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ABSTRACT

Dietary assessment can be crucial for the overall well-being of humans and, at least in some instances, for the prevention and management of
chronic, life-threatening diseases. Recall and manual record-keeping methods for food-intake monitoring are available, but often inaccurate when
applied for a long period of time. On the other hand, automatic record-keeping approaches that adopt mobile cameras and computer vision
methods seem to simplify the process and can improve current human-centric diet-monitoring methods. Here we present an extended critical
literature overview of image-based food-recognition systems (IBFRS) combining a camera of the user’s mobile device with computer vision methods
and publicly available food datasets (PAFDs). In brief, such systems consist of several phases, such as the segmentation of the food items on the plate,
the classification of the food items in a specific food category, and the estimation phase of volume, calories, or nutrients of each food item. A total of
159 studies were screened in this systematic review of IBFRS. A detailed overview of the methods adopted in each of the 78 included studies of this
systematic review of IBFRS is provided along with their performance on PAFDs. Studies that included IBFRS without presenting their performance
in at least 1 of the above-mentioned phases were excluded. Among the included studies, 45 (58%) studies adopted deep learning methods and
especially convolutional neural networks (CNNs) in at least 1 phase of the IBFRS with input PAFDs. Among the implemented techniques, CNNs
outperform all other approaches on the PAFDs with a large volume of data, since the richness of these datasets provides adequate training resources
for such algorithms. We also present evidence for the benefits of application of IBFRS in professional dietetic practice. Furthermore, challenges related
to the IBFRS presented here are also thoroughly discussed along with future directions. Adv Nutr 2022;13:2590–2619.

Statement of Significance: The latest advances of computer vision approaches for dietary assessment are described in this review, and
recent applications of image-based food recognition systems (IBFRS) in professional dietetic practice are presented. Open issues that should
be tackled in the near future via interdisciplinary research to optimize the performance of IBFRS as well as to increase their adoption by the
professionals of the field have been examined and discussed.

Keywords: nutrition monitoring, food image recognition, dietary assessment, machine learning, deep learning, artificial intelligence, computer
vision, image-based food recognition

Introduction
Deviations from a healthy and balanced diet may hinder our
wellness and lead to chronic and life-threatening diseases
(1–4). To ensure a healthy and balanced diet, nutritionists
or medical personnel often ask people to keep a manual
record or recall the consumed meals and drinks daily.
Recall or manual record-keeping methods consist of 3 main
approaches: food records, 24-h dietary recall, and food-
frequency questionnaires (FFQs) (5). Food records are based
on notes of the individual during or after each consumed
meal for a specific period of time. A 24-h dietary recall
is based on the oral and written data that the individual

provides to the medical professional/nutritionist/caregiver
regarding the type and amount of consumed food during
the previous day. FFQs are recall methods that store the fre-
quency or portion size about food and beverage consumption
over a long period of time, such as a month or a year. All
methods of recall and manual record keeping are simple to
follow and costless, but are tedious and the individuals often
fail to comply for the whole period of the recording time (5)
or often underestimate the quantity of consumed food/drinks
up to 33% (6). In addition, individuals might fail to remember
or even deliberately not record all details regarding their
meals (6). Thus, methods for automatic record keeping can
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play a fundamental role in making dietary habits monitoring
more objective and accurate.

Researchers used pictures of common foods in different
portion sizes for aiding users to fill in paper-based FFQs back
in the 1980s (7). Recent approaches for diet monitoring that
are based on mobile applications [MyFitnessPal, See How
You Eat, MyPlate, Protein Tracker, Fooducate (8)] have been
adopted by many researchers and practicing dietitians (9).
Such mobile applications use input from the user in the form
of images, dropdown menus, and text, and have shown great
potential for aiding individuals in recording and improving
their dietary habits, since the user is informed about the
calorific content of the meal consumed and suggestions are
provided about next meals for a healthy and balanced diet.
However, such applications require a significant amount of
input from the user; thus, they have similar drawbacks as
recall and manual record-keeping approaches.

To improve dietary intake monitoring, several auto-
matic record keeping approaches have been proposed. Such
methods are based on gesture recognition, chewing and
swallowing recognition, and camera-based methods (10).
Although sensors for gesture, chewing, and swallowing
recognition are easy to wear, they can provide only general
information about the consumed meal; thus, they can be
useful only as additional, secondary information for food
recognition (11).

Camera-based methods use current mobile imaging
technologies for dietary intake monitoring. To maximize
the automation of the procedure of food record keeping
the use of computer vision and machine-learning methods
has been suggested (12). The flow of the dietary assessment
systems combining a camera of the user’s mobile device
with computer vision methods, also called image-based food
recognition systems (IBFRS), is as follows: 1) the user takes
a photograph of the upcoming meal with a camera of his/her
mobile device, 2) the image is preprocessed and the different
types of food are divided from each other through segmen-
tation techniques, 3) robust and discriminative features are
then extracted, 4) classification of food items takes place,
and 5) the volume of each food item is calculated and the
energy and nutrients of the depicted meal are estimated
using appropriate nutritional databases. Each phase has been
implemented in a variety of ways to optimize the meal’s
calories and nutrient estimation results. A comparison of the
different methodologies tried in each phase is a demanding
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task, since very different approaches have been adopted
and several evaluation metrics exist (13). Moreover, image
datasets used in such systems also vary significantly; thus,
comparison remains an open challenge. Although automatic
record keeping based on an IBFRS also has limitations,
such as measurement error because of real-life conditions
in the photograph setting (low lighting or other irrelevant
objects on the scene) or because the user must remember to
take a picture of the meal and its leftovers, research efforts
aim already at minimizing the sources of such errors—for
example, with the use of automatic text messages on the user’s
device (14). Thus, IBFRS can be an easy to use and objective
tool for dietary assessment.

