
Citation: Gupta, J.F.; Arshad, S.H.;

Telfer, B.A.; Snider, E.J.; Convertino,

V.A. Noninvasive Monitoring of

Simulated Hemorrhage and Whole

Blood Resuscitation. Biosensors 2022,

12, 1168. https://doi.org/10.3390/

bios12121168

Received: 19 October 2022

Accepted: 8 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Noninvasive Monitoring of Simulated Hemorrhage and Whole
Blood Resuscitation
Jay F. Gupta 1 , Saaid H. Arshad 1, Brian A. Telfer 1,* , Eric J. Snider 2 and Victor A. Convertino 2

1 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02421, USA
2 U.S. Army Institute of Surgical Research, San Antonio, TX 78234, USA
* Correspondence: telfer@ll.mit.edu

Abstract: Hemorrhage is the leading cause of preventable death from trauma. Accurate monitoring
of hemorrhage and resuscitation can significantly reduce mortality and morbidity but remains a
challenge due to the low sensitivity of traditional vital signs in detecting blood loss and possible
hemorrhagic shock. Vital signs are not reliable early indicators because of physiological mechanisms
that compensate for blood loss and thus do not provide an accurate assessment of volume status. As
an alternative, machine learning (ML) algorithms that operate on an arterial blood pressure (ABP)
waveform have been shown to provide an effective early indicator. However, these ML approaches
lack physiological interpretability. In this paper, we evaluate and compare the performance of ML
models trained on nine ABP-derived features that provide physiological insight, using a database
of 13 human subjects from a lower-body negative pressure (LBNP) model of progressive central
hypovolemia and subsequent progressive restoration to normovolemia (i.e., simulated hemorrhage
and whole blood resuscitation). Data were acquired at multiple repressurization rates for each subject
to simulate varying resuscitation rates, resulting in 52 total LBNP collections. This work is the first
to use a single ABP-based algorithm to monitor both simulated hemorrhage and resuscitation. A
gradient-boosted regression tree model trained on only the half-rise to dicrotic notch (HRDN) feature
achieved a root-mean-square error (RMSE) of 13%, an R2 of 0.82, and area under the receiver operating
characteristic curve of 0.97 for detecting decompensation. This single-feature model’s performance
compares favorably to previously reported results from more-complex black box machine learning
models. This model further provides physiological insight because HRDN represents an approximate
measure of the delay between the ABP ejected and reflected wave and therefore is an indication of
cardiac and peripheral vascular mechanisms that contribute to the compensatory response to blood
loss and replacement.

Keywords: signal processing; machine learning; hemorrhage; resuscitation; prehospital; prolonged
field care; arterial blood pressure waveform; photoplethysmogram

1. Introduction

Hemorrhage is the leading cause of preventable death among combat and civilian
trauma casualties [1–4]. Monitoring blood loss to predict hemorrhagic shock, together
with intravenous fluid resuscitation, is fundamental to reducing mortality and morbidity
in the crucial moments after injury [5]. In the austere setting of tactical combat casualty
care, the standard for assessing hemorrhagic shock and circulation volume status is based
on “altered mental status in the absence of brain injury and/or weak or absent radial
pulse.” [6]. When vital signs are available, these are used to monitor for shock, with the
shock index as a longstanding example [7]. Other more sophisticated methods based on
vital signs have been developed [8–10]. However, the body compensates to maintain vital
signs such as heart rate and blood pressure until near the point of shock (~15–20% or more
blood volume loss [11,12]), so these measures are not highly sensitive for early prediction
of decompensation or recovery from shock [10,13]. Furthermore, inability to accurately
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monitor hemodynamic status makes it difficult to provide goal-directed resuscitation.
Poorly defined resuscitation endpoints can increase morbidity and mortality because of
impacts on coagulation, toxicity, and reperfusion injuries [3,13]. Over-resuscitation can
further stress a patient’s organs and result in outcomes potentially even more detrimental
than that of under-resuscitation [14]. The ability to noninvasively track circulating volume
status and accurately differentiate between states of near-shock versus normovolemia is
thus crucial for providing effective pre-hospital trauma care.

A variety of alternative measures relying on noninvasive physiological signals that
represent compensatory responses that change during the early stages of compensated
shock during hemorrhage and the early stages of resuscitation have been explored. Anal-
ysis of arterial blood pressure (ABP) waveforms [10,15–18], detection of dynamic light
scattering [19], and seismography [7,15] have been some promising methods to track hem-
orrhage. The compensatory reserve [14], based on a machine learning (ML) algorithm
that interrogates ABP waveform features, has been particularly promising and has been
used to track both hemorrhage and resuscitation [3,13,15]. Compensatory reserve is an
assessment of the body’s ability to respond to acute changes in circulating blood volume by
activating compensatory mechanisms such as tachycardia and vasoconstriction [15]. The
ABP waveform is particularly informative because it is affected by both reduced cardiac
output and compensatory mechanisms during blood loss.

