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Simple Summary: Advanced neuroendocrine tumors originating in the intestinal tract and pancreas
are treated with biologics that activate somatostatin receptors (lanreotide and octreotide), small
molecule drugs that target the mTOR (everolimus) and VEGF and other signaling pathways (suni-
tinib), chemotherapies (temozolomide, capecitabine, fluorouracil, platinums), and receptor-targeted
radionuclides (Lu177-DOTATATE). These treatments eventually fail to control tumor progression, but
the mechanisms for therapeutic resistance are poorly understood. We will review preclinical and early
clinical studies that provide insight into potential etiologies and new therapies and combinations that
may address this resistance.

Abstract: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs), although curable when local-
ized, frequently metastasize and require management with systemic therapies, including somatostatin
analogues, peptide receptor radiotherapy, small-molecule targeted therapies, and chemotherapy. Al-
though effective for disease control, these therapies eventually fail as a result of primary or secondary
resistance. For small-molecule targeted therapies, the feedback activation of the targeted signaling
pathways and activation of alternative pathways are prominent mechanisms, whereas the acquisition
of additional genetic alterations only rarely occurs. For somatostatin receptor (SSTR)-targeted therapy,
the heterogeneity of tumor SSTR expression and dedifferentiation with a downregulated expression
of SSTR likely predominate. Hypoxia in the tumor microenvironment and stromal constituents
contribute to resistance to all modalities. Current studies on mechanisms underlying therapeutic
resistance and options for management in human GEP-NETs are scant; however, preclinical and
early-phase human studies have suggested that combination therapy targeting multiple pathways or
novel tyrosine kinase inhibitors with broader kinase inhibition may be promising.

Keywords: somatostatin analog; tyrosine kinase inhibitor; mTOR inhibitor; peptide receptor radiotherapy

1. Introduction

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare, but the incidence
and prevalence are rising such that, as a group, they are the second most prevalent gastroin-
testinal cancer after colorectal cancer. Many patients with GEP-NET have metastatic disease
at initial presentation [1]. Clinical presentations of GEP-NETs are variable, ranging from
an indolent to a very aggressive clinical course, and may be dominated by the morbidity
associated with hormonal secretion by functional tumors. While debulking surgery and lo-
coregional therapies are an option for some, in the majority, progressive disease eventually
requires systemic therapy to control hormonal-driven syndromes for functional GEP-NETs
and to suppress the tumor growth of both functional and nonfunctional GEP-NETs.

Current systemic treatment options for advanced GEP-NETs may be grouped into
three main categories: alkylating agent-based chemotherapy, molecularly targeted agents,
and somatostatin receptor (SSTR)-targeted therapies (as reviewed in [2].) Molecularly
targeted agents include mTOR inhibitors and multi-kinase inhibitors. The mTOR inhibitor
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everolimus has been approved by FDA for treating unresectable/metastatic gastrointesti-
nal, pancreatic NETs (Pan-NETs), and pulmonary NETs, and the multi-kinase inhibitor
sunitinib has been approved for PanNETs. The multikinase inhibitor surufatinib, although
meeting its endpoints for progression-free survival compared with placebo in pancreatic
and extrapancreatic NETs, has not been FDA-approved. SSTR-targeted therapies include
somatostatin analogs (SSAs) and peptide receptor radiotherapy (PRRT) with radiolabeled
SSAs. Progression-free survival compared with placebo or standard therapies has been
demonstrated for these therapies [2]; however, the eventual development of therapeutic
resistance remains one of the major challenges, and most patients eventually succumb to
the disease. This review is focused on mechanisms underlying the resistance to molecular-
and SSTR-targeted therapies in GEP-NETs.

2. Materials and Methods

Articles available through a search of Pubmed or reported in abstract form were the
basis for this review.

3. Resistance to Molecularly Targeted Therapies

Patients who have primary resistance to a molecularly targeted therapy do not re-
spond to the initial therapy; a lack of targeting molecules and presence of activated al-
ternative pathways are the main mechanisms for primary resistance. Patients with sec-
ondary/acquired resistance demonstrate an initial treatment response followed by relapse
or progression. Multiple mechanisms underlying secondary resistance to targeted therapies
in GEP-NET have been proposed.

