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Abstract: Pigment production is a unique character of melanocytes. Numerous factors are linked with
melanin production, including genetics, ultraviolet radiation (UVR) and inflammation. Understand-
ing the mechanism of melanogenesis is crucial to identify new preventive and therapeutic strategies
in the treatment of melanoma. Here, we reviewed the current available literatures on the mechanisms
of melanogenesis, including the signaling pathways of UVR-induced pigment production, MC1R’s
central determinant roles and MITF as a master transcriptional regulator in melanogenesis. More-
over, we further highlighted the role of targeting BRAF, NRAS and MC1R in melanoma prevention
and treatment. The combination therapeutics of immunotherapy and targeted kinase inhibitors are
becoming the newest therapeutic option in advanced melanoma.
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1. Introduction

The pigmentation of hair, skin and eyes is predominantly dependent on the amount
and composition of melanin [1]. Skin pigmentation is responsible for photoprotection [2].
Melanogenesis is the process by which melanocytes produce the pigment melanin in
melanocytes [3]. Melanin is synthesized by tyrosine in melanocyte cells and then trans-
ported to keratinocytes via melanosomes and melanocytic dendrites [4]. Melanosomes
are organelles that synthesize, store and transport melanin. Several internal and external
factors, including genetics, ultraviolet radiation, endocrine, inflammatory and medications,
function in melanogenesis. Skin pigmentary disorders such as vitiligo and melasma are
correlated with the abnormal regulation of melanogenesis [3,5]. Melanin production is
a unique character of melanocytes. Some signaling pathways in melanin production are
also crucial in melanomagenesis. Thus, understanding the mechanism of melanogenesis is
crucial to identify new preventive and therapeutic targets of melanoma.

2. Pigment Production
2.1. Melanocytes and Melanin

Melanocytes originate from the neural crest melanoblasts. Melanoblasts migrate to
the basal layer of the epidermis and the hair follicles via a dorsolateral pathway after
neural tube closure to develop melanocytes. This process is mainly regulated by the bone
morphogenic protein (BMP) and Wnt signals [6]. When melanoblasts reach their final desti-
nations and transform into melanocytes, they acquire the ability to produce melanosomes
containing melanin [7]. Pheomelanin (reddish/brown) and eumelanin (brown/black) are
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two major types of melanin that differ in color and methods of synthesis. The ratio of
eumelanin and pheomelanin determines, in part, the visible skin and hair color [8,9]. The
size of melanosome is another part which determines our skin color. Regardless of the
degree of pigmentation, the human epidermis contains approximately 74% eumelanin
and 26% pheomelanin, and people with lighter skins have a low eumelanin level [9]. In
general, eumelanin is photoprotective for pigmented tissues, whereas pheomelanin is
phototoxic [10]. Tyrosinase (TYR), the key kinase for the synthesis of both eumelanin and
pheomelanin, undergoes tyrosine hydroxylation to L-3,4-dihydroxyphenylalanine (DOPA)
and then oxidizes rapidly to DOPAquinonel (DQ) [11]. In addition, tyrosine-related protein
1 (TRP1) can oxidize DHI-2-carboxylic acid (DHICA), which is derived from dopachrome
and generated by tyrosine-related protein 2 (TRP2/DCT) to form eumelanin [12–14]. The
most widespread form of albinism, oculocutaneous albinism type 1 (OCA1), is caused
by TRY mutations [15]. Similarly, mutations and a lack of expression of TRP1 are found
in OCA3 [16]. Both the TRP1 gene expression and TRP1 protein level are considerably
downregulated in the lesional epidermis of vitiligo patients compared with non-lesional
epidermis [17]. The level of TRP2 is also positively correlated with the melanin content
in vivo. The transfected melanocytes expressing TRP2 show an increase in melanin con-
tent [18]. Altogether, TRY, along with TRP1 and TRP2, plays a crucial role in melanin
synthesis by forming a multienzyme complex within melanocytes. They all control the
quantity and quality of melanin production in melanocytes.