Compensatory reserve is a physiological phenomenon that represents the fraction of
the compensating capacity of an organism in response to blood loss that remains before
reaching decompensation (i.e., failure of physiological compensatory mechanisms) [20].
Two specific algorithms have been evaluated in multiple studies for the purpose of monitor-
ing blood loss and predicting hemorrhagic shock. The Compensatory Reserve Index (CRI)
uses a proprietary machine learning method [21] and estimates compensatory reserve on a
scale of 1 to 0, with 1 corresponding to normovolemia and 0 to a state of decompensation.
The second algorithm, termed Compensatory Reserve Metric (CRM), uses a convolutional
neural network (CNN) [22] and is reported on a scale of 100% to 0% for normovolemia and
decompensation, respectively.

The ability to objectively monitor fluid resuscitation has received less attention than
has monitoring blood loss. Convertino et al. reported high correlations between CRM
and percent blood lost and resuscitated in nonhuman primates. They calculated a clini-
cally meaningful threshold of systemic oxygen delivery (DO2) of 5.3 mL O2·kg−1·min−1

and accordingly proposed an endpoint for resuscitation of CRM ~40% [3,23]. Li et al.
demonstrated the ability to track resuscitation using a ML model with feature sets ex-
tracted from electrocardiogram (ECG) and photoplethysmogram (PPG) waveforms using
a porcine model of induced hemorrhagic shock and fluid resuscitation [14]. They eval-
uated an algorithm that classified whether a sufficient point of resuscitation had been
reached or not and achieved AUCs of 0.892 and 0.947 without and with a personal baseline
normalization, respectively.

While these results have been quite promising, black box machine learning approaches
do not readily explain the details of the information that is being used and what information
is most important. In particular, the physiology of compensation and decompensation is
well understood [24], but insight into how CRI and CRM algorithms utilize the information
embedded in the ABP waveform remains limited. Interpretability of ML models is advan-
tageous for galvanizing trust and accelerating adoption in high-stakes domains, such as
trauma care. This is particularly true when factors utilized by the models are congruous
with domain insights held by expert end-users [25].

Previous work has demonstrated the high sensitivity and specificity of a particular
ABP-derived feature, the half-rise to dicrotic notch (HRDN), in tracking simulated hemor-
rhage in a stepped-LBNP model of progressive central hypovolemia [26]. HRDN measures
the approximate delay between the ejected and reflected ABP wave components and is
known from other research to correlate with the compensatory measure of reduced arterial
compliance and vasoconstriction [27–29]. The focus of this paper is to build on this previ-
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ous work by evaluating the relative importance of ABP-derived features in tracking both
hemorrhage and resuscitation, thereby elucidating further insights about the information
contained within ABP waveforms. The resulting models are alternate approaches for
estimating CRM, compared to the method for computing CRM reported in [21]. Three key
contributions of this paper are that these physiologically interpretable models: (1) yield
similar accuracies for monitoring simulated blood loss compared to more complex, black-
box models, (2) yield similar accuracies for both blood loss and fluid resuscitation, and
(3) perform similarly for data from both the stepped-LBNP protocol that has been evaluated
in past publications and for a new ramped-LBNP protocol that simulates both hemorrhage
and resuscitation at different rates.

2. Materials and Methods
2.1. Hemorrhage Model

An LBNP model was used to simulate whole blood hemorrhage physiology and
subsequent resuscitation in healthy human volunteers. Subjects were positioned supine
inside a pressure chamber enclosing the lower extremities, with the upper body above
the waist exposed to ambient conditions. Progressively lowering the chamber pressure
to sub-atmospheric levels reduced central blood volume by redistributing blood toward
the lower extremities. LBNP provided a noninvasive method for inducing hemodynamic
decompensation and hemorrhagic shock-like symptoms. Returning the chamber to atmo-
spheric pressure at a fixed rate steadily reversed these effects and restored subjects to their
baseline physiological state [24].

LBNP studies were conducted at the U.S. Army Institute of Surgical Research under
approval from the U.S. Army Medical Research and Development Command Institutional
Review Board. LBNP chamber pressures and ABP recordings from 13 subjects were de-
identified and provided to MIT Lincoln Laboratory under a data sharing agreement for
analysis. Demographic information is summarized in Table 1.

Table 1. Study Cohort Demographics.

Factor
Subject Group a

All Subjects

Gender 6 male, 7 female
Age 23 ± 4 years

Weight 68.5 ± 11.6 kg
Height 173 ± 9 cm

Body Mass Index 23.1 ± 3.9
a. Demographics presented as mean ± standard deviation, where applicable.