3.1. Molecular Mechanisms of Resistance to Everolimus

PI3K/Akt/mTOR signaling is frequently dysregulated in GEP-NETs [3]. Next genera-
tion sequencing studies have revealed that approximately 14–29% of sporadic PanNETs
harbor mutations in the mTOR pathway genes [4,5], and immunohistochemistry has
demonstrated positive phosphorylated-Akt (p-Akt) in most GEP-NETs, suggestive of ac-
tivated PI3K/Akt/mTOR signaling in these tumors [6]. Potential mechanisms leading
to the activation of the pathway include mutations in the signaling pathway genes and
dysfunctional tyrosine kinase receptors involving the signaling pathway [7]. p-Akt ac-
tivates a number of downstream substrates, including mTOR, which has two different
complexes: mTORC1 and mTORC2. mTORC1 is rapamycin-sensitive and activates S6K
and 4E-BP, which promotes the translation of proteins involved in cell cycle progression,
including cyclin D1, c-MYC, and hypoxia-induced factor 1α (HIF-1α). In contrast, mTORC2
is rapamycin-insensitive and regulates the activity of Akt via a feedback circuit. Other
downstream substrates of Akt include glycogen synthase kinase-3 (GSK3), BCL2-associated
agonist of cell death (BAD), p21, and p27, which are involved in regulating cell proliferation
and apoptosis (Figure 1).

Everolimus, an mTORC1 inhibitor, has demonstrated efficacy in prolonging progression-
free survival in PanNETs [8] and GI tract and pulmonary NETs [9]; however, progression-
free survival (PFS) ranges from 10.8 to 14.8 months and 9.2–13.3 months, respectively,
suggesting the development of acquired resistance. Possible molecular mechanisms leading
to everolimus resistance include the mTORC2-dependent and independent activation of
Akt (Figure 1). The inhibition of mTORC1 by everolimus increases Akt phosphorylation by
mTORC2 [10], which leads to GSK3 inhibition. In addition, mTORC1 inhibition disrupts its
negative feedback function by decreasing the proteasomal degradation of insulin receptor
substrate (IRS) 1 and 2, thereby leading to the activation of PI3K/Akt. A recent study using
two everolimus-resistant PanNET cell lines, however, demonstrated an over-activation of
GSK3 and decreased IRS 1evels [11]. Nevertheless, in 50% of patients with solid tumor
treated with everolimus, an overexpression of Akt phosphorylation was observed [12].
However, its correlation with everolimus resistance was not explored in the study. A recent
study using RNA sequencing and immunohistochemistry revealed an overexpression of
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C-type lectin domain family 3 member A (CLEC3A), matrix metallopeptidase 7 (MMP7) and
lipocalin 2 (LCN2) in recurrent PanNETs compared to non-recurrent tumor [13]. CLEC3A
and other molecules activate the PI3K/Akt signaling pathway, leading to an overexpression
of MMP7 and LCN2 via an mTOR-independent pathway. Both MMP7 and LCN2 are
critical for cell migration, tumor invasion, and metastasis [13]. Therefore, it is reasonable
to hypothesize that the PI3K/Akt-mediated overexpression of MMP7 and LCN2 may be
a potential mechanism for everolimus resistance in human NETs, and the simultaneous
inhibition of both PI3K/Akt and mTOR may overcome the resistance. The dual inhibition of
PI3K and mTOR was shown to decrease PanNET metastatic progression in a pancreatic-NET
cell line (BON) model [14], further suggesting that the concurrent inhibition of PI3K/Akt
and mTOR may reduce everolimus resistance. For clinical use of combination therapy,
the toxicities of PI3K inhibition (rash, diarrhea, and hyperglycemia) may be potential
challenges; however, a phase Ib study that included a cohort of PanNET patients treated
with the PI3Kalpha inhibitor alpelisib and everolimus demonstrated that the combination
could be given with dose reductions and that the sixteen-week progression-free survival
rate was 35.3% in previously treated PanNET patients and 30.0% in a mixed cohort with
prior mTOR inhibitor use [15]. Finally, other approaches to targeting downstream of
the PI3K/Akt/mTOR signaling have been attempted in combination with everolimus.
LY2584702, an ATP-competitive inhibitor against the downstream p70 S6 kinase, was
combined with everolimus in a phase Ib study of patients with advanced solid tumors, but
only yielded a stable disease as the best response [16].
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The activation of the mitogen-activated protein kinase (MAPK) pathway may be an-
other mechanism for everolimus resistance. Extensive cross-talk is present between the 
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two signaling cascades have been proposed [17]. Because of the cross-talk, the inhibition 
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Figure 1. Potential mechanisms underlying everolimus resistance in gastroenteropancreatic neuroen-
docrine tumors. Inhibition of mTORC1 by everolimus may leads to activation of mTORC2 and elevate
insulin receptor substance 1 and 2 (IRS1/2) via disrupting mTORC1-mediated negative feedback.
IRS1/2 leads to activation of PI3K/Akt signaling pathway. In addition, mTORC2 also activates Akt
by phosphorylation. Activation of PI3K/Akt leads to cell proliferation, tumor growth, apoptosis
inhibition, tumor cell migration, tumor invasion, and metastasis through (1) activation of MAPK
signaling pathways, (2) activation of CXCR4-CXCL2-CXCR7 axis, (3) overexpression of MMP7 and
LCN2, and (4) inhibition of GSK3, BAD, p21, and p27.