2.2. Melanosomes

Melanosomes are lysosome-related organelles and are found in most vertebrates and
certain fungi. A melanosome is a site to synthesize, store and transport melanin [19]. The
production of pigment melanin is a four-step process in melanosome [3]. In Stage I, vacuoles
devoid of pigment are constructed inside a fibrillar matrix composed of glycoproteins. In
Stage II, TYR, TRP1 and TYRP2 are received by melanosome with a structured, organized
fibrillar matrix. Melanin synthesis and protein fibril deposition begin in Stage III. In the final
stage (Stage IV), melanosomes develop into fully melanized cells [20]. Premelanosomal
protein (PMEL17), a type I transmembrane glycoprotein, is a significant structural and
biogenetic component of melanosome fibrillar structures in Stages I and II [21,22]. Mice with
pmel17 mutations have progressive coat color dilution [23]. Melanoma antigen recognized
by T cells 1 (MART1), a melanoma-specific antigen and a melanosome-specific marker,
forms a complex with PMEL17 to induce the expression, stability and trafficking of PMEL17.
MART-1 siRNA inhibits PMEL17 processing in vitro to repress the PMEL17 expression [21].
In addition, different sizes of melanosome are found in human skin collected from different
ethnicities. Studies have shown that melanosomes’ size is the largest in skin of African
people and the smallest in the skin of European people [24].

Once melanosomes reach maturity in the epidermal melanocytes, they are transferred
from the perinuclear region to the dendritic terminals [1]. They are then transported
to keratinocytes, where the quantity and ratio of different melanin determines the skin
color. Recent research indicated that keratinocytes produced from Caucasian skin exhib-
ited higher autophagic activity than those derived from African-American skin, whereas
melanosomes were more rapidly lost in keratinocytes derived from light skin as opposed
to dark skin [25,26]. Keratinocytes, treated with lysosomal inhibitors or short interfering
RNAs specific to autophagy-related proteins, accumulated more melanosomes [25]. Consis-
tently, the melanin levels were greatly lowered by activators of autophagy and elevated by
the inhibitors [25]. These results indicate that autophagy plays a pivotal role in regulating
melanosome degradation in keratinocytes as well as melanocytes.

2.3. UVR-Extrinsic Activators and Regulators of Pigmentation

Numerous variables are known to regulate melanin formation, including ultraviolet
radiation (UVR), cytokines and hormones. UVR is the most significant extrinsic factor in
pigment production [3]. UVR comprises 5% of the solar radiation reaching the surface
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of the earth, and 95% UVA and 5% UVB, which are the main stimuli for photodamage,
photoaging and skin cancer [27]. UV exposure and skin pigmentation are intimately
connected each other. Most people living at lower latitudes (<388) acquire more eumelanin
pigment in their skin as a result of significant UV exposure [28]. There are two types of
tanning responses that depend on genetic backgrounds: immediate pigment darkening
(IPD) and delayed tanning (DT) responses. IPD appears 5 to 10 min after exposure to UV,
predominantly UVA, and disappears within minutes or days. Rather than an increase
in melanin synthesis, the IPD response is mostly caused by the oxidation of pre-existing
melanin and the translocation of melanosomes to the upper epidermal layers. The DT
reaction occurs 3 to 4 days following UV exposure, mainly UVB, and diminishes within
weeks as a result of an increased melanin production, especially eumelanin, which has a
photoprotective effect [29].

There is growing evidence that even low doses of UVR could result in DNA photodam-
age and stimulate melanogenesis [30–32]. UVR, specifically UVB, induces DNA thymidine
breaks and generates genotoxic cyclobutane pyrimidine dimers and 6-4 photoproducts
in the skin. UVR also causes reactive oxygen species (ROS), which interact with multiple
cellular components and lead to oxidative DNA damage [33]. On the one hand, UVR can
directly induce the formation of diacylglycerol, a component of the melanocyte membrane
that activates protein kinase C and, thus, regulates melanogenesis via tyrosinase phos-
phorylation [34,35]. On the other hand, UVR-induced DNA damage raises the levels of
p53 in keratinocytes as well as in human melanocytes and melanoma cells [36,37] to trans-
activate the expression of pro-opiomelanocortin (POMC) preferentially in the epidermal
keratinocytes [38]. The cleavage products of POMC, the α-melanocyte stimulating hormone
(α-MSH) and adrenocorticotropic hormone (ACTH), are the agonists of melanocortin 1
receptors (MC1R), which transmit upstream signals to the cyclic adenosine monophosphate
response element (CREB) and regulate the transcription of microphthalmia-associated
transcription factor (MITF) through protein kinase A (PKA) signaling. MITF is the most
important intrinsic factor and a key coordinator in many aspects of melanocyte [39] (Fig-
ure 1). Moreover, UVR exposure enhances the number of dendrites of the melanocytes and
the transfer rate of melanosomes from the melanocytes to keratinocytes [40]. Eumelanin
acts as a natural sunscreen against UVR-induced DNA damage [41]. There is an inverse
association between the melanin content and the levels of cyclobutane pyrimidine dimers
in the skin of persons with diverse skin pigmentations and ethnic origins, suggesting the
photoprotective role of pigmentation [42]. As a result, people with fair skin are much more
likely to get skin cancer [43].
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is then cleaved to form α-melanocyte stimulating hormone (α-MSH). α-MSH binds to its receptor,
the melanocortin 1 receptor (MC1R), on cell membrane of melanocytes to induce the production of
a circular AMP that activates the microphthalmic-associated transcription factor (MITF)-induced
melanin enzymes’ transcription, including TYR, DCT and so on.