Data were collected from each subject on two separate days. On the first day, negative
chamber pressure was applied (i.e., the chamber was depressurized) in a linear ramp at a
randomly assigned rate of−3,−6, or−9 mmHg/min to simulate a relatively slow, medium,
or fast rate of bleeding. This was consistent with previous experiments demonstrating
that −30, −60, and −90 mmHg LBNP approximate average blood losses of 450, 1000, and
1600 mL, respectively in a 70 kg human [22]. Pressure was quickly released (within 2 s)
when subjects reached their hemodynamic decompensation point (indicated by a systolic
blood pressure (SBP) of 80 mmHg or less, a sudden drop in heart rate (HR), symptoms
consistent with clinical criteria of class III shock [15], or sustained an LBNP of−100 mmHg).
On the second day, subjects participated in three consecutive LBNP sessions. In each session,
chamber pressure was reduced at the same rate assigned to that subject on the first day,
until a CRM of 30% was measured or an LBNP of −100 mmHg was reached. The chamber
was then gradually repressurized to simulate fluid resuscitation at a rate of either +3,
+6, or +9 mmHg/min. The repressurization rate of the first session was the same as the
depressurization rate, while the repressurization rates of the second and third sessions
were randomly assigned from the remaining options. The repressurization phase was
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followed by a 10 min recovery period at constant chamber pressure isobaric with ambient
conditions. A schematic of the LBNP application protocol is provided in Figure 1. After
recovery, subjects were removed from the LBNP chamber for a 60 min rest period between
sessions. During the rest period, subjects were provided with water and a light snack and
were only allowed to perform non-strenuous or non-stressful activities such as reading a
book or watching a movie. No acclimatization was noticed during the multiple sessions. In
summary, 13 subjects each participated in 4 sessions of data collection, resulting in a total
of 13 depressurization and 39 repressurization sessions.
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Figure 1. Representative negative pressure application protocol and reference CRM (RCRM) values
during the baseline, depressurization, repressurization, and recovery phases of the LBNP studies.
The duration of each phase varied based on the ramp speed selected for that trial.

A beat-to-beat arterial blood pressure signal was noninvasively monitored continu-
ously throughout the LBNP study using photoplethysmography with a Finapres technology
(Finometer® Blood Pressure Monitor, BMEye, Amsterdam, The Netherlands) [30]. Data
were acquired at a 500 Hz sampling rate. Reference CRM values for each subject were
computed as a function of negative pressure level, P, at each time point, t, using Equation
(1) as illustrated in Figure 1, where Pmax is the maximum pressure sustained by the subject:

Re f erence CRMt =

(
1− Pt

Pmax

)
∗ 100% (1)

Reference CRM values were used as truth data for training and testing models to
estimate CRM.

2.2. ABP Signal Processing
2.2.1. Pre-Processing

The Finapres ABP recordings were smoothed by a 512th order zero-phase finite
impulse response lowpass filter with 12 Hz cutoff frequency (MATLAB, Natick, MA, USA).
First and second derivatives were approximated as finite differences of the denoised ABP
traces. Signals and derivatives were z-scored within a 2-s trailing window to detrend,
remove baseline drift, and standardize amplitude scaling.

2.2.2. Feature Extraction

Fiducial points corresponding to the landmarks in Figure 2 were identified based on
peak finding (MATLAB 2021b) and empirical relationships between the ABP signal and its
derivatives, as described in [27]. Features describing the morphology of each ABP pulse
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were then computed using the formulas in Table 2 [27]. These features reflect interpretable
physiological correlates such as cardiac output, autonomic function, and peripheral vascular
resistance [15,26,31]. The feature set also includes standard vital sign features such as heart
rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP).

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 16 
 

2.2.2. Feature Extraction 
Fiducial points corresponding to the landmarks in Figure 2 were identified based on 

peak finding (MATLAB 2021b) and empirical relationships between the ABP signal and 
its derivatives, as described in [27]. Features describing the morphology of each ABP pulse 
were then computed using the formulas in Table 2 [27]. These features reflect interpretable 
physiological correlates such as cardiac output, autonomic function, and peripheral vas-
cular resistance [15,26,31]. The feature set also includes standard vital sign features such 
as heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP). 

Locating the dicrotic notch is requires additional selection logic when multiple can-
didate notches are detected, or none are detected. These notches are detected based on the 
first derivative, as described in [27]. For cases where multiple candidate notches were 
identified from first-derivative peaks, the maximally prominent peak within a credible 
time range (15–40% of PPI, based on exploratory analysis) was selected. ABP pulses where 
no peaks met these criteria were excluded from analysis. 

2.2.3. Outlier Rejection 
Outlier values for each feature were detected using a moving median filter within a 

centered, 20-heartbeat window. Data points greater than three scaled median absolute de-
viations (MAD) away from the window median were removed. Scaled MAD was calcu-
lated as 1.4826 × 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐴 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴)|) for each sequence, 𝐴, of local feature values 
[32]. 