The activation of the mitogen-activated protein kinase (MAPK) pathway may be
another mechanism for everolimus resistance. Extensive cross-talk is present between the
PI3K/Akt and the MAPK signaling pathways, and several key feedback loops between the
two signaling cascades have been proposed [17]. Because of the cross-talk, the inhibition
of one pathway may lead to the activation of the other. The inhibition of mTORC1 was
shown to activate the MAPK pathway through a PI3K-dependent feedback loop in human
cancer [18], and rapalog resistance was associated with extracellular signal-regulated kinase
2 (ERK2) upregulation in a human NET cell line [19]. The addition of a MAPK/ERK kinase
(MEK) inhibitor to a dual PI3K-mTOR inhibitor significantly enhanced the inhibition of
tumor growth by a dual PI3K-mTOR inhibitor alone in human neuroendocrine cell lines [19].



Cancers 2022, 14, 6114 4 of 14

Clinical trials have attempted to combine MAPK pathway inhibition with everolimus, but
toxicity has been a challenge. In a phase Ib study of the oral MEK inhibitor trametinib in
combination with everolimus in patients with advanced solid tumors (including neuro-
endocrine tumors), a phase II dose could not be established due to high rates of mucosal
inflammation/stomatitis, fatigue, and diarrhea [20]. A study of the EGFR TKI erlotinib plus
everolimus in well- to moderately differentiated neuroendocrine tumors (NCT00843531)
was terminated due to poor accrual.

Other receptors that signal through the MAPK and PI3K pathways, including IGF-1R,
also play a role in NET growth such that targeting IGF-1R induces the apoptosis of NET
cells [21]. Preclinical studies reporting that the inhibition of IGF-1R prevents rapamycin-
induced AKT activation and sensitizes tumors to mTOR inhibition support combination
mTOR/IGF-1R inhibition [22]. Unfortunately, anti-IGF-1R monotherapy has had limited
activity in NET patients [23] and the combination of the anti-IGF-1R antibody cixutumumab
and everolimus (plus octreotide) resulted in mainly stable disease and challenges with
long-term tolerability [24].

A recent study has suggested that the PI3K/Akt/mTOR signaling crosstalks with
the CXCR4-CXCL12-CXCR7 chemokine receptor axis. CXCR4, CXCL12, and CXCR7 are
overexpressed in NETs and are associated with a higher tumor grade and advanced tumor
stage [25]. The addition of a CXCR4 antagonist (AMD3100 (plerixafor)) to everolimus
(RAD001) potentiated cell growth inhibition in a bronchial-NET cell line (NCI-H727) and
the BON cell line, suggesting that crosstalk with the CXCR4-CXCL12-CXCR7 chemokine
receptor axis may be another mechanism for everolimus resistance.

