulatory actions focusing mediators and immune cells
involved in immune responses [90,91]. Curcumin has a versatile immunomodulatory action
and affects different immune cells, showing its future use in immune diseases therapy.

The pathological process of neuronal killing is called excitotoxicity [92]. Excessive
glutamate induces calcium influx and neuronal injury [93]. Eventually, excitotoxicity as-
sociated neurodegeneration and depressive disorders are triggered [94]. In such major
depressive disorders, curcumin has shown antidepressant effect [95]. Curcumin also de-
creases calcium influx along with inhibition of A-kinase anchoring protein 79 translocation
from cytomembrane to cytoplasm [96]. Another study showed that curcumin significantly
elevated the expression of brain-derived neurotrophic factor along with cell viability [97].
Similarly, curcumin suppressed the neuroprotective effect and enhanced the expression of
brain-derived neurotrophic factor with retardation of the TrkB signaling pathway [98]. Pro-
grammed cell death is achieved through a regulated mechanism known as apoptosis [99].
Curcumin exhibited anticancer and chemo preventive potential through cell cycle arrest
and eventually leads to apoptosis using various intrinsic and extrinsic pathways [100]. In
neuronal cells, β-amyloid results in the induction of apoptosis and curcumin significantly
showed antiapoptotic activity in such cells [101].
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4. Effects of Curcumin on Platelets

Curcumin exerts antiplatelet activity in several pathological conditions, including
inflammatory diseases, atherthrombosis, and thromboembolism, thus playing a pivotal
role in cardiovascular diseases (CVDs). Effects of curcumin on platelets is shown in Table 1.

4.1. Coagulation and Angiogenesis

Platelets can promote coagulation by exposure of phosphatidylserine (phospho-
lipid) [102] and also promote critical process including angiogenesis and metastasis in
caner [103]. Inflammation activates the procoagulant molecules and alters the coagulation
system. Platelets secrete IL-1β consequently secreting cytokines dependent on IL-1β such as
IL-4, 6 and 8, which are among the main pro-inflammatory cytokines of inflammation [104].
Moreover, thrombin mediates platelet activation via P-selectin expression [105]. In rats,
intraperitoneal administration of curcumin (60 mg/kg) reduced mortality in lipopolysac-
charide (LPS)-induced intravascular coagulation by decreasing TNF-α level. This research
study demonstrated the beneficial potential of curcumin in coagulopathy induced by infec-
tions [106]. Furthermore, it has been shown that curcumin inhibits platelets aggregation
induced by collagen, adrenaline, and arachidonic acid. It also causes suppression of throm-
boxane B2 production and elevate 12-lipoxygenase (LOX) enzyme. Curcumin inhibits the
expression of platelet/endothelial cell adhesion molecule 1, netrin G1, delta-like 1, and
plasma cell endoplasmic reticulum protein 1, which cause cell adhesion and migration [107].

Table 1. Effects of curcumin on platelets.

S.No. Parameter Effect/Mechanism References

1 Coagulation Inhibit coagulation, ↓ TNF [106]

2 Platelet aggregation
Inhibit platelet aggregation and platetlet plug formation,
↓ cell adhesion molecule 1, netrin G1, delta-like 1, and plasma
cell endoplasmic reticulum protein-1

[107]

3 Platelets activation Inhibit activation of platelets to form thrombosis/embolism,
↓ P-selectin, E-selectin, and GP IIb/IIIa [108]