 
Figure 2. Landmark points on Finapres ABP pulse corresponding to (A) start of pulse, (B) systolic 
half-rise, (C) systolic peak, (D) dicrotic notch, (E) end of pulse, and (F) systolic peak of successive 
pulse. 

Table 2. ABP Feature Descriptions. 

Feature 
Description 

Name Formula a 
PPI Peak to Peak Interval 𝑡ி − 𝑡 
HRV Heart Rate Variability 𝑅𝑀𝑆𝑆𝐷 of PPI for 10 beats 
HRDN Half-Rise to Dicrotic Notch 𝑡 − 𝑡 
SBP Systolic Blood Pressure 𝑊 
DBP Diastolic Blood Pressure 𝑊ா 
PP Pulse Pressure 𝑊 − 𝑊 

PA Pulse Area න 𝑊 𝑑𝑡ா
  

0 0.2 0.4 0.6 0.8

Time (s)

70

80

90

100

110

120

130

140

A

B

C

D

E

F

Figure 2. Landmark points on Finapres ABP pulse corresponding to (A) start of pulse, (B) systolic half-
rise, (C) systolic peak, (D) dicrotic notch, (E) end of pulse, and (F) systolic peak of successive pulse.

Table 2. ABP Feature Descriptions.

Feature
Description

Name Formula a

PPI Peak to Peak Interval tF − tC
HRV Heart Rate Variability RMSSD of PPI for 10 beats
HRDN Half-Rise to Dicrotic Notch tD − tB
SBP Systolic Blood Pressure WC
DBP Diastolic Blood Pressure WE
PP Pulse Pressure WC −WA

PA Pulse Area
∫ E

A W dt

IPA Inflection Point Area
∫ E

D W dt ÷
∫ D

A W dt

SI Shock Index 60
PPI·SBP

a. Wx is the ABP signal value at point x and tx is the time at point x, based on the schematic in Figure 2.

Locating the dicrotic notch is requires additional selection logic when multiple can-
didate notches are detected, or none are detected. These notches are detected based on
the first derivative, as described in [27]. For cases where multiple candidate notches were
identified from first-derivative peaks, the maximally prominent peak within a credible time
range (15–40% of PPI, based on exploratory analysis) was selected. ABP pulses where no
peaks met these criteria were excluded from analysis.

2.2.3. Outlier Rejection

Outlier values for each feature were detected using a moving median filter within
a centered, 20-heartbeat window. Data points greater than three scaled median absolute
deviations (MAD) away from the window median were removed. Scaled MAD was
calculated as 1.4826 × median(|A−median(A)|) for each sequence, A, of local feature
values [32].
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2.2.4. Local Averaging

To reduce the impact of short-term fluctuations, a moving average filter was applied
to each feature with a trailing window size of 20 s and a 90% overlap between adjacent
windows. Moving standard deviation of the feature averages (centered bilaterally across
21 adjacent windows) was computed for the half-rise to dicrotic notch (HRDN) feature.
To remove remaining outliers, samples where the HRDN standard deviation exceeded a
threshold value were removed from the data set. This method was empirically tuned to
exclude outlier groups from specific subjects identified during exploratory data analysis.
Since the computations described above require 20 s of “future” data in the current imple-
mentation, a 20 s time delay in reporting results will ensure that the processing pipeline
remains causal when the algorithm is deployed in the field.

2.2.5. Baseline Normalization

To evaluate the need for a priori information about an individuals’ normovolemic
physiological state, baseline-normalized features were compiled for each subject. To gener-
ate these data, each feature was divided by its mean across the five-minute baseline LBNP
phase (Figure 1).

2.3. CRM Estimation

CRM was estimated as a supervised regression task using the ABP-derived features
as model inputs. Ordinary least squares (OLS) and gradient boosted (GB) regression
tree [33] models were evaluated in order to interrogate linear and non-linear relationships
between the variables, respectively. All tree ensembles consisted of 100 estimators trained
to minimize squared error loss without bootstrap aggregation of samples for the base
learners. Four different feature sets were evaluated: (1) all nine features listed in Table 2,
(2) vital signs (PPI, SBP, HRV, SI, and DBP), (3) ABP-waveform features including several
that are not considered as vital signs (PPI, HRDN, PP, and IPA), and (4) HRDN only.

Models were trained on data sets generated with and without baseline normalization.
Five-fold cross validation was used to assess model generalizability. Given that samples
from the same individual are highly correlated, folds were split by subject in order to avoid
data leakage [34]. All regression experiments used the scikit-learn package for machine
learning in Python [35]. Models were trained and tested on three versions of the data set:

1. Full procedure: Baseline, depressurization, repressurization, and recovery phases of
data collection are included for training and testing.

