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Abstract: Molecular heterogeneity has great significance in the disease biology of multiple myeloma
(MM). Thus, the analysis combined single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data were
performed to investigate the clonal evolution characteristics and to find novel prognostic targets in MM.
The scRNA-seq data were analyzed by the Seurat pipeline and Monocle 2 to identify MM cell branches
with different differentiation states. Marker genes in each branch were uploaded to the STRING database
to construct the Protein-Protein Interaction (PPI) network, followed by the detection of hub genes by
Cytoscape software. Using bulk RNA-seq data, Kaplan-Meier (K-M) survival analysis was then carried
out to determine prognostic biomarkers in MM. A total of 342 marker genes in two branches with
different differentiation states were identified, and the top 20 marker genes with the highest scores in
the network calculated by the MCC algorithm were selected as hub genes in MM. Furthermore, K-M
survival analysis revealed that higher NDUFB8, COX6C, NDUFA6, USMG5, and COX5B expression
correlated closely with a worse prognosis in MM patients. Moreover, ssGSEA and Pearson analyses
showed that their expression had a significant negative correlation with the proportion of Tcm (central
memory cell) immune cells. Our findings identified NDUFB8, COX6C, NDUFA6, USMG5, and COX5B
as novel prognostic biomarkers in MM, and also revealed the significance of genetic heterogeneity
during cell differentiation in MM prognosis.

Keywords: multiple myeloma; single-cell sequencing; bulk transcription; cell differentiation trajectory;
prognostic signature; tumor immune microenvironment

1. Introduction

The second most common hematological malignancy, multiple myeloma (MM), is
characterized by abnormal accumulations of malignant plasma cells. Compared with other
hematological malignancies, MM is characterized by an insidious onset. Clinically, patients
first start with a monoclonal gammopathy of undetermined significance (MGUS) having
limited myeloma cells, which is a preneoplastic condition. Then the disease progresses
to smoldering myeloma (SMM) without end-organ damage [1,2]. Eventually, patients
progress to multiple myeloma with clinical manifestations of end-organ dysfunctions [3].
New anti-myeloma therapies including proteasome inhibitors, immunomodulatory agents,
and other immunotherapies have substantially improved patient outcomes [4,5]. Ultimately,
MM remains incurable due to progression and recurrence. Complex genomic architecture
and clonal evolution are believed to contribute to the refractoriness and progression of
MM [6]. The heterogeneous outcome of MM is determined by the complex cytogenetic
abnormalities with different genomic subclones and biological functions. Thus, there is an
increased focus on understanding the clonal evolution of the disease.

A deeper understanding of MM clonal progression has been achieved using next-
generation sequencing. Currently, the MM genomic landscape is characterized by initiating
events including hyperdiploidy and immunoglobulin translocations, and tumor driver
gene mutations known as acquired events [7]. Research has revealed that the premalignant
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clone is detectable in the preneoplastic period, and that initiating genetic events occurred
from the preneoplastic conditions to the progression of the tumor [8]. Deep interrogation
of the oncogenesis of MM on a large scale is a challenge due to the heterogeneous cytoge-
netic abnormalities of MM patients. Branching evolutionary patterns, molecular events
including genetic mutations, and copy number changes are critical to MM transition and
development [9]. Previous studies demonstrated that fusion genes, copy number, and
translocation events impact the prognostic stratification, disease progression, and treatment
response of patients [10].

The current risk stratification system of MM relies on cytogenetic markers, or gene
expression panels [11]. However, current risk classification based on gene expression abnor-
malities can only provide a patient cohort-based prediction instead of an individual precise
prediction for each patient [12]. Current gene expression prediction panels based on bulk
RNA-seq analysis and qPCR are challenging since most samples contain cancer cells, stro-
mal cells, and immune cells that vary greatly from patient to patient. Single-cell sequencing
offers an opportunity to reveal the risk of progression or therapeutic resistance at single-cell
resolution from different tumor cell populations. The first single-cell genetic analysis of
MM was performed in 6 patients with initiating t (11,14), revealing that clone diversity is
essential for the progression of MM [13]. Subsequent studies have conducted longitudinal
investigations on the genetic heterogeneity of MM progression and recurrence via scRNA-
seq [14–16]. Meanwhile, based on scRNA-seq, recent studies also have demonstrated the
immune changes associated with the multiple myeloma progression [17–19].