In addition to the combinations described above, studies including NETs patients have
tested everolimus with HSP90 inhibition (SNX-5422) [26], with anti-angiogenic therapy
(vorolanib) [27], and with the immunomodulatory agent lenalidomide [28]. In the HSP90
study, among 14 NET patients, there were two partial responses (14%) and eight instances
of stable disease (57%). Vorolanib, an anti-VEGFR/PDGFR/CSF1R tyrosine kinase inhibitor,
was combined with everolimus in solid tumor patients including NETs, and demonstrated
dose-limiting toxicities in three patients (fatigue, hypophosphatemia, and mucositis). In
addition, among fifteen evaluable patients, there were three with partial response (one
of whom had NET) and eight with stable disease (six of whom had NET). Everolimus
has been combined with the anti-VEGFR multikinase inhibitor sorafenib, demonstrating
activity but also toxicity concerns [29]. Another study of everolimus plus an anti-VEGFR
TKI (lenvatinib) is underway for NETs patients (NCT03950609). In the lenalidomide plus
everolimus study in patients with advanced solid tumors, full-dose everolimus could be
administered. Overall, there were partial responses in 13.8% and stable disease in 55.8%,
although there was no specific mention of the neuroendocrine patients. Metformin, which
decreases insulin and IGF-1 levels and causes AMPK activation, which inhibits the TSC1-
2/mTOR complex, is being tested along with octreotide and everolimus [30], though results
have not been reported.

3.2. Molecular Mechanisms of Resistance to Multi-Kinase Inhibitors

PanNETs are highly vascularized tumors with an overexpression of vascular endothe-
lial growth factor (VEGF), platelet-derived growth factor (PDGF), and their receptors.
Sunitinib, an inhibitor for several tyrosine kinases, including VEGF receptors, PDGF recep-
tors, Fms-related receptor tyrosine kinase 3 (FLT-3), stem cell factor receptor, rearranged
during transfection (RET), colony stimulating factor 1 receptor (CSF1R), and glial-cell-line-
derived neurotrophic factor (GDNF), was FDA-approved for the management of advanced,
progressive, and metastatic PanNETs [31], with a PFS of 11.4 months compared with
5.5 months for placebo. The hypoxia-mediated induction of other proangiogenic factors
has been proposed to be the key mechanism for sunitinib resistance in PanNETs (Figure 2).
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Figure 2. Potential mechanisms underlying resistance to sunitinib. Inhibition of vascular proliferation
by sunitinib leads to hypoxia. Hypoxia leads to activation of HIF1α. HIF1α, in turn, promotes
angiogenesis through activation of other proangiogenetic factors such as FGF. HIF1α also promotes
anaerobic glycolysis, featured by metabolic symbiosis.

HIF-1α is thought to be the key driver of angiogenesis in PanNET [32]. HIF-1α can
be activated by two mechanisms in PanNETs [7,32]. First, HIF-1α is regulated by the von
Hippel-Lindau tumor suppressor (VHL); the genetic or epigenetic inactivation of VHL
can lead to an accumulation of HIF-1α. Second, tumor hypoxia can also activate HIF-1α.
Activated HIF-1α stimulates the transcription of hypoxia-related genes, such as VEGF and
genes involved in anaerobic glycolysis (e.g., carbonic anhydrases IX). Immunohistochem-
istry has demonstrated an overexpression of HIF-1α, VEGF-A, and carbonic anhydrases
IX in most GEP-NETs, suggesting their contribution in PanNET angiogenesis [33]. In
addition to hypoxia-related genes, other pathways can be activated by HIF-1α, includ-
ing several proangiogenic factors, such as fibroblast growth factors (FGFs), ephrins, and
angiopoietins. The FGF/FGF receptor (FGFR) axis was demonstrated to be one of the
key drivers of the VEGF-independent revascularization of PanNETs [34,35]. In the RIP-
Tag2 mouse model of PanNET, a model also used for anti-angiogenesis research, brivanib,
a dual FGF/VEGF inhibitor, produced enduring tumor stasis and angiogenic blockade
following the failure of DC101 (an anti-VEGFR2 monoclonal antibody) or sorafenib [35].
Therefore, the hypoxic state following anti-angiogenic therapy may stimulate HIF-1α,
which, in turn, activates VEGF-independent angiogenetic pathways, including FGF/FGFR,
promoting tumor revascularization and, eventually, tumor progression. Therefore, the
use of other multikinase inhibitors with VEGFR-tyrosine kinase inhibitor (TKI) inhibitory
activity may have promise, despite progression on one such therapy. In the GETNET1509
clinical trial, lenvatinib, an inhibitor of VEGFR1-3, FGFR1-4, PDGFRα/β, RET, and c-KIT,
demonstrated efficacy in PanNET patients with disease progression following treatment
with other targeted agents [36].