2. Simulated hemorrhage: Only depressurization data (the phase shaded yellow in
Figure 1) are used for training and testing.

3. Simulated resuscitation: Only repressurization data (the phase shaded purple in
Figure 1) are used for training and testing.

Training and testing only on the simulated hemorrhage and resuscitation phases
allowed evaluation of the models’ ability to accurately track compensatory reserve with
comparable performance during both phases of monitoring a subject.

2.4. Analysis and Performance Metrics

Gini importance [35] was examined to determine the relative contribution of each
feature in the GB regression tree models. Importance was calculated as the normalized
decrease in Friedman’s MSE criterion [33] after performing splits with the feature be-
ing evaluated.

Bland–Altman (BA) analysis [36] was also conducted to assess agreement between
reference and estimated CRMs. Given that gold standard reference values were known
from Equation (1), the x-axis was selected as the reference CRM [37].

Model accuracy was quantified by RMSE, coefficient of determination (R2) between
estimated and reference CRM, and ROC AUC. The effect of variable rates of simulated
hemorrhage and resuscitation were also evaluated by averaging RMSE and R2 per ramp
speed: −9, −6, −3, +3, +6, and +9 mmHg/min, where the negative rates indicate the
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depressurization (simulated hemorrhage) and the positive rates indicate repressurization
(simulated resuscitation). For AUC, ROCs were computed for binary classification at the
clinically relevant CRM thresholds of 40% and 70% based on the work of Koons et al. [23].
A CRM of 40% corresponds to the critical threshold at which reduction in DO2 places
individuals with low tolerance to reductions in central blood volume at greatest risk for
imminent hemodynamic decompensation. A CRM of 70% corresponds to the recommended
safe range that allows return to normovolemia without risk of over-resuscitation. To allow
comparison to previously reported AUCs at the point of decompensation, an AUC was also
computed for a CRM threshold of 5%, which is slightly higher than the decompensation
point of CRM = 0% to allow for low-level noise in the CRM estimates.

3. Results
3.1. Performance of CRM Estimation Models

Subject 12 had only the initial depressurization data and no repressurization data.
Of the total data available, 2.8% was removed after the median outlier rejection step and
4.3% was removed after the HRDN standard deviation threshold step. Table 3 presents
performance metrics for a GB tree model trained and tested on four different feature sets for
the full procedure, only the depressurization phase, and only the repressurization phase as
depicted in Figure 1. A simple linear regression on the HRDN feature was also evaluated,
but this performed poorly relative to the GB tree models and is not shown. Without baseline
normalization, the highest performing models (indicated by lowest RMSE and highest R2)
were the GB tree trained on all features using the data from the full procedure for each
subject with RMSE = 13% ± 2%, R2 = 0.85 ± 0.04, and the GB tree trained on the ABP
waveform feature set with RMSE = 13% ± 2%, R2 = 0.85 ± 0.04. The vital signs feature set
has the lowest performance with an RMSE = 23% ± 0.03%, R2 = 0.50 ± 0.14. The model
using only the HRDN feature achieved comparable performance to the aforementioned
high-performance models, suggesting that the HRDN feature by itself is an accurate
estimator of CRM. Similar trends were observed for models trained and tested just on the
depressurization (simulated hemorrhage) and repressurization phases; however, overall
performance of these models was worse compared to training and testing using data from
the full procedure.

It should be noted that the HRDN feature decreases as PPI decreases (i.e., as heart rate
increases), so it is natural to consider the normalized feature HRDN/PPI. We evaluated
that feature but found no performance improvement.

The models using the vital signs feature set improved considerably after applying
baseline normalization, whereas there was no marked improvement for the other feature set
configurations. The GB tree models using HRDN showed a decrease in performance after
baseline normalization in the case of training on full procedure data or repressurization
data. This performance decrease was due to two subjects with significant variability in ABP
waveform data during the baseline phase of the LBNP study, which resulted in inaccurate
HRDN features in the baseline phase.

Figure 3 shows box plots of RMSEs at each ramp speed for the GB tree model with all
features and for the GB tree model using only HRDN. The number of data sets per speed
was non-uniform. Ramp rates −9, −6, −3, +3, +6, and +9 mmHg/min had 18, 19, 12, 12,
12, and 11 data sets, respectively. In the case of the all-features set, maximum variability
in RMSE across subjects was seen at −9 mmHg/min with a standard deviation of 7%,
and minimum variability was observed at 9 mmHg/min with a 2% standard deviation.
Median values for all speeds fell within one standard deviation of each other and there
were no significant differences in performance between the all-features set and HRDN-
only set with regard to speed. This suggests that the reliability of HRDN as a feature for
tracking hemorrhage and resuscitation is independent of rate of blood volume and/or
fluid resuscitation.
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Table 3. CRM estimation results for cross-validation training and testing for the GB-tree model on
the full data set (includes the baseline, depressurization, repressurization, and recovery phases from
each experiment as shown in Figure 1), followed by training and testing on only the depressurization
and repressurization phases.