2.4. MC1R, the Central Determinant of Pigmentation

MC1R is a member of the melanocortin (MC) receptor family, the smallest member of
the G-protein coupled receptor (GPCR) class A (rhodopsin-like) family and is mainly ex-
pressed on melanocytes’ cell membranes [44,45]. MC1R is located on chromosome 16q24.3
and encodes a 7-pass transmembrane GPCRs of 317 amino acids [46]. MC1R signaling
promotes melanin synthesis and melanosome transfer rate in melanocytes, making it one
of the most important regulators involved in mammalian pigmentation [47]. Upon binding
to melanocortins, including α-MSH and ACTH induced by UV exposure, MC1R stimulates
adenylyl cyclase activity and then cyclic adenosine monophosphate-responsive (cAMP)
production, activating a host of downstream signaling pathways such as PKA signal-
ing [47,48] (Figure 1). The activation of PKA stimulates cAMP element-binding protein
(CREB) phosphorylation and MITF activation, mediated by CREB [47]. In humans, MC1R
is highly polymorphic. Approximate 420 variants of MC1R have been documented. Popu-
lations with lighter pigmentation showed more MC1R loss-of-function variants than those
with darker pigmentation [49]. MC1R variants primarily reduced eumelanin synthesis,
resulting in a “red hair color” (RHC) phenotype with red hair, fair skin and increased UVR
sensitivity [50,51].

Furthermore, MC1R is a melanoma susceptibility gene, and the loss-of-function vari-
ants of MC1R have been found in 26–40% of melanoma patients [52,53]. The seven variants
p.D84E, p.R142H, p.R151C, p.I155T, p.R160W, p. R163Q and p.D294H were revealed to
be strongly linked with the development of melanoma [52]. It is plausible that as vari-
ants result in the loss of function of MC1R, this leads to a decline in eumelanin synthesis
and, thus, leads to less effective protection against UV radiation and an increased risk of
melanoma. In primary human melanocytes, the MC1R knockdown significantly impairs
survival and DNA repair in response to UVR, hence increasing the risk of melanoma [54].
Therefore, controlling pigment formation by regulating MC1R may be an effective target
for the prevention and treatment of melanoma.

The main antagonist for the MC1R competing with α-MSH is the agouti signaling
protein (ASIP). Human ASIP expression in transgenic mice displayed yellow coat colors,
and the expression of ASIP in human melanocytes inhibits tyrosinase activity and cell
proliferation by blocking the stimulatory effects of α-MSH on cAMP accumulation and
tyrosinase activity, respectively [55,56]. Notably, as Pomc1 knockout mice retain a dark coat
color, it is possible that basal MC1R signaling is independent of ligands [57].

2.5. MITF, the Master Transcriptional Regulator of Pigmentation

Despite the identification of more than 100 loci involved in vertebrate pigmentation,
the MITF is consistently a representative locus and a significant transcriptional regulator
of pigmentation [58]. MITF is evolutionarily conserved and encodes for the basic helix–
loop–helix leucine zipper (bHLH-Zip) transcription factor that belongs to the Myc-related
family [59]. MITF belongs to the MiT transcription factor family alongside the transcription
factors E3 (TFE3), EB (TFEB) and EC (TFEC), which are human oncogenes and have been
implicated in melanoma [60]. The microphthalmia phenotype was first observed in mice
with small eyes, white fur and deafness due to a homozygous mutant in Mitf [61], followed
by subsequent abnormalities, including a decreased number of mast cells, faulty osteoclasts
and an early onset of deafness due to multiple mutations in the Mitf locus [62]. The Mitf
locus in humans is located on chromosome 3 and spans 229 kbp. Several major MITF
isoforms, originating from distinct promoters, display different expression profiles, and the
M-isoform of MITF (MITF-M) is a melanocyte-specific isoform involved in the regulation
of pigmentation, melanocyte development and differentiation [39].
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MITF-M is transcriptionally activated by CREB and numerous other transcription fac-
tors. ChIP-seq and analyses at single loci have identified that the transcription factors paired
box gene 3 (PAX3), SRY (sex-determining region Y)-box 10 (SOX10) and lymphoid enhancer-
binding factor 1 (LEF1) regulate the transcription of MITF directly in melanocytes [39,60].
Notably, the forced expression of MITF alone was insufficient to reprogram mouse and
human fibroblasts. However, MITF, in conjunction with SOX10 and PAX3, is sufficient to
reprogram the fibroblast into a functional melanocyte [59]. Post-translational changes in
MITF, including phosphorylation, ubiquitination and SUMOylation, influence the activity
and stability of the MITF protein [63].