To compare different approaches on food image recogni-
tion, datasets on which researchers can test their method-
ologies have been recently released publicly. An extensive
overview of these datasets along with a critical discussion of
related advantages and limitations will be described below.
Moreover, information about the implementation of the
several phases of dietary assessment systems for each of the
reviewed papers will be presented focusing on their critical
comparison. Open issues that should be tackled in the near
future to further optimize the performance and adoption of
IBFRS in dietetic professional practice will be thoroughly
examined and discussed.

The aim of this review is to present IBFRS combining
a camera of the user’s mobile device with computer vision
methods for supporting dietary assessment. We investigated
whether IBFRS can be more objective, user-friendly, and
more educational than manual record or recall methods.
All statistical and computational aspects of the topic are
presented in a comprehensive manner so as to encourage
dietitians to adopt such systems. Towards this goal, we also
present current applications of IBFRS in different areas of
dietetic and nutrition practice. Finally, we highlight that im-
provement in IBFRS will take place through interdisciplinary
efforts at the intersection of computer science with nutrition
and dietetics, so that the challenges of such systems are
gradually set aside.

Methods
Search strategy
In July 2021, PubMed (for the time period between 1 July
2016 until 1 July 2021) and Scopus (for the years 2016–2021)
were searched by combining Boolean operators with suitable
keywords. In particular, the following query was formed:
(food AND image AND (classification OR recognition OR
segmentation OR (dietary AND assessment))). A study was
eligible when 1) it was peer reviewed, 2) it was written in
English, and 3) it included the performance of either the
segmentation or the classification or the volume estimation
phase of a dietary assessment system based on food images.

Two authors (KVD and KP) reviewed the articles and
decided on their inclusion or exclusion. A study was excluded
when the title implied that there was no association with
the image-based food-recognition task and the study was
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FIGURE 1 Search strategy for publications included in this systematic review for image-based food-recognition systems. In this review,
159 titles were identified when the query (food AND image AND (classification OR recognition OR segmentation OR (dietary AND
assessment))) was formed in the PubMed and Scopus databases or from other sources that the reviewers had identified in the past. After
removing 14 duplicates, 145 studies were screened by title and 49 were removed, since they were irrelevant to the subject of this study.
Thus, 96 studies were assessed for eligibility by full-text reading. Eighteen studies were excluded because they were out of scope or they
did not present the performance of the image-based food recognition system presented. Finally, 78 studies were included for full-text
review.

out of the scope of this review. Studies that included
IBFRS without presenting their performance in at least 1
of the segmentation, classification or volume, calories, and
nutrients estimation phase were also excluded. In image
classification, for example, 1 common performance metric is
accuracy, which is the number of correctly classified images
divided by the total number of examined images of a dataset.
Studies that were published before 2016 were excluded in
this systematic review, because, since then, image-processing
tasks with a large volume of input data have been solved
in short runtimes, which can also be used for mobile
applications, with the adoption of graphics processing units
(GPUs) that can accelerate complex, parallel calculations in a
large volume of data (15).

In this review, 159 titles were identified when the above-
mentioned query was formed in the PubMed and Scopus
databases and from other articles that the reviewers had
already studied in the past. After removing 14 duplicates,
145 studies were screened by title and 49 were removed,
since they were irrelevant to the subject of this study. Thus,
96 studies were assessed for eligibility by full-text reading.
Eighteen studies were excluded because they were out of the
scope of this review or they did not present the performance

of the IBFRS presented. Finally, 78 studies were included
for full-text review that included IBFRS for assessing dietary
intake. The search strategy followed is outlined in Figure 1.

Results
Architecture of image-based food-recognition systems
for dietary assessment
The architecture of such dietary-monitoring systems
based on the camera of a mobile device is shown in
Figure 2. The flow of such systems is as follows: The
user first takes a photograph of the upcoming meal with a
mobile camera, such as the camera of his mobile phone (16)
or his smart watch (10) or his smart button (17). Then, the
image is preprocessed and the user may insert additional
information by drawing polygons (6). The different types
of food or drinks (18) are then divided from each other in
separate regions as segmentation takes place. The extraction
of robust and discriminative features and classification
follow the phase of segmentation. In the case of extraction
of hand-crafted features, a series of features are extracted
from each segmented area and are fed to a traditional
machine-learning classifier, which decides what kind of food
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FIGURE 2 Architecture of image-based food-recognition systems for dietary assessment. The flow of the dietary assessment systems
combining a camera of the user’s mobile device with computer vision methods is as follows: 1) the user takes a photograph of the
upcoming meal with a camera of his/her mobile device, 2) the image is preprocessed, 3) the different types of food are divided from each
other through segmentation techniques, 4) robust and discriminative features are then extracted, 5) the most important features are
selected and are given as input to the next phase of the system, 6) classification of food items in food categories takes place, 7) the volume
of each food item is calculated, and 8) the calories and nutrients of the depicted meal are