Full Procedure (Baseline + Depressurization + Repressurization + Recovery)

Feature Set Normalization
Performance Metrics a

RMSE (%) R2

All Features
None 13 ± 2 0.85 ± 0.04

Baseline 12 ± 3 0.85 ± 0.08

Vital Signs
None 23 ± 3 0.50 ± 0.14

Baseline 17 ± 2 0.71 ± 0.08

ABP Waveform
None 13 ± 2 0.85 ± 0.04

Baseline 13 ± 3 0.84 ± 0.08

HRDN only
None 14 ± 3 0.82 ± 0.07

Baseline 15 ± 5 0.77 ± 0.04

Simulated Hemorrhage (Depressurization)

Feature Set Normalization
Performance Metrics a

RMSE (%) R2

All Features
None 14 ± 2 0.74 ± 0.11

Baseline 13 ± 4 0.77 ± 0.09

Vital Signs
None 18 ± 3 0.56 ± 0.13

Baseline 17 ± 2 0.65 ± 0.07

ABP Waveform
None 14 ± 2 0.76 ± 0.10

Baseline 13 ± 3 0.78 ± 0.09

HRDN only
None 16 ± 3 0.67 ± 0.12

Baseline 16 ± 3 0.68 ± 0.13

Simulated Resuscitation (Repressurization)

Feature Set Normalization
Performance Metrics a

RMSE (%) R2

All Features
None 14 ± 3 0.74 ± 0.11

Baseline 16 ± 4 0.67 ± 0.19

Vital Signs
None 21 ± 3 0.44 ± 0.16

Baseline 15 ± 2 0.71 ± 0.08

ABP Waveform
None 14 ± 3 0.75 ± 0.08

Baseline 17 ± 6 0.71 ± 0.08

HRDN only
None 13 ± 3 0.80 ± 0.09

Baseline 18 ± 8 0.56 ± 0.37
a. Metrics presented as test set mean ± standard deviation after 5-fold cross validation.

Figure 4 shows the relative importance of all features tested in the GB tree models
without baseline normalization for each version of the data set. Figure 4 shows the same
analysis for the equivalent model from previous work that utilized a stepped-LBNP protocol
to simulate progressive hemorrhage, instead of the ramped-LBNP protocol employed in
this paper [26]. HRDN was identified as the primary contributor in all cases, whether it
was being used to estimate CRM during simulated hemorrhage or simulated resuscitation.
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Figure 5 shows a BA plot, as well as reference and estimated CRMs from an example
subject, for the GB tree model trained on the full procedure data set using all nine features
in Table 2. The limits of agreement (representing ±1.96 standard deviations) were at ~25%
difference between the estimated and reference CRM for all models tested, except for the
vital signs models, for which they were ~40%. Overall, the model bias was negatively
correlated with CRM. It tended to undershoot for higher CRMs (>50%) and overshoot
for lower CRMs (<50%), despite low mean error across the full dataset. Figure 5b shows
the CRM estimates for subject 4 during a session with the simulated hemorrhage and
resuscitation induced at the same speed (~6 mmHg/min). This trend was observed in all
iterations of models tested and is expected for a least-squares-fit model.
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example has a lower than average RMSE of 9.9%.
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3.2. ROC Analysis for Classification at Key Clinical Endpoints

Table 4 presents results for the ROC analysis and AUCs for all model configurations
trained and tested as shown in Table 3. AUCs were calculated for binary classification at
empirically determined CRM thresholds (i.e., CRM ≥ 70%, CRM ≥ 40%, and CRM ≥ 5%)
that have been proposed as clinical endpoints for management of both hemorrhage and
resuscitation. Overall, every model utilizing all features listed in Table 2 performed well in
each of these binary classification tasks.

Table 4. Receiver Operating Characteristic Area Under Curve (ROC AUC) results for training and
testing on the full data set (includes the baseline, depressurization, repressurization, and recovery
phases from each experiment as shown in Figure 1) followed by training and testing on just the
depressurization and repressurization phases.