Promoter–reporter analyses demonstrate that promoters of three primary pigmenta-
tion enzymes, TYR, TYRP1 and TYRP2, were transactivated by MITF directly. Additionally,
MITF also induces the transcription of PMEL17 and MART-1 [64]. Other proteins involved
in melanosome biogenesis and trafficking have also been identified as the direct MITF
downstream targets. The G-protein coupled receptor 143 (GPR143) is a receptor for ty-
rosine, L-DOPA and dopamine that regulates melanosome maturation and size and has
been identified as a direct target of MITF [65]. MITF has been reported to bind two E-boxes
in the proximal region of the Rab27A promoter and stimulates its transcriptional activity,
which ties MITF to melanosome transport for the first time [66]. In addition, MITF can
also promote the expression of genes related to non-melanin synthesis, such as Tbx2 and
BCL2 [67,68]. MITF is also involved in the cell cycle regulation of melanocytes. MITF leads
to G1 cell cycle arrest by promoting the expression of the p21 gene. The cooperation of
RB1, the retinoblastoma protein, with MITF potentiates the ability of MITF to activate the
transcription of p21 [69].

2.6. Melanin Synthesis Process

Several melanin enzymes, including TYR, TYRP1 and TYRP2, are involved in melanin
synthesis in melanocytes. First, L-tyrosine in melanocytes is oxidized to dopaquinone
(DQ) by TYR. This step is a key speed-limiting step in the melanin formation process, and
DQ is the substrate for the synthesis of eumelanin and pheomelanin [70]. Under normal
physiological conditions, DQ can undergo self-cyclization to produce leucodopachrome,
whereas leucodopachrome can further undergo redox reaction to produce dopachrome.
After the decarboxylation of dopachrome, 5,6-dihydroxyindole (DHI) is obtained. Under
the catalysis of TRP-2, 5,6-dihydroxyindole-2-carboxylic acid (DHICA) is further formed
from dopachrome. Finally, DHI and DHICA undergo oxidative polymerization to form
eumelanin [71] (Figure 2). In addition, during the synthesis of pheomelanin, DQ reacts
with cysteine to produce cysteine dopa, and further oxidative polymerization takes place
to produce soluble polymer pheomelanin [72].
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3. The Targeted Therapeutics of Melanoma

Melanoma develops from human pigment cells, mainly occurs in the skin and is the
most deadly and aggressive skin cancer [73]. In skin melanoma, based on the extent of cu-
mulative sun damage (CSD), malignant melanomas are classified into high-CSD, low-CSD
and low-to-no-CSD melanoma [74]. In the Asian population, melanoma mainly occurs
in mucosal and acral sites. The metastasis of melanoma cells to vital organs leads to the
death of melanoma patients. The occurrence of melanoma is related to ultraviolet (UV)
radiation and the increase in the tumor mutation load (TMB) of melanocytes; people with
pale skin, red hair and others are at highest risk of developing melanoma, compared to
other pigmentation types [75,76]. The high mutation rate of melanoma is largely attributed
to the mutagenic effect of ultraviolet light. According to the whole-genome sequences, the
genes with significant mutations in skin melanoma include BRAF, CDKN2A, NRAS and
TP53, et al. The genes with significant mutations in acral melanoma include BRAF, NRAS
and NF1 et al. [77,78]. The genomic classification into four sub-types based on the pattern
of the most prevalent significantly mutated genes is mutant BRAF, mutant RAS, mutant
NF1 and triple-WT (wild-type) [78]. In the past 10 years, melanoma treatment has made
significant progress, from targeting oncogenic BRAF and MEK to checkpoint blockade im-
munotherapy [79–86]. Unfortunately, the clinical benefit of melanoma treatment associated
with current immunotherapeutic and molecularly targeted agents is limited by resistance
and tumor recurrence [80,87,88].