4 Autophagy inhibition of PKB, and activation of AMP kinase [109]

5 Antioxidant effect ↑ antioxidant enzymes, ↓ oxidative stress parameters,
↑ platelet factor-3-like activity [110,111]

6 Platelet count ↑ platelets level [112]

7 PDGF Ameliorated lung fibrosis, liver fibrosis, and cirrhosis, Inhibit
PDGF [113]

8 Platelet aggregation and
hyperlipidemia ↓ cholesterol, ↑ antioxidant activity [114]

9 Atherosclerosis Thromboxane inhibition, ↑ prostacyclin activity [115]

10 Arachidonic acid-mediated
platelet aggregation Inhibition of TXA2 and mobilization of intracellular Ca2+ [116]

4.2. Activation of Platelets

Coagulation cascade and platelets activity are linked with each other. Glycoprotein
IIb (GPIIb)/IIIa receptor activation play key role in the aggregation of platelets [117]. The
procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein
Ib-V-IX and integrin αIIbβ3 [118]. The key pathway for platelet activation is via activation
of receptor GP IIb/IIIa that cause cross-linking of von Willebrand factor or fibrinogen
between receptors leading to platelets aggregation [117]. Administration of curcumin
inhibits platelets adhesion and elevation of GP IIb/IIIa mediated platelet activation that is
associated with decreased expression of P-selectin, E-selectin, and GP IIb/IIIa on platelets as
shown in Figure 3 [108]. Curcumin also inhibits platelet activation by interfering with spleen
tyrosine kinase and subsequent activation of phospholipase C gamma [119]. Curcumin



Biomedicines 2022, 10, 3180 8 of 17

has shown anticoagulant activity in vitro [120]. Moreover, in-vivo study exhibited that
curcumin inhibited platelet aggregation in monkeys. This implies that patients suffering
from arterial thrombosis may take benefit from curcumin [121].
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In another in vitro study, eight natural products including curcumin, were compared
to prednisolone regarding anti-inflammatory potential. Several pathways of inflammatory
response (such as IL-6, IL-8, and TNF-α, ROS production) were investigated along with
platelet activation in the blood. Besides curcumin, epigallocatechin gallate and berberine
chloride also displayed good anti-inflammatory potential that suggested these compounds
were alternatives to prednisolone [122].

Curcumin has been found to inhibit arachidonic acid, adrenaline, and collagen-
induced aggregation of platelets. It blocked the formation of thromboxane B2 (Conversion
of A2 into B2) and increased the production of 12-LOX. Furthermore, the anti-inflammatory
effect of curcumin is mediated via multiple mechanisms including its impact on eicosanoids
biosynthesis [121], increasing the expression of PPAR-α, IL-4, platelet/endothelial cell ad-
hesion molecule 1, netrin G1, plasma cell endoplasmic reticulum protein 1, and delta-like 1,
which have been correlated with cell adhesion and migration [107].

Curcumin reduces platelets adhesion in cerebral microcirculation mainly via endothe-
lium modulation. PDGF-βR in phosphorylated form, extracellular signal regulated kinase
(ERK-1/2) epidermal growth factor receptor (EGFR), and c-Jun N-terminal kinase (JNK1/2)
levels were decreased by curcumin due to increase in the activity of PPARγ [123]. Curcumin
attenuated cigarette smoke-induced elevation in AMP, ATP, and decreased ADP hydrolysis
in rats. These effects of curcumin are due to modulation of purinergic signaling, platelet
aggregation, and thrombus formation regulation [124].
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4.3. Autophagy

Curcumin cause autophagy induction in platelets indicated by inhibition of PKB,
and activation of AMP kinase [109]. Cellular autophagy is linked with cell death and
survival [125,126]. Autophagy in platelets is observed during activation and play an
important role in hemostasis and thrombosis [127,128]. Increased autophagy reduces apop-
tosis and increase platelets viability in immune thrombocytopenia [129], and oxidative
stress in platelets of diabetic patients [130]. In one study, curcumin potentiated platelets
apoptosis in a low concentration (5 µM) and inhibited apoptosis in a high concentra-
tion (50 µM). At a low concentration, the viability of platelets was unaffected, but at a
high concentration it was reduced by 17%. Moreover, curcumin inhibited the activity of
P-glycoprotein in platelets [39].