Full Procedure (Baseline + Depressurization + Repressurization + Recovery)

Feature Set Normalization
ROC AUC

CRM ≥ 70% CRM ≥ 40% CRM ≥ 5%

All Features
None 0.98 ± 0.01 0.98 ± 0.01 0.94 ± 0.01

Baseline 0.97 ± 0.02 0.96 ± 0.02 0.92 ± 0.03

Vital Signs
None 0.85 ± 0.03 0.93 ± 0.02 0.91 ± 0.02

Baseline 0.92 ± 0.02 0.96 ± 0.01 0.93 ± 0.02

ABP Waveform
None 0.98 ± 0.01 0.98 ± 0.01 0.95 ± 0.01

Baseline 0.96 ± 0.04 0.95 ± 0.03 0.91 ± 0.04

HRDN only
None 0.98 ± 0.01 0.97 ± 0.01 0.93 ± 0.02

Baseline 0.96 ± 0.02 0.94 ± 0.03 0.90 ± 0.04

Simulated Hemorrhage (Depressurization)

Feature Set Normalization
ROC AUC

CRM ≥ 70% CRM ≥ 40% CRM ≥ 5%

All Features
None 0.95 ± 0.03 0.95 ± 0.01 0.90 ± 0.04

Baseline 0.96 ± 0.02 0.94 ± 0.02 0.90 ± 0.03

Vital Signs
None 0.87 ± 0.04 0.92 ± 0.03 0.90 ± 0.04

Baseline 0.90 ± 0.02 0.93 ± 0.02 0.91 ± 0.03

ABP Waveform
None 0.95 ± 0.03 0.95 ± 0.01 0.93 ± 0.02

Baseline 0.96 ± 0.02 0.94 ± 0.02 0.89 ± 0.02

HRDN only
None 0.92 ± 0.04 0.92 ± 0.01 0.82 ± 0.08

Baseline 0.94 ± 0.03 0.91 ± 0.04 0.85 ± 0.08

Simulated Resuscitation (Repressurization)

Feature Set
Training Scheme ROC AUC

Normalization CRM ≥ 70% CRM ≥ 40% CRM ≥ 5%

All Features
None 0.96 ± 0.01 0.96 ± 0.02 0.85 ± 0.04

Baseline 0.95 ± 0.04 0.95 ± 0.03 0.86 ± 0.03

Vital Signs
None 0.87 ± 0.04 0.88 ± 0.05 0.78 ± 0.06

Baseline 0.95 ± 0.02 0.95 ± 0.01 0.86 ± 0.02

ABP Waveform
None 0.96 ± 0.02 0.97 ± 0.01 0.86 ± 0.02

Baseline 0.94 ± 0.05 0.95 ± 0.04 0.85 ± 0.04

HRDN only
None 0.97 ± 0.01 0.97 ± 0.01 0.88 ± 0.03

Baseline 0.91 ± 0.07 0.90 ± 0.08 0.81 ± 0.06



Biosensors 2022, 12, 1168 12 of 15

ROC AUCs trended with the RMSE and R2 metrics in Table 3, so models showing
a lower RMSE and higher R2 in Table 3 correspondingly showed to a relatively higher
AUC in Table 4. The GB tree model trained on the vital signs feature set without baseline
normalization had the lowest AUC of 0.78 ± 0.06. Of the 72 models trained, 57 achieved an
AUC above 0.9, however lower AUCs were observed for detecting CRM ≥ 5% compared to
the other two endpoints. The HRDN-only models performed similarly to the models trained
on all features, showing that this single ABP-derived feature is sufficient to distinguish
between key CRM thresholds with high sensitivity and specificity during both hemorrhage
and resuscitation.

4. Discussion

Although LBNP ramp protocols have been used for investigation of the hemodynamic
responses to progressive central hypovolemia [38], this is the first study in which the com-
pensatory reserve has been analyzed with a constant ramp LBNP protocol that simulates
both hemorrhage and resuscitation. Most previous LBNP protocols were designed to
depressurize the vacuum chamber using a step profile in which negative pressure was
maintained at a certain value [15,16,23] for a fixed period of time between depressuriza-
tion steps. The ramped protocol applies a constant rate for both depressurization and
repressurization, more accurately simulating both scenarios of whole blood hemorrhage
or resuscitation, which are continuous processes in reality. Furthermore, the analysis pre-
sented in the present article is based on the same algorithm for both hemorrhage and
resuscitation. This indicates that the underlying physiological mechanisms that are being
measured by a feature such as HRDN remain valid in measuring compensatory reserve in
both scenarios. This relationship can therefore rely on employing only a single algorithm
in the field when managing hemorrhage.

This present investigation is also the first work to assess the effect of the rate of
simulated hemorrhage and resuscitation on the accuracy of a model using an LBNP protocol.
As Figure 3 shows, there are no statistically significant differences in RMSE across the
different rates of hemorrhage or resuscitation. The HRDN-only model shows a similar
accuracy and robustness to speed as the all-features model, further demonstrating the
efficacy of the HRDN-only model. A limitation in this study is the non-uniform distribution
of rates and a relatively small population size, which are factors that will be addressed as
the data set grows.