In addition, metabolic symbiosis may be involved in adaptive resistance to anti-
angiogenic therapy. In the RIP1 Tag2 mouse PanNETs model, acute hypoxia caused by
angiogenesis inhibitors elicited metabolic compartmentalization, where hypoxia tumor
cells imported and metabolized glucose and secreted lactate, whereas normoxic vessel-
proximal tumors imported and metabolized lactate, illustrating the remarkable plasticity of
tumor cells in response to treatment [37]. Metabolic symbiosis may also be dependent on
the mTOR signaling pathway as mTOR signaling was upregulated and mTOR signaling
inhibition disrupted the metabolic symbiosis.

Finally, sunitinib can induce lysosomal membrane permeabilization and, consequently,
autophagy [38]. Lysosomal sequestration has been suggested to be a novel mechanism of
sunitinib resistance. In colon and renal cancer cells, the intracellular sunitinib concentration
was higher in resistant cells than in sensitive cells because of an increased lysosomal
sequestration [38]. A recent study demonstrated that the accumulation of sunitinib in
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lysosomes in PanNETs induced autophagy and that chloroquine, an autophagy inhibitor,
increased sunitinib efficacy in PanNET treatment [39]. Therefore, lysosomal sequestration
and autophagy are potential mechanisms leading to PanNET resistance to sunitinib.

3.3. Epigenetic/Genetic Dysregulation and Therapy Resistance

Epigenetic modification and genetic alteration may contribute to the development
of resistance to targeted therapies in small intestinal NET (SINET) and PanNET. SINETs
have a low rate of mutations compared to other malignancies, suggesting that epigenetic
dysregulation and copy number variation may be key mechanisms underlying tumor
progression and metastasis [40]. An integrated genomic analysis of a large cohort of SINET
liver metastases revealed significantly increased copy number variants (CNVs) in liver
metastasis compared to primary tumors [41]. In addition, an analysis of 850,000 methylation
sites demonstrated more epigenetic dysregulation in the metastases [42]. The accumulation
of CNVs and epigenetic alterations may therefore be driving forces in resistance to targeted
therapies in SINETs.

Although research on the role of epigenetic alteration in therapeutic resistance in
SINET is limited, the important role of epigenetics has been investigated in PanNETs.
Based on RNA sequencing and tumor DNA methylation profiling, PanNETs have recently
been classified into (1) tumors with an α-cell signature (carrying ATRX, DAXX, and MEN1
mutations with a high ARX and low PDX1 gene expression due to PDX1 promoter hyper-
methylation) and (2) tumors with no ATRX, DAXX, and MEN1 mutations [43]. PanNETs
with an α-cell signature showed an increased expression of hepatocyte nuclear factor 1α
(HNF1α) and its transcriptional target genes, and were associated with an adverse clin-
ical outcome. Genetic sequencing studies on PanNETs have revealed a relatively stable
genome but gene mutations affect several pathways, including (1) chromatin-remodeling
genes (DAXX, ARTX, MEN1, and SETD2), DNA repair genes (CHEK2, BRCA2, and MU-
TYH), mTOR-related genes (TSC2, PTEN, and PI3KCA), and the oxygen-sensing modulator
VHL. It has been suggested that primary and metastatic PanNETs share similar genetic
alterations [44]. Multiple HDAC subtypes are significantly upregulated in high-grade
(G3) PanNETs but not in G1 or G2 tumors [45]. The role of genetic mutations in therapy
resistance has not been specifically investigated.

Tumor heterogeneity is common in GEP-NETs, which may be related to genetic
heterogeneity and may contribute to drug resistance in some GEP-NETs. Tang LH et al.
reported 31 well-differentiated PanNETs with a morphologically apparent high-grade
component, and did not reveal additional mutations, including TP53 mutations, in the
high-grade component [46]. However, Martin, et al. analyzed a PanNET with focal high-
grade progression and found an increased CNV and additional mutations in PTEN and
SMAD4 only in the high-grade component, suggesting that genetic heterogeneity is seen in
rare PanNETs [47]. Consistent with this study, we have also observed that rare PanNETs
with a focal high-grade component can have TP53 mutations in addition to gene mutations
commonly present in well-differentiated NETs.