3.1. BRAFV600E Mutation

As a proto-oncogene, the RAF gene was originally isolated from the murine sarcoma
virus isolate 3611 and avian MH2 retrovirus [89,90]. BRAF, encoding a serine/threonine
protein kinase, is a key regulatory protein in the RAS/RAF/MEK/ERK mitogen-activated
protein kinase (MAPK) signaling pathway, which governs normal cell proliferation, differ-
entiation and survival (Figure 3) [91]. BRAF mutation occurs at an early stage of melanoma
and drives the melanocyte malignant transformation. Mutant BRAF is diagnosed at a high
frequency (about 50–80%) clinically [78,91,92]. Among several types of BRAF mutation, the
BRAF V600E mutation constitutes over 90% of the total, followed by other BRAF mutations,
including V600K and V600D et al. [93,94]. The BRAF V600E mutation mimics phosphoryla-
tion by inserting a negatively charged glutamic acid residue adjacent to the phosphorylation
site within the catalytic domain to induce the kinase activity of BRAF, with the subsequent
phosphorylation and activation of MEK1 and MEK2 (Figure 3) [91,95]. The BRAF V600E
mutation in melanoma activates the MAPK pathway to trigger melanocyte cell aberrant
proliferation, inhibits the aberrant melanocyte cell apoptosis and eventually promotes
melanoma progression [96]. Furthermore, about 10% of melanoma patients may show
an intertumorally discordant BRAF status, and about 15% of BRAF-mutated melanomas
may show intratumor BRAF heterogeneity [97]. In addition, BRAF mutations rarely occur
concomitantly with KRAS or NRAS mutations [98]. At present, BRAF inhibitors have been
widely used in the clinical treatment of melanoma.
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functions in melanocytes. Numerous factors are related to the transformation of normal melanocytes
into melanoma, including genetics and ultraviolet radiation. The mutant NRAS or BRAF activates
the MAPK and PI3K–AKT signal pathways to promote the occurrence and proliferation of malignant
melanocytes in melanoma. RTK: receptor tyrosine kinase. ERK: extracellular signal-regulated kinase.
MEK: mitogen-activated protein kinase. AKT: protein kinase B. PI3K: phosphoinositide-3 kinase. FT:
transcription factor. P: phosphorylated.

3.1.1. The BRAFV600E-Targeted Therapy in Melanoma

Sorafenib (BAY 43-9006), an oral multikinase inhibitor targeting tumors and tumor vas-
culature, was the first clinical drug used in clinical treatment with BRAFV600E or metastatic
melanoma patients. Unfortunately, the clinical trial indicated that sorafenib administration
did not improve any of the end points over the placebo and cannot be recommended in
the second-line setting for patients with advanced melanoma [99,100]. Subsequently, the
BRAF inhibitors PLX4032 (vemurafenib) and GSK2118436 (dabrafenib) were synthesized
and used in the clinical treatment of BRAF mutation melanoma [84,85,101–103] (Figure 4).
In 2011, vemurafenib was approved for patients with advanced metastatic melanoma with
the BRAF V600E mutation using FDA [103]. Later, the BRAF inhibitor dabrafenib was also
approved for melanoma patients with the BRAF mutation [104,105]. Unfortunately, about
15% of patients showed no response to BRAF inhibition, and, among responders, about
50% developed acquired resistance after a median of 6–8 months [106].
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signal-regulated kinase. MEK: mitogen-activated protein kinase. AKT: protein kinase B. PI3K:
phosphoinositide-3 kinase. FT: transcription factor. P: phosphorylated.

3.1.2. Combined Therapy of BRAF and MEK Inhibitors in Melanoma

Compared with the BRAF inhibitor alone, the combined treatment of BRAF and MEK
inhibitors has shown a better effect for melanoma patients [107]. Clinical studies show
trametinib, an MEK inhibitor, improved rates of progression-free and overall survival
among patients who had metastatic melanoma with a BRAF mutation compared with
chemotherapy [83]. In view of drug resistance and other problems arising from the BRAF
inhibitor alone, the combination treatment of MEK and BRAF inhibitors was a better clinical
achievement for melanoma patients with the BRAF V600E mutation. Clinical studies
indicated that a combination of dabrafenib and trametinib, compared with dabrafenib
alone, improved the 16% overall response rate in previously untreated patients who had
metastatic melanoma with BRAF V600E or V600K mutations [101,108]. Subsequent studies
further showed that combined dabrafenib and trametinib, compared with BRAF inhibition
alone, led to long-term benefits, delayed the emergence of resistance and reduced toxic
effects in patients who had melanoma with the BRAF mutation [109–112]. In addition,
dabrafenib plus trametinib, compared with vemurafenib monotherapy, also significantly
improved the overall survival in previously untreated patients with metastatic melanoma
with BRAF V600E or V600K mutations and without increased overall toxicity [84].