Our work builds on recent preliminary results for resuscitation monitoring, particularly
in relating metrics such as CRI and CRM to real physiological conditions [13,15,28,39,40].
Koons et al. demonstrated in a study on baboons that CRM is linearly correlated to DO2
during controlled progressive hemorrhage and subsequent whole blood resuscitation [3].
Using this relationship, they showed that hemodynamic decompensation (CRM = 0%) can be
defined by a critical DO2 at approximately 5.3 mL O2·kg−1·min−1. Furthermore, using this
model they showed that a target CRM of 35% during whole blood resuscitation required
only 40% of total blood volume lost to sustain adequate DO2 to maintain hypotensive
resuscitation [3]. Their most recent work establishes a CRM of 40% as a key threshold to
ensure a patient at greatest risk for early onset of shock (i.e., individual with low tolerance
to central hypovolemia) is at an adequate DO2 level [23]. Unique to the current study is the
varying rates of simulated whole blood hemorrhage and resuscitation used to develop the
HRDN model. Given HRDN’s high performance in predicting CRM in the LBNP model,
there is potential for HRDN to be correlated with a clinically meaningful metric such as
DO2. Given the HRDN-only model’s accurate tracking of CRM and high discriminability at
the key thresholds established by Koons et al., the models explored in this paper could be
implemented in ambulatory and austere field-care environments working off noninvasive
PPG data. The HRDN-only models furthermore provide a clinically interpretable result,
relating the time difference between the ejected and reflected waves in a PPG signal and
providing information on systemic vascular resistance, which will change dramatically in
response to hemorrhage and resuscitation [26].
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Recent work by Convertino et al. [22] demonstrated accurate tracking of reductions
in central blood volume similar to those produced by hemorrhage induced by a stepped-
LBNP model with a cohort of 191 healthy human volunteers using CRM and CRI. The
algorithms estimated the onset of hemodynamic decompensation with a CRI AUC of
0.9164 (0.0066, 95% CI = 0.903–0.92) with an R2 = 0.978 and a CRM AUC of 0.9268 (0.0059,
95% CI = 0.915–0.93) with an R2 = 0.958. The investigators did not simulate resuscitation in
this study. The HRDN-only GB tree models reported herein achieved AUCs of 0.93 ± 0.02,
0.82 ± 0.08, 0.88 ± 0.03, and corresponding R2s of 0.82 ± 0.07, 0.67 ± 0.12, and 0.80 ± 0.09
on the full procedure, only depressurization, and only repressurization versions of the data
set, respectively. The performance of our simplified single feature model is thus comparable
with respect to AUC. The R2 values here are lower, with the maximum reaching only
0.82 compared to 0.978 for CRI and 0.958 for CRM. We expect that this would improve with
a larger data set. While the data set analyzed in this paper was limited to 13 subjects with
52 LBNP collections compared to 191 subjects in the study by Convertino et al. [22], our
work underscores the ability to track both hemorrhage and resuscitation and demonstrates
that the models presented in this current investigation track both with comparable accuracy,
even when using only HRDN as a feature.

This work supports the sound physiological basis for the concept of a compensatory
reserve metric. Previous work by Convertino et al. has established the efficacy of esti-
mating compensatory reserve in a variety of human LBNP models using a step proto-
col [15,16,20,21,23,24,38]. This model has been shown to be an accurate simulation of real
blood loss and resuscitation in humans and primates [3,10,16,29,39]. We have demonstrated
an HRDN-based model with comparable performance on both an LBNP step protocol [26]
and the ramp protocol presented in this paper. The similar and accurate performance of the
CRI, CRM, and HRDN models on step and ramp protocols for both simulated hemorrhage
and resuscitation provides compelling evidence for the measurement of compensatory
reserve as a valid physiological concept for hemorrhage management.

5. Conclusions

The present study has demonstrated analysis of a novel data set simulating both
whole blood hemorrhage and resuscitation at varying rates. The HRDN feature previously
reported [26] and used in a GB tree model tracks hemorrhage and resuscitation with
similar accuracies and comparable performance to that from more complex deep learning-
based systems reported elsewhere. The HRDN feature is physiologically interpretable,
relating the time between the ejected and reflected pressure waves to systemic vascular
resistance and cardiac output. The HRDN model accurately classifies key clinical thresholds
for managing hemorrhage and resuscitation, and importantly does not require baseline
normalization that would be difficult to obtain in typical clinical settings. Finally, it has
shown to maintain performance in hemorrhage and resuscitation rates varying from 3 to
9 mmHg/min in an LBNP model. The work presented here demonstrates a promising
solution for monitoring hemorrhage and resuscitation in ambulatory and austere field-care
settings. The key limitations of this work are a small subject sample size and a non-uniform
distribution of rates of simulated hemorrhage and resuscitation. Validation of the HRDN
model generated by the analysis of varying ramp protocols in the present investigation
awaits future work that focuses on applying our HRDN models to actual blood loss and
correlating values of compensatory reserve with clinically meaningful metrics such as DO2.
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