4.4. Oxidative Status of Platelets

Several studies have shown the antioxidant effects of curcumin in platelets. Oxidative
stress leads to the development of several disorders including CVDs [131]. In an in vitro
study, curcumin inhibited the formation of thiobarbituric acid reactive substances (TBARS)
formation in platelets in peroxynitrite-induced oxidative stress model. A 50% reduction
in the level TBARS was observed at 50 mg/mL concentration of curcumin in platelets. It
was concluded that curcumin display antioxidant and protective effect against damage to
platelets caused by ROS/RNS [132]. In humans, administration of curcumin also exhibited
antioxidant potential. Signaling pathways of ROS elicit epigenetic and transcriptional
dysregulation, causing activation of platelets, chronic inflammation, and endothelial dys-
function [131]. It has been observed in several studies that curcumin display antioxidant
activity in platelets facing oxidative stress.

In another study conducted in humans, curcuminoids were administered (at 500 mg/day)
to thalassemic patients for one year. Curcuminoid administration elevated the plasma
level of some proteins and reduced their oxidative effects. Similarly, antioxidant enzymes,
oxidative stress parameters, and platelet factor-3-like activity were improved. Curcumi-
noids have been demonstrated to inhibit cyclo-oxygenase and 12-lipoxygenase activities in
human platelets, thus showing antioxidant activity [110,111]. Moreover, curcumin inhibited
damage to the cells as it is powerful antioxidant and free radicals scavenger [115].

4.5. Platelets Count

The effect of curcumin on platelets count has been demonstrated in several stud-
ies. One study reported that profenofos-induced reduction in platelets count was atten-
uated by administration of curcumin (120 mg/kg) to mice for 30 days [112]. In another
study, curcumin displayed anti-inflammatory effect, however no effect on platelets count
was observed, so that is a controversial scenario that needs further investigations [133].
Another study also reported increase in platelets levels by curcumin [112]. In rats ad-
ministered a high fat diet (HFD), the level of total cholesterol, total lipids, C-reactive
protein, TNF-α, platelet count and fibrinogen contents were elevated. Administration
of curcumin (20 mg/kg, for 3 months, p.o) countered all these changes. Therefore, cur-
cumin could be a possible choice in HFD-associated CVDs; however, it needs future
exploration in humans [134]. Nanocurcumin has exhibited more effective activity in pre-
venting chemotherapy-induced thrombocytopenia in mice. Nanocurcumin administration
could preserve bone marrow integrity and increase the number of circulating platelets [135].

4.6. Effect on Platelet Derived Growth Factor (PDGF)

Growth factors, such as PDGF, are secreted by platelets during vascular damage and
play a key role in the remodeling of vessels during extracellular and cellular response to
injury [136]. PDGF is responsible for the migration, proliferation, and collagen synthesis in
vascular smooth muscle cells [136]. Atherosclerosis is characterized by over expression of
PDGF in arteries after inflammatory-fibroproliferative response [137]. The over-expression
of PDGF also occur in fibrosis of several other organs, including liver, and lungs [136].
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PDGF control platelet aggregation by a feedback mechanism on vascular system. Activation
of PDGF decrease the aggregation of platelets [138]. The Stat molecules family has been
demonstrated to bind to the activated PDGF-βR and to be phosphorylated following
PDGF stimulation. Curcumin inhibit PDGF-mediated effects of smooth muscle cells, thus
ameliorating atherosclerosis and fibrosis [136].

Studies have shown that curcumin is a beneficial drug for the treatment of PDGF
related diseases. For instance, curcumin has attenuated fibrotic injury and sinusoidal
angiogenesis induced by carbon tetrachloride in rats by inhibition of expression of vascular
endothelial growth factor (VEGF) in hepatic stellate cells (HSCs), which is mediated by
disruption of the mTOR and PDGF-βR/ERK pathways. Moreover, in conclusion, HSCs
targeting is mediated via activation of the PPAR-γ dependent mechanism. Therefore,
pathological angiogenesis in liver fibrosis may be reduced by targeting PPAR-γ [113].