Although most primary and metastatic PanNETs share similar genetic alterations [44],
additional genetic alterations may occasionally occur during metastasis/treatment. Re-
cently we encountered a case of metastatic PanNET in which the primary tumor was
WHO grade 2 by Ki67, but a subsequently biopsied liver lesion, while, morphologically, a
well-differentiated NET with a strong expression of neuroendocrine markers had a much
higher Ki67% (approximately 55%). A year after receiving everolimus, bevacizumab, and
chemotherapy, the patient had progression in hepatic metastatic disease. A liver mass was
biopsied again and showed poorly differentiated carcinoma intermixed with small foci of
well-differentiated NETs (Figure 3). The poorly differentiated component showed extensive
tumor necrosis, vesicular nuclei, and frequent mitoses. Immunohistochemistry showed that
the poorly differentiated component was essentially negative for neuroendocrine markers
with a loss of p53 expression. On the other hand, the small foci expressed neuroendocrine
markers with a normal p53 staining pattern. The findings may represent “dedifferentia-
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tion”, likely due to an acquired TP53 loss, which may contribute to therapy resistance. In
addition, Wong, H.L. et al. identified a homozygous pathogenic TP53 mutation, a gene
fusion event involving APC and MYCN amplification in a resistant PanNETs [48]; however,
the primary tumor was not tested for TP53 alterations.
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Figure 3. Metastatic de-differentiated carcinoma in a patient with well-differentiated pancreatic
neuroendocrine tumor. (A) Representative tumor section containing foci of well-differentiated com-
ponent (yellow arrows). (B) Poorly differentiated carcinoma with extensive necrosis and abundant
apoptosis and mitoses. (C) Well-differentiated foci with synaptophysin expression but no expression
in poorly differentiated component. (D) Well-differentiated foci with strong INSM-1 (another neu-
roendocrine marker) expression. (E,F) Relatively low Ki67 index in well-differentiated component
and high Ki67 poorly differentiated component. (G) Normal p53 expression in well-differentiated
component. (H) Complete loss of p53.

Other gene mutations may also contribute to drug resistance. Allen A et al. reported
BRAF mutations in rare PanNETs [49]. The mutations included V600E and non-V600E
mutations. A functional analysis revealed that these mutations detected in PanNETs
were associated with MAPK pathway activation, which was abrogated by RAF and MEK
inhibitors in vitro. BRAF mutations were identified in progressive metastatic lesions after
multiline therapies, and, in one case, a BRAF mutation was not detected in one metastatic
lesion, though it was detected in the others. These findings suggest that BRAF mutations
may be responsible for drug resistance in rare PanNETs and that NGS on progressive
lesions following therapy may be helpful for identifying novel therapeutic targets.
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4. Resistance to SSTR-Targeted Therapy

Somatostatin receptors, including SSTR1, SSTR2, SSTR3, SSTR4, and SSTR5, are fre-
quently expressed in GEP-NETs. Among them, the most commonly expressed is SSTR2,
which has become an important target for therapy in NETs with either the somatostatin
analogues, octreotide and lanreotide, or the radiolabeled SSTR2 binding analogue Lu177-
DOTATATE. Long acting/depot forms of octreotide and lanreotide, typically administered
as first-line therapy for advanced NETs and for managing carcinoid syndrome, activate the
SSTR2 and SSTR5 receptors and control hormone secretion through the inhibition of voltage-
dependent calcium channels, generation of cAMP by adenylyl cyclase, and inhibition of
proliferation by activating pro-apoptotic pathways and phosphatases that downregulate
PI3K/Akt and MAPK pathways [50]. When the 177Lu radiolabeled somatostatin analogue
177Lu-DOTATATE binds to SSTR2 on tumor cells, the complex is internalized, causing
ionizing radiation, DNA damage, and, eventually, cell death [51].

In the PROMID study in patients with midgut NETs [52] fewer than 20% of patients in
the octreotide LAR-treated group progressed in the first 6 months, whereas approximately
50% receiving placebo did; however, more than 70% treated with octreotide LAR had
progressed on the long-term follow-up. Although many patients continue to receive
SSAs beyond progression on the assumption that there is still activity and that higher
doses can occasionally temporarily control disease [53], it is still likely that these data
are suggestive of resistance. Recent studies and clinical trials have demonstrated that
PRRT with a radiolabeled SSA (177Lu-DOTATATE) induces significant antitumor effects
in patients with metastatic SSTR2 expressing GEP-NETs (reviewed in [54]), leading to the
FDA’s approval of 177Lu-DOTATATE for the treatment of somatostatin receptor-positive
gastroenteropancreatic neuroendocrine tumors in adults; however, approximately 15–30%
of patients will have disease progression during therapy (primary resistance). In addition,
a complete response is rare and progression occurs in the majority (acquired resistance).