Apart from trametinib, cobimetinib, another inhibitor of MEK, shows promising anti-
tumor activity when combined with vemurafenib in patients with advanced BRAFV600-
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mutated melanoma [113,114] (Figure 4). In addition, encorafenib plus binimetinib treatment
improved the median progression-free survival of patients up to 7.6 months compared
with vemurafenib monotherapy. This study indicates that encorafenib plus binimetinib
represents a new treatment option for patients with BRAF-mutant melanoma [115]. Al-
though the combined use of BRAF and MEK inhibitors has shown a better effect in the
clinical treatment of melanoma patients, some clinical adverse reactions are quite common
in combination schemes, such as vomiting, nausea, fatigue, headache, arthralgia and so
on [105]. Meanwhile, treatment with BRAF plus MEK inhibitors in BRAF mutation patients
acquiring resistance remains a significant problem [75,106].

3.1.3. The Combined Therapy of BRAF V600E Inhibitor and Immune Checkpoint Inhibitors
in Melanoma

The tumor microenvironment (TME) plays a critical role in regulating tumor devel-
opment, growth, invasion and metastasis [116,117]. The activity of tumor-infiltrating
lymphocytes (TILs) of melanoma is involved in melanoma progression and prognosis [88].
Immune checkpoint inhibitors (ICIs) are effective in activating TILs to inhibit melanoma
growth [86]. Ipilimumab, nivolumab and pembrolizumab targeting ICIs, including CTLA-
4 or PD1, have been widely used in melanoma treatment clinically. All these antibody
drugs are effective in activating TILs to rebuild the immune response to tumors in patients
with advanced or metastatic melanoma [81,82,118–120]. However, 40–60% of patients with
melanoma are not sensitive to ICI treatment [80,121]. A BRAF inhibitor in combination with
ICIs has demonstrated significant clinical efficacy in BRAF mutation melanoma. Preclinical
models suggest that combining BRAF and MEK inhibitors with PD-1 blockade therapy
was of benefit to a subset of patients with BRAF(V600)-mutated metastatic melanoma [85].
The advanced melanoma patients who received dabrafenib and trametinib together with
the pembrolizumab triplet therapy improved with 5.7 months progression-free survival
compared with the doublet therapy of dabrafenib, trametinib and placebo but with a higher
rate of grade 3/4 adverse events [102].

BRAF V600E-targeted therapy has radically changed the therapeutic landscape of
melanoma, both for the advanced and adjuvant settings. However, drug resistance is still a
key obstacle to the thorough treatment of melanoma. In the future, breakthroughs in the
field of tumor microenvironments and heterogeneity will bring hope to overcome acquired
drug resistance. In addition, the combination of immunotherapy and other targeted kinase
inhibitors will also bring new and effective treatment plans for the treatment of BRAF-
mutant melanoma.

3.2. NRAS and Melanoma

Ras protein, a small membrane-bound guanine nucleotide binding GTPase, acts as
a molecular switch between the inactive and active states of GDP binding [122,123]. Ac-
tive RAS GTPases participate in a variety of cellular processes, including proliferation,
differentiation, apoptosis, cell–cell and cell–extracellular matrix interactions [124,125]. All
mammalian cells express three closely related Ras proteins, termed H-Ras, K-Ras and
N-Ras, that promote oncogenesis when they are mutationally activated at codon 12, 13 or
61 [123,126]. Genetic mutations in RAS isoforms are among the most prevalent oncogenic
alterations detected in around 16–25% of all cancers [126–128]. KRAS or HRAS mutations
are detected infrequently in approximately 5% of melanoma patients, whereas NRAS muta-
tions (NRASmut) are found in about 25% of patients, which makes NRAS the second most
frequent mutation type after BRAF in melanoma [129–131].