5. Discussion

This review focused on regulatory effects of curcumin on platelets. Curcumin (Diferu-
loylmethane), a bioactive compound isolated from the roots and rhizome of Curcuma longa
is extensively used in spices in the subcontinent and for the treatment of several diseases.
Curcumin belongs to the curcuminoids class of phytochemicals and has been approved
as “Generally recognized as safe” by the FDA [139]. It has good tolerability and a wide
margin of safety at 4–8 g/day [140]. The emergence of curcumin as an important functional
food is linked with several studies that demonstrated its antioxidant potential, anti-tumor,
antidiabetic, anti-atherosclerotic, and usefulness in colitis, pancreatic, and hepatic dis-
eases [141–144]. Its effectiveness in cancer is mediated by inhibition of COX-2, MMP-9, and
NF-kB [145,146].

Although curcumin exhibited pleiotropic activity on the platelet regulation, its poor
solubility and low bioavailability mainly due to hepatic and intestinal glucoronidation
limits its usefulness [147]. It was reported in 2004 that oral administration of curcumin
(450–3600 mg per day) to human results in undetectable plasma concentration. Therefore,
several techniques have been developed to enhance plasma concentration of curcumin
including nano-formulations, concurrent administration with pepper, etc. [5], the details of
which are beyond the scope of this review.

Curcumin caused blockade of lipoxygenase, cyclo-oxygenase, Syk kinase, followed
by activation of PLCΥ and mobilization of calcium [37,119,121,148]. The inhibition of
platelet activation involves stimulation of A2A receptor that in turn activates protein kinase
A (PKA). Another mechanism for curcumin-mediated inhibition of platelet activation
involves potentiation of inhibitory effect of P2Y12ADP receptor inhibitor cangrelor [149].

Curcumin has been found to be an agonist of A2A receptor that activates the PKA/cAMP/AC
pathway in thrombocytes. Blockade of A2A receptor resulted in the inhibition of PKA,
which denotes that this receptor is the key player the involvement of curcumin-induced
activation of PKA in thrombocytes [150].

Curcumin has been used for the treatment of many diseases either alone or in combi-
nation with other drugs. It has demonstrated anti-thrombotic activity [148] at least in part
via inhibition of platelet activation. Nonetheless, procoagulant activity and pro-apoptotic
potential [151,152] also inhibit platelet activation. Moreover, curcumin exposes the anionic
phospholipids phosphatidyl serine (PS) on platelets surface, which indicates procoagulant
and apoptotic effect in platelets [39].

6. Conclusions and Future Directions

In conclusion, curcumin inhibits platelet activation and aggregation and improves
platelet count. Thus, curcumin is bestowed with anti-inflammatory properties; it inhibits
thrombo-embolism, atherothrombosis and leukemia potential in several diseases. These
diseases are major contributors of death; therefore, it is vital to understand the therapeutic
impact of phytochemicals.
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Curcumin exhibited anti-platelet activity in several ways including platelet activation,
aggregation, and adhesion. Currently available anti-platelet drugs are based on natural
products that include aspirin, snake venom-based peptides, molecules irreversibly blocking
P2Y12 [39], warfarin, heparin [153], clopidogrel and abciximab [154]. Despite the devel-
opment of several anti-thrombotic drugs, their effects on morbidity and mortality are not
completely known [155]. In future, this scenario will be more challenging with a persis-
tent increase in the incidence of metabolic syndrome, thromboembolism, and CVDs. The
sub-optimal activity of these drugs is due to side effects (GIT dysfunction, bleeding) and
drug resistance [156]. Hence, novel therapeutics are urgently needed to reduce the adverse
effects of these drugs without reducing efficacy. Curcumin shows pleiotropic activities
and affects the coagulation pathway through multiple mechanisms, exhibits synergistic
potential, and reduces the adverse effects associated with current drugs [157–159]. Thus,
clinical trials must be conducted to fully evaluate the untapped potential of curcumin on
platelets and offer better treatment to patients suffering from thromboembolic, leukemia
and cardiovascular disease.
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