4.1. Tumor Heterogeneity

SSTR2 expression is associated with a longer progression-free survival in patients
treated with SSAs [55]. Therefore, it is possible that a mechanism of resistance to SSAs
could be the downregulation of SSTR expression, though it has not been reported thus far.
Similarly, defects in downstream mediators of the pro-apoptotic anti-proliferative effects
of SSTR2 agonism could potentially explain resistance, but this has not been reported
previously. In patients with metastatic NETs treated with Lu177-DOTATATE, the extent of
somatostatin receptor expression and tumor heterogeneity (as determined by the coefficient
of variation, kurtosis, and skewness) is associated with the response and PFS [56]. Feijtel
and colleagues analyzed PRRT-induced radiobiological responses in SSTR2-expressing
cell lines and xenografted mice and found that heterogeneous SSTR2 expression levels
within NETs caused differentially induced DNA damage levels and that inter and intra-
tumor SSTR2 heterogeneity influenced the PRRT response [57]. Although SSTR2 is highly
expressed in most GEP-NETs, its expression can be heterogeneous. Both inter-tumoral
and intra-tumoral heterogeneous SSTR2 expression (Figure 4) can be seen in metastatic
GEP-NETs. We analyzed SSTR2 expression in 156 liver metastases from 26 patients with
at least two resected liver lesions [58]. We found that although most liver metastases had
a moderate to strong SSTR2 expression, approximately 44% of the patients had at least
one liver lesion showing only weak to no SSTR2 expression. In addition, the intratumoral
heterogeneous expression of SSTRs is frequent in both metastatic and primary tumors,
especially in large liver tumors. As a β-emitter with an average penetration range of
0.67 mm, 177Lu may be unable to kill neighboring SSTR-negative cells in large tumors with
heterogeneous expression [59]. The relevance of this issue is unclear though, and there may
be less damage to normal nearby tissue due to the shorter penetration range. Further, in the
NETTER 1 study, there was no difference in outcome for those with Krenning score 4 uptake
compared with those with a lower score [60], although the resolution of the somatostatin
receptor imaging may be inadequate for detecting the heterogeneous SSTR expression. One
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future solution to the heterogeneity of SSTR2 expression may be using a combination of
Y90 radioembolization for larger tumors and 177Lu-DOTATATE for smaller tumors.

Cancers 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

tumors, especially in large liver tumors. As a β-emitter with an average penetration range 
of 0.67 mm, 177Lu may be unable to kill neighboring SSTR-negative cells in large tumors 
with heterogeneous expression [59]. The relevance of this issue is unclear though, and 
there may be less damage to normal nearby tissue due to the shorter penetration range. 
Further, in the NETTER 1 study, there was no difference in outcome for those with Kren-
ning score 4 uptake compared with those with a lower score [60], although the resolution 
of the somatostatin receptor imaging may be inadequate for detecting the heterogeneous 
SSTR expression. One future solution to the heterogeneity of SSTR2 expression may be 
using a combination of Y90 radioembolization for larger tumors and 177Lu-DOTATATE 
for smaller tumors. 

 
Figure 4. A representative section of liver metastasis from a small intestinal neuroendocrine tumor 
showing heterogeneous SSTR2 expression. 

The radiation emitted from 177Lu principally induces single-strand breaks [61], but it 
may also lead to cell death through double-strand DNA breaks [62], the latter being de-
pendent on cell cycling. Along with others, we have observed considerable intra-tumoral 
Ki67 proliferation index heterogeneity and differences between primary and metastatic 
sites [63], which could lead to a differential sensitivity to radiotherapy emitted by 177Lu-
DOTATATE. However, a recent study suggested that an intra-tumor heterogeneity of 
DNA damage and apoptosis following PRRT was not attributed to proliferation in mouse 
models [57]. Human studies also suggest that higher-grade (higher Ki67) tumors had less 
of a clinical benefit from PRRT [64]. Therefore, more data will be needed to determine 
whether alterations in Ki67 may explain the development of resistance to 177Lu-DOTA-
TATE. 