NRASmut melanoma is mainly caused by oncogenic missense mutations at codons
12, 13 or 61 [78]. Compared with oncogenic alterations at codons 12 or 13 which impair
mechanisms of GTP hydrolysis, NRASQ61 occurs in 90% of all NRASmut melanomas
and induces constitutive RAS-GTPase activity and conformational changes towards the
GTP-bound active state [125,132]. NRASmut melanomas often display a dysregulated cell
cycle, which is characterized by the upregulation of cyclin D1 and loss of tumor suppressor
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p16INK4A [130,133]. NRASmut-mediated downstream effectors are the mitogen-activated
protein kinase (MAPK) pathway and the phosphoinositide 3-kinase (PI3K)/protein kinase
B (AKT) cascade (Figure 3) [122]. In comparison with BRAFmut, NRASmut melanomas are
more aggressive with a lower median overall survival [134,135]. Patients with NRASmut

melanomas have a poorer prognosis due to the high aggressiveness of RASmut tumors, lack
of efficient targeted therapies and rapidly emerging resistance to existing treatments [128].
Understanding how NRAS-driven melanomas develop therapy resistance is crucial to
develop new effective therapeutic strategies for patients with this kind of melanoma. At
present, the treatment of NRAS mutant melanoma mainly focuses on the inhibition of the
NRAS signal pathway-related kinase protein.

3.2.1. The Targeted Therapy in Melanoma with NRASmut

Due to their picomolar affinity to bind GTP and the lack of druggable pockets outside
of the nucleotide-binding site, it is hard to develop efficient GTP-competitive drugs that
directly target RAS proteins [125,136]. To date, ICIs have been used in patients with
NRASmut melanoma. However, the immunosuppressive microenvironment in NRASmut
melanoma has been shown to limit the effects of ICIs [137,138]. Other treatment options
include MEK inhibition in patients with NRASmut melanoma. Binimetinib represents
a new treatment option for patients with NRAS-mutant melanoma after the failure of
immunotherapy [128,139]. Oncolytic viral therapy (talimogene laherparepvec, T-VEC)
is another new treatment option in patients with NRASmut melanoma. Furthermore,
the combination of anti-PD-1 immunotherapies with oncolytic viruses yielded positive
results [137,140].

3.2.2. The Targeted Inhibition of NRAS Signaling in Melanoma

In addition toMEK inhibitors, inhibitors of other key proteins of the NRAS signaling
pathway also repress the proliferation of melanoma with NRASmut. ERK-mediated MAPK
signal pathway reactivation often occurs after inhibiting BRAF and MEK in melanoma
treatment [141]. Thus, the co-inhibition of MEK and ERK effectively reduced the growth of
NRASmut melanoma [142,143]. ERK and MEK co-targeted inhibition is a useful treat-
ment approach for patients with NRASmut melanoma. The activation of the MAPK
pathway in NRASmut melanoma is achieved through the activation of the NRAS effector
CRAF [129,144]. The disruption of CRAF-mediated MEK activation is required for effective
MEK inhibition in KRASmut melanoma [145]. Altogether, the pan-RAF inhibitor demon-
strated improved antitumor effects in patients [146]. Therefore, pan-RAF and MEK inhibitor
combined therapy is bringing hope to the disease treatment of NRASmut melanoma. How-
ever, it is also reported that CRAF ablation does not affect tumor progression in NRASmut

melanoma due to a rapid switch to BRAF-driven activation [147]. In addition, the inhibition
of the PI3K-AKT signaling pathway is another promising option to prevent or delay the
acquired resistance to the MAPK inhibitor in NRASmut melanoma [148,149].

The combination of several inhibitors, including MEK inhibitors, has been proved to
be effective in NRASmut melanoma cells, such as the combination of MEK and CDK4/6 in-
hibitors [150]. The synergetic effects of the Rho/MRTF pathway inhibitor CCG-222740 and
MEK inhibitor have also been demonstrated effectively in NRASmut melanoma cells [151].
The co-administration of the autophagy inhibitor chloroquine and MEK inhibitor has been
tested in the treatment of RASmut cancers, including NRASmut melanoma [152,153]. The
polo-like kinase 1 (PLK1), which is required for mitotic entry and centrosome maturation
in late G2 phase/early prophase, is overexpressed in NRASmut melanoma. The MEK
and PLK1 inhibitors synergistically induced melanoma cells apoptosis which is medi-
ated by p53 signaling [154]. The MEK/PLK1 inhibitor combination might deserve to be
further tested in patients with NRAS-driven melanoma. The combination of metabolic
pathway-related kinase, such as phosphoglycerate dehydrogenase (PHGDH) and pyruvate
dehydrogenase kinase (PDK), and MEK inhibitors also inhibited the growth of NRASmut

melanoma cells [155,156]. However, most of these studies are only evaluated in vitro.
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Further studies are required to test these experimental combination treatment effects for
NRASmut melanoma.