Single-cell transcriptome analysis has become a crucial approach to studying the
complex biological processes of heterogeneous cells. The Monocle2 algorithm is based
on the expression matrix of the single-cell transcriptome, which simulates the biological
functions of cell populations by unsupervised learning of cells to different branches of the
developmental trajectory [20]. In addition, the tSNE algorithm can cluster cells to obtain
differential genes in different states and analyze hub genes affecting different branches of
differentiation [21].

An analysis combining single-cell sequencing and bulk sequencing was performed
in this study to decipher cell differentiation-specific gene signatures of multiple myeloma.
Our results indicated that during the cell differentiation and disease progression, MM cells
can be divided into two specific branches according to gene signatures. Moreover, the
clustered malignant plasma cells and the identified genes were validated through bulk
transcription. Several of these genes are potential biomarkers associated with the prognosis
of MM. In addition, we validate the findings with clinical samples with a quantitative
polymerase chain reaction.

2. Materials and Methods

The Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implicates that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail, while well-established methods can be briefly described and
appropriately cited.

2.1. Data Source and Processing

For bulk RNA-seq analysis, the expression and clinical data of 859 MM samples were
sourced from the TCGA database (https://portal.gdc.cancer.gov/ (accessed on 18 March 2022)).
For scRNA-seq analysis, 15 samples from different MM stages (MGUS = 3, SMM = 4, NDMM = 5,
RRMM = 3) in the GSE118900 dataset were extracted from the GEO database [22]. All samples
were analyzed on the Illumina HiSeq 2500 platform. scRNA-seq data were analyzed by the
Seurat package [23]. First, genes and low-quality cells were filtered using the following criteria:
genes detected in ≤ 3 cells, the number of unique genes detected in each cell < 50, and the
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percentage of reads mapped to the mitochondrial genome ≥ 5%, no cells were filtered out
and 597cells were used for the following analysis. The normalization of scRNA-Seq data of
high-quality cells was performed and highly variable genes were selected for downstream
analysis. Then, we performed principal component analysis (PCA) on highly variable genes
and identified the significant principal components (PCs). Different PCs implied different
combinations of highly variable genes. PCs with p < 0.05 were selected for subsequent analysis.
t-Distributed Stochastic Neighbor Embedding (tSNE) analysis was performed for dimension
reduction and visualization of gene expression. RunTSNE and TSNEPlot functions in Seurat
package were utilized to perform cell clustering. The selected features were used for principal
components analysis (PCA). The Find All Markers function was applied to detect marker genes
of each cell cluster. The function of marker genes of each cell cluster was analyzed by the clus-
terProfiler R package. Next, the annotation of cell types in different cell clusters was performed
with the SingleR package, and manually determined the clusters based on the marker genes in
the CellMarker database [24,25]. Monocle 2 was utilized for pseudo-time analysis to analyze the
developmental trajectory of MM cells. For downstream analysis, genes differentially expressed
in different differentiation branches were identified as branch marker genes [20]. The function of
marker genes of each cell cluster and branch marker genes was analyzed by the clusterProfiler
R package.

2.2. Correlation Analysis

To investigate whether bulk RNA-seq data can detect cells in different differentiation
branches obtained from scRNA-seq data, we performed Pearson correlation analysis of
the expressions of branch marker genes in both TCGA-MM and GSE118900 datasets. In
addition, to explore the relationship between different differentiation branches, correlation
analysis between metagene expression levels from different differentiation branches was
calculated. The metagene expression level was generated by the branch marker gene
expression profile [26].

2.3. Screening Hub Genes Associated with MM Prognosis

The (Protein-Protein Interaction (PPI) network of branch marker genes was developed
via the STRING database and Cytoscape software. The Maximal Clique Centrality (MCC)
algorithm in the cytoHubba plug-in was used to extract the top 20 branch marker genes (hub
genes) in the network [27]. Based on the TCGA, MM patients were divided into groups
based on the median expression levels of the hub genes. To identify hub genes associated
with prognosis, Kaplan–Meier survival analysis (K–M analysis) and log-rank tests were used
(p < 0.05). In addition, the expression of prognostic biomarkers was compared between/among
groups stratified by MM clinical features by Wilcoxon or Kruskal-Wallis tests.

2.4. Relationship between Prognostic Biomarkers and Tumor Microenvironment

Bulk RNA-seq data usually included tumor cells, immune cells, and other various
cellular combinations. A single-sample gene set enrichment analysis (ssGSEA) algorithm
was performed to quantify the relative immune cell infiltration levels of each sample
by GSVA package. The ssGSEA adopted gene biomarkers expressed by immune cell
populations to individual TCGA-MM samples. The proportion of immune cells was
assessed separately for individual gene expression series; the sum of different immune cell
fractions in each sample equaled 1. The abundances of 24 immune cell types were assessed
and visualized with bar plots. Then correlations between the expression of prognostic
biomarkers and the proportions of the 24 immune cells were evaluated by the Pearson
method; |cor| > 0.3 and p < 0.05 were considered to be a significant correlation.

2.5. Patients and Samples

The First Affiliated Hospital of the Xi’an Jiaotong University Ethics Committee ap-
proved the research protocol. Written informed consent was provided by each patient
who participated in the study. The diagnosis criteria used by the IMWG for multiple
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myeloma were applied to the patients. The clinical stage and risk status of MM patients
were determined in accordance with the R-ISS. Healthy donors were used as controls after
informed consent was obtained. Bone marrow samples were obtained from patients and
healthy controls. The mononuclear cells were separated by lymphocyte separation liquid
(Gibco, Carlsbad, CA, USA) within 2 hours after the bone marrow samples were harvested.

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

We extracted total cellular RNA using Trizol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s recommendations. Then the total RNA was reverse tran-
scribed to cDNA by HiScript® II Q RT SuperMix for qPCR (Vazyme Biotech, Nanjing,
China) with random primers (Promega, Madison WI, USA) for mRNA and lncRNA. The
SYBR Green Master Mix reagents (Vazyme Biotech, Nanjing, China) were used in quantita-
tive RT-PCR analysis to amplify and analyze the expression of mRNA in three replicates per
sample. All primer sequences are listed in Supplementary Table S1. The relative expression
of genes was analyzed using the 2−∆∆CT method.

2.7. Statistical Analysis

Statistical analyses were conducted by GraphPad Prism 9.0 software (GraphPad Software,
San Diego, CA, USA). Based on at least three independent assays, data are presented as mean +
standard deviation (SD). Student’s t-test and one-way ANOVA test were statistically used to
compare two-group and multiple-group. p < 0.05 indicated a statistical significance.

3. Results
3.1. Single-Cell Sequencing Revealed the Cell Distribution of MM and Six Cell Clusters Were
Identified in MM

After quality control, the results of the number of genes (nFeature) and unique molecu-
lar identifiers (nCount) showed that we obtained high-quality cells for downstream analysis
(Figure 1A). The top 1500 variable genes were plotted in the scatter diagram, in which
CCL3, IGLL5, CD52, MS4A1, C11orf93, PNP, CD69, RGS1, ZNF331, and HLA-DRA with
the highest differential gene expression were marked (Figure 1B). According to the PCA
results, no clear separation of MM cells at different stages was observed (Figure 1C). Twenty
principal components (PCs) were identified, and the top 9 PCs with p < 0.05 were selected
for analysis (Figure 1D). Thereafter, MM cells were clustered into six groups by the t-SNE
algorithm (Figure 2A). Additionally, we observed that MM cells at the MGUS stage were
composed of clusters 0, 1, 2, and 4, MM cells at the SMM stage were composed of clusters
0, 1, and 2, and MM cells at the newly diagnosed multiple myeloma (NDMM) stage were
composed of clusters 0-5, and MM cells at the relapsed/refractory multiple myeloma
(RRMM) stage were composed of clusters 0, 1, 4, and 5 (Figure 2B), indicating the cellular
heterogeneity at different MM stages. There were 430 marker genes identified from those
six clusters (Table S2), and the expression patterns of the top five markers of each cluster
are shown in the heatmap (Figure 2C). By the SingleR and CellMarker databases, all those
cell clusters were annotated as plasma cells (Figure 2D).
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Figure 1. Quality assurance for single cell isolation and sequencing. (A) The gene descriptions and
total gene numbers for the profiles. (B) Diagrams of differentially expressed genes between cells.
(C) Results of PCA for single-cell sequencing. (D) p value of each PCA component. PCA: principal
component analysis; PC-1: principal component-1; PC-2: principal component-2; MGUS: monoclonal
gammopathy of undetermined significance; NDMM: newly diagnosed multiple myeloma; RRMM:
relapsed/refractory multiple myeloma; SMM: smoldering multiple myeloma.
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Purple to yellow indicates low to high levels of gene expression. (D) Annotation of cell clusters by
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3.2. Investigation of the Functions of Marker Genes of the Six Cell Clusters

Subsequently, annotating each cluster was accomplished by identifying its marker
genes (Figure 3 and Tables S3–S6). Those marker genes in different cell clusters had both
common and distinct functions. A functional gene set enrichment analysis (GSEA) was
performed in order to identify enriched gene ontology (GO) terms across the three domains:
biological process (GO-BP), molecular function (GO-MF) and cellular component (GO-
CC) [28]. Specifically, marker genes in cluster 0 were significantly enriched in 13 biological
processes (BPs), 17 cellular components (CCs), 11 molecular functions (MFs), and 10 KEGG
pathways, such as response to endoplasmic reticulum stress, glutathione peroxidase activity,
ficolin-1-rich granule lumen, and protein processing in the endoplasmic reticulum. Marker
genes in cluster 1 were significantly enriched in 29 BPs, 21 CCs, 3 MFs, and 3 KEGG
pathways, such as protein N-linked glycosylation via asparagine, endoplasmic reticulum
protein-containing complex, enzyme activator activity, and N-glycan biosynthesis. Marker
genes in cluster 2 were significantly enriched in 81 BPs, 84 CCs, 49 MFs, and 20 KEGG
pathways, such as ATP synthesis coupled electron transport, respirasome, oxidoreduction-
driven active transmembrane transporter activity, and oxidative phosphorylation. Marker
genes in cluster 2 were significantly enriched in 81 BPs, 84 CCs, 49 MFs, and 20 KEGG
pathways, such as ATP synthesis-coupled electron transport, respirasome, oxidoreduction-
driven active transmembrane transporter activity, and oxidative phosphorylation. Marker
genes in cluster 3 were significantly enriched in 89 BPs, 4 CCs, 9 MFs, and 6 KEGG
pathways, such as the response to unfolded protein, focal adhesion, ubiquitin-protein ligase
binding, and MAPK signaling pathways. Marker genes in cluster 4 were significantly
enriched in 33 BPs, 11 CCs, 10 MFs, and 6 KEGG pathways, such as the type I interferon
signaling pathway, mitochondrial protein-containing complex, oxidoreduction-driven
active transmembrane transporter activity, and diabetic cardiomyopathy. Marker genes
in cluster 5 were significantly enriched in 122 BPs, 3 CCs, and 3 KEGG pathways, such as
regulation of the viral process, MHC protein complex, and measles.
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3.3. Two Different Differentiation Traces Were Observed in MM Cells

By analyzing the trajectory, the MM cells seemed to start principally from clusters 2 and 5,
then moved towards cluster 0 and cluster 3, and finally to cluster 1 and cluster 4 (Figure 4A).
After differential expression analysis, 136 and 206 marker genes were detected in branch 1
(cluster 1 and cluster 4) and branch 2 (cluster 2 and cluster 5), respectively (Table S7). Functional
analysis showed that marker genes in branches 1 (Type I) and 2 (Type II) were involved in similar
GO terms, such as ATP synthesis-coupled electron transport, respirasome, and respiratory
electron transport chain (Figure 4B,C). The expression level of Type I and Type II metagene
were calculated by the ssGSEA algorithm based on 136 and 206 marker genes’ expression level,
respectively. There was a significant enrichment of Type I genes in ER, N-glycan biosynthesis,
and protein export (Figure 4D) in KEGG pathways, while Type II genes were mainly enriched
in oxidative phosphorylation, Parkinson’s disease, and thermogenesis pathways (Figure 4E).
Moreover, by correlation analysis, we found that genes with Type I or Type II labels were
highly correlated in bulk and in scRNA-seq (Figure 5A,B), indicating that using those two
branch marker genes can also identify the corresponding cells with different differentiation
statuses. Moreover, we noted that there was a significant correlation between Type I and Type II
metagene relative expression in both scRNA-seq datasets (cor = 0.72, p < 0.05, Figure 5C) and
bulk RNA-seq datasets (cor = 0.42, p < 0.05, Figure 5D), suggesting that different differentiated
MM cells may be functionally correlated, which was also consistent with the GO results of
marker genes in branches 1 and 2.
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Figure 4. Reconstruction of a cell trajectory by monocle single-cell trajectory analysis. (A) Monocle
reconstructed two main branches from a single cell trajectory. Branch 1 contains cluster 1 and cluster
4, branch 2 contains cluster 2 and cluster 5. Cells are colored based on state (left), and cluster (right).
Cells in different branches have different cellular differentiation characteristics. (B–E) Gene ontology
(GO) enrichment analysis and KEGG pathway analysis for branch−dependent genes. GO enrichment
analysis (B) and KEGG pathway analysis (D) of differentially expressed genes (DEGs) in branch1.
GO enrichment analysis (C) and KEGG pathway analysis (E) of DEGs in branch2.
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Figure 5. Correlation of bulk and scRNA-seq datasets. (A) Heatmap visualization of the DEGs
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the DEGs associated with two cell differentiation branches in TCGA dataset. (C) Correlation analysis
of metagene scores of Type I and type II marker genes in scRNA-seq dataset. (D) Correlation analysis
of metagene scores of Type I and type II marker genes in scRNA-seq dataset.

3.4. Five Candidate Prognostic Biomarkers Were Identified in MM

Next, we constructed a PPI network composed of 306 nodes and 1853 edges to show
the interaction of Type I and Type II genes (Figure 6A). Then, by the cytoHubba plug-
in, we selected the top 20 genes in the network as hub genes in MM (Table S8). On
the basis of the median expression level of each hub gene, patients were divided into
low- and high-expression groups. K–M analysis showed that the low-expression group
with lower expression levels of NDUFB8, NDUFA6, COX5B, COX6C, and USMG5 had
significantly better survival than those with higher expression levels (Figure 6B), indicating
that NDUFB8, NDUFA6, COX5B, COX6C, and USMG5 may act as candidate prognostic
biomarkers in MM. Moreover, the expression of all those five genes increased with the
tumor stage (stage III > stage II > stage I) (Figure 7), suggesting their relationship with the
progression of MM.
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3.5. Prognostic Biomarkers Were Related to the MM Tumor Microenvironment

The tumor immune microenvironment (TIM) is crucial to the pathobiology of MM [29].
Thus, we determined whether prognostic biomarkers are associated with the TIM of MM.
First, we analyzed the proportion of 24 immune cells in MM samples (Figure 8A). Then,
Pearson’s analysis showed that the expression levels of all five biomarkers were negatively
correlated with the proportion of central memory T-cells (Tcm) (cor < −0.3, p < 0.05) (Figure 8B),
suggesting that the prognostic biomarkers may affect MM by interacting with Tcms.
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3.6. Verification of Diagnostic Markers

The expression levels of NDUFB8, NDUFA6, COX5B, COX6C, and USMG5 were
detected by qRT-PCR in 18 bone marrow samples including 5 controls, 5 newly diagnosed
MM patients, and 8 refractory /relapsed MM patients. As presented in Figure 9, MM
patients showed higher expression of NDUFB8, NDUFA6, COX5B, COX6C, and USMG5
than healthy controls. Additionally, relapsed/refractory myeloma patients expressed
significantly higher expression of NDUFB8, NDUFA6, COX6C, and USMG5 than newly
diagnosed patients. The result indicated that the NDUFB8, NDUFA6, COX5B, COX6C,
and USMG5 genes might be closely related to the disease progression and the evolution of
high-risk clones.
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4. Discussion

Multiple myeloma is the second most common hematological cancer. Due to a lack of
early detection and precise stratification, patients suffer from relapse and refractoriness
despite recent improvements in therapies. MM is a plasma cell malignancy. It occurs when
malignant plasma cells expand clonally within the bone marrow. MM is age-dependent
with high complexity and heterogeneity at the molecular level. The genetic landscape of
MM has now been well described due to the result of high throughput sequencing technical
developments [30]. Some disease-associated recurrent mutations have been identified as
markers for risk classification [11]. Nevertheless, intratumoral and interpatient genetic
heterogeneity and dynamic clonal evolution are obstacles to the delivery of effective preci-
sion medicines to MM patients. Deciphering key features within MM clonal composition
and clonal evolution is essential for personalized therapy selection. Single-cell sequencing
provides great insight into the evolution and diversity of cancer. It is becoming a valuable
tool for dissecting and understanding the essential role of rare cells in tumor progression.

In the present study, we used scRNA-Seq combined with bulk RNA-Seq to describe
the tumor heterogeneity and tumor immune microenvironment of MM. We deciphered
the common features of myeloma cells during all stages of the disease and identified the
cellular subpopulations. Furthermore, we found two distinct cell differentiation trajectories
in the dynamic progression of MM by the scRNA-Seq dataset. Functional analysis indicated
that marker genes in the Type I branch were mainly involved in protein processing in the
ER, N-glycan biosynthesis, and protein export in KEGG functional pathways, while Type II
genes were mainly enriched in oxidative phosphorylation and thermogenesis. Studies have
described the pivotal role of endoplasmic reticulum (ER) stress in myeloma pathogenesis.
MM cells are extremely sensitive to ER stress-induced cell death. For that reason, drugs
including proteasome inhibitors and novel ER stressors that disrupt ER homeostasis have
demonstrated remarkable therapeutic effects in MM [31]. On the other hand, dysregulation
of energy metabolism and oxidative phosphorylation changes are common features of
different tumors. Multiple myeloma cell proliferation depends on both oxidative phos-
phorylation and glycolysis following a mitochondrial transfer from bone marrow stromal
cells [32]. Oxidative phosphorylation was identified as one of the causes mediating thera-
peutic resistance of B-cell hematological malignancy [33]. The Multiple Myeloma Research
Foundation (MMRF) CoMMpass clinical research study indicates the overexpression of
genes involved in oxidative phosphorylation in the newly diagnosed multiple myeloma
patients enrolled in the dataset [34]. Furthermore, MM patients who expressed high levels
of oxidative phosphorylation genes had a worse prognosis [35]. In treated individuals, ox-
idative phosphorylation activation was observed as a metabolic resistance in MM patients
and cell lines, which indicates that the oxidative phosphorylation pathway may be as a
preferential target of relapsed/refractory multiple myeloma patients [36]. Our findings that
prognostic characteristic genes may influence the prognosis of MM patients by regulating
ER-stress-associated cell death and oxidative phosphorylation, are consistent with the
above literature.

In addition, a bulk RNA-Seq analysis based on the scRNA-Seq results identified differ-
entially expressed genes (DEGs) that contribute to the differentiation of MM. To further
investigate the further mechanism of DEGs in the differentiation of MM, we analyzed
the PPI network of those DEGs. Combined with the K–M analysis, we found the high
expression of five genes in MM patients is closely related to tumor progression. NDUFB8
and NDUFA6 are both located in the endoplasmic reticulum and mitochondrion. They can
encode components of mitochondrial complex I and are involved in mitochondrial respira-
tory chain complex I assembly. Complex I, composed of 45 subunits, is the first enzyme of
the mitochondrial respiratory chain [37]. Mitochondrial complex I and respiration play a
critical role in cancer cell proliferation, loss of mitochondrial complex I, and the diminished
growth of cancer cells [38]. Mitochondria complex I has shown pro-tumorigenic effects,
and it is now a focal point of many targeted therapies using pharmacologic and genetic
interventions [39]. In addition, the important role of electron transport chain activity in
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the targeted therapy of MM has been confirmed in a previous report. Electron transport
chain activity is related to venetoclax sensitivity of MM, which is a predictor and target for
venetoclax sensitivity in MM [40].

A key regulatory function of COX is to catalyze the transfer of electrons from reduced
cytochrome c to oxygen in the mitochondria, which is critical in the oxidative phospho-
rylation of cells and the process of apoptosis [41]. Mammalian COX is comprised of the
coordinated assembly of 13 subunits, in which 3 subunits are encoded by the mitochondrial
genomes and 10 subunits are encoded by the nuclear genomes, and their expression varies
in different organisms. COX6C and COX5B are encoded by the nuclear genome, then
transported to the mitochondria via different pathways, and ultimately integrated into the
COX complex. Accumulating evidence demonstrates that COX6C is closely associated with
the tumorigenesis and prognosis of breast cancer [42], gastric cancer [43], melanoma [44],
and many solid tumors [45]. It is recognized as a valuable biomarker for predicting disease
stages and prognosis. Wang et al. also reported that COX6C is a negative prognostic
biomarker in MM [46]. Similar to COX6C, COX5B was found to promote cell growth
and reduce anticancer drug susceptibility in colorectal cancer cells, which may lead to
unfavorable postoperative outcomes for patients with colorectal cancer [47]. Bioenergetic
alteration-dependent activation of AMPK was found to occur in hepatoma cells via COX5B
regulation of UHMK1 expression [48]. Furthermore, in clear cell renal cell carcinoma,
COX5B can also be identified as a prognostic factor [49].

USMG5, also known as DAPIT, is located in mitochondria. Overexpression of DAPIT
modulates mitochondrial function and alters cellular regulation, promotes anaerobic
metabolism, and induces EMT-like transformation in 293T cells. [50]. Further study found
that, in various brain regions, pancreas, liver cancers, and other solid tumors and hemato-
logical malignancies, DAPIT is among the most duplicated genes. DAPIT overexpression
is strongly linked to cancer according to these findings. However, the specific molecular
function of USMG5 in hematological malignancies, especially in MM, is still unclear and
deserves further study.

In our study, we also verified that these five genes were significantly related to the
stages of MM. According to existing literature, the disease stage is highly individual and
is primarily determined by cytogenetic abnormality [3]. Therefore, we assume that the
five genes might be directly or indirectly related to high-risk cytogenetic abnormalities.
Furthermore, we found there is an association between the high expression of these genes
and a poorer prognosis in MM patients from an independent dataset. To further evaluate
tumor- and immune-related characteristics, ssGSEA analysis was conducted. The results
demonstrated that the immune cell scores differed across samples, reflecting differences in
immune function between samples. Subsequently, we examined the correlation between
the 5 hub genes and the infiltration of immune cells. According to our findings, there was a
negative correlation between the expression of NDUFB8, NDUFA6, COX6C, COX5B, and
USMG5 and the infiltration, functions, and pathways of B cells, central memory T cells,
and regulatory T cells. In comparison, the expression of these 5 genes exhibited a positive
correlation with T cells and T-helper 2 cells. Our results indicate that NDUFB8, NDUFA6,
COX6C, COX5B, and USMG5 might influence the immune microenvironment of multiple
myeloma patients, as well as the response to treatment and prognosis of patients with this
disease. To the best of our knowledge, we pioneered to leverage the genomic resources by
integrating single-cell RNA-seq and bulk RNA-seq data in multiple myeloma to provide
novel insight into disease progression, and to identify potential biomarkers for precision
treatment options. Nonetheless, the present study still has limitations. Further prospective
randomized study is required to validate our results and to investigate the relationship
between the differentially expressed genes with other known cytogenetic abnormalities.
We will also be able to compare more patients within the same treatment regimen in
future studies to improve our understanding of how treatments affect tumors. Moreover,
further experimental evidence is needed to elucidate the potential mechanism underlying
differentially expressed genes in multiple myeloma tumorigenesis and progression.
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5. Conclusions

In summary, in our study, multiple myeloma progression was characterized by tumor
cell heterogeneity. The combined analysis of scRNA-Seq and bulk RNA-Seq may allow
us to elucidate molecular events during clonal progression, and further, clarify novel
prognostic biomarkers of the initiation and progression of MM. These findings reveal the
molecular and cellular complexity of MM progression, and facilitate the design of precise
risk stratification and treatment strategies based on novel molecular biomarkers.
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