4.2. Tumor Hypoxia Related to Peritoneal Metastasis and Mesenteric Tumor Mass 
Peritoneal metastases, present in 20% of SINETs patients [65], and mesenteric masses 

found in >50% [66], may provide a specific resistance challenge to the activity of 177Lu-
DOTATATE. Almost 40% of patients with diffuse GEP-NET peritoneal metastases 
showed peritoneal progression during PRRT with 177Lu-DOTATATE [67]. Peritoneal me-
tastasis is characterized by hypoxia and the formation of a vascularized connective tissue 
stroma mediated by VEGF [68]. The presence of hypoxic regions within tumors may be a 
main basis for radiotherapeutic failure in some tumors [69]. It is believed that oxygen is 
required to induce damage to DNA during radiotherapy and that hypoxia leads to radio-
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showing heterogeneous SSTR2 expression.

The radiation emitted from 177Lu principally induces single-strand breaks [61], but
it may also lead to cell death through double-strand DNA breaks [62], the latter being
dependent on cell cycling. Along with others, we have observed considerable intra-tumoral
Ki67 proliferation index heterogeneity and differences between primary and metastatic
sites [63], which could lead to a differential sensitivity to radiotherapy emitted by 177Lu-
DOTATATE. However, a recent study suggested that an intra-tumor heterogeneity of
DNA damage and apoptosis following PRRT was not attributed to proliferation in mouse
models [57]. Human studies also suggest that higher-grade (higher Ki67) tumors had less of
a clinical benefit from PRRT [64]. Therefore, more data will be needed to determine whether
alterations in Ki67 may explain the development of resistance to 177Lu-DOTATATE.

4.2. Tumor Hypoxia Related to Peritoneal Metastasis and Mesenteric Tumor Mass

Peritoneal metastases, present in 20% of SINETs patients [65], and mesenteric masses
found in >50% [66], may provide a specific resistance challenge to the activity of 177Lu-
DOTATATE. Almost 40% of patients with diffuse GEP-NET peritoneal metastases showed
peritoneal progression during PRRT with 177Lu-DOTATATE [67]. Peritoneal metastasis is
characterized by hypoxia and the formation of a vascularized connective tissue stroma
mediated by VEGF [68]. The presence of hypoxic regions within tumors may be a main
basis for radiotherapeutic failure in some tumors [69]. It is believed that oxygen is required
to induce damage to DNA during radiotherapy and that hypoxia leads to radioresistance.
In addition, hypoxia results in altered genetic pathways that promote cell survival despite
an adverse tumor microenvironment. Hypoxia can stimulate HIF-1α, and HIF-1α, in turn,
enhances the expression of genes involved in glycolysis (GLUT1) and angiogenesis (VEGF),
promoting tumor growth. Further hypoxia can induce a selection of clones that are resistant
to apoptosis.

Mesenteric masses seen in patients with SINET are frequently associated with ex-
tensive fibrosis (Figure 5). The molecular basis of the mesenteric fibrosis has not been
elucidated. Nevertheless, extensive fibrosis may lead to a locoregional hypoxic tumor
microenvironment, which may affect radiosensitivity. In addition, 177Lu has a short
range of radiation, and is effective in localizing cytotoxic radiation in relatively small
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areas. The paucity of vasculatures due to dense fibrosis may prevent the peptide–chelator–
radionuclide complex from accessing areas with extensive fibrosis, which may contribute
to 177Lu DOTATATE resistance. PRRT treatment was shown to result in an objective size
reduction in mesenteric masses in only 3.8% of the patients [70].
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5. Future Directions

Multikinase inhibitors with novel combinations of activities may be effective after
or in place of existing TKIs. For example, surufatinib, a small-molecule tyrosine kinase
inhibitor, has activity against the VEGFR 1-3, FGFR 1, and CSF-1 receptor. This combination
of targets may result in the inhibition of angiogenesis, tumor-immune evasion, and tumor
resistance [71]. In preclinical models, epigenetic modulation with HDAC inhibitors may
redifferentiate neuroendocrine tumors and resensitize them to prior therapies [72]. In
a pilot study, the HDAC inhibitor vorinostat was associated with a greater DOTATATE
uptake (by PET imaging) [73]. Other strategies for targeting SSTR not encumbered with
resistance mechanisms against radioactivity may be options. Preclinical work identified an
antibody drug conjugate against SSTR2 [74]. Identifying other surface molecules as targets
for tumor directed therapies might also be necessary. In this same study, NETs found to
have low or no expression of SSTR2 expressed CEACAM1, a different potential target.
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