Serine/threonine kinase STK19 was identified as a novel NRAS activating protein.
STK19 was found to have recurrent and potentially targeted mutations in large-scale
melanoma exome data analysis [92]. STK19 phosphorylates NRAS to enhance its binding to
its downstream effectors and promote the oncogenic NRAS-mediated malignant transfor-
mation of melanocytes [157] (Figure 5). STK19 targeted inhibitors was effective in blocking
the oncogenic NRAS-driven malignant transformation of melanocytes and melanoma
growth in vitro and in vivo [157]. This study provides a new and feasible therapeutic
strategy for melanoma carrying NRAS mutations.
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regulated signaling pathways. ZT-12-037-01 (1a) is a specific STK19-targeted inhibitor, which blocks
the malignant transformation of melanocytes and melanoma growth driven by carcinogenic NRAS
by inhibiting STK19.

3.3. MC1R and Melanoma

MC1R encodes a cyclic adenylate-stimulated G protein coupled receptor that binds
with its ligand, the alpha-melanocyte stimulating hormone (a-MSH), in pigment produc-
tion after UV exposure [51]. MC1R is associated with skin sensitivity to sunlight and is
recognized as a tumor suppressor of melanoma [158,159]. People carrying MC1R variants
have a higher tendency to develop melanoma [159,160]. Its sequence variation can lead to
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partial or complete loss of receptor capacity [161]. The MC1R germline variation increases
the risk of BRAF-mutant melanoma [162]. Thus, MC1R-targeted activation is an effective
strategy in melanoma prevention, especially in individuals with red hair and fair skin [163].

MC1R Protein Palmitoylation Modification

Palmitoylation is often identified in GPCR protein, in which palmitic acid is reversibly
added to the cysteine residues of the C-terminal tail or the intracellular loop. Protein
palmitoylation modification profoundly affects the protein structure, stability, membrane
localization and interaction with partner proteins [50,164]. Activating the palmitoylation
modification of the MC1R protein has been demonstrated as a preventive and treatment
strategy in redhead melanoma [50] (Figure 6). The pharmacological activation of palmitoy-
lation in MC1R rescued the defect of the MC1R RHC variant and prevented melanomagen-
esis [50,163]. MC1R generates derived peptides during the expression of melanoma cells
to induce a cytotoxic T lymphocyte (CTL) response [165,166]. These results suggest that
MC1R-derived peptides show the potential to be developed into a melanoma vaccine for
immunocellular therapy.
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Figure 6. Palmitoyl modification of MC1R. The protein acyltransferase ZDHHC13 mediates the
palmitoylation modification at cysteine 315 site of MC1R protein to activate MC1R signal. APT2
identified as MC1R depalmitoylase, and the treatment of APT2 inhibitor ML349 can effectively
increase MC1R signal transduction and inhibit UVB-induced melanoma.

3.4. Other Therapeutical Target in Melanoma

In addition to the above therapeutic targets, other potential therapeutic targets are
being found. Among them, the enzyme nicotinamide N-methyltransferase (NNMT) is a
promising therapeutic target. Different studies demonstrated that NNMT is overexpressed
in melanoma specimens, including cutaneous and oral melanoma [167–169]. In addition,
the knockdown of NNMT expression in melanoma cell lines significantly reduces cell
proliferation and migration, and the inhibition of NNMT enzyme activity increases the
sensitivity of melanoma cells to dacarbazine treatment. NNMT is being recognized as
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a promising treatment target of melanoma [170]. Several NNMT inhibitors have been
developed and tested in vitro [171,172].

4. Summary

Due to frequent exposure to the natural environment, skin has become the most com-
mon place where human cancer occurs. Melanoma caused by UVR is often considered one
of the most aggressive and treatment-resistant human cancers. The pigment synthesis in
melanocytes not only affects the normal skin coloring but also correlates with the develop-
ment of melanoma. Understanding the molecular mechanism of pigment production will
provide new preventive and therapeutic strategies for the treatment of melanoma.

In the past ten years, several breakthroughs have been developed in melanoma tar-
geted therapeutics, including BRAF V600E-targeted inhibitors and ICIs. However, nearly
half of patients are still not sensitive to these new therapeutic strategies. The acquired
resistance is usually diagnosed in the sensitive patients. Thus, new therapy targets need
to be explored and identified. Furthermore, different combination strategies should be
further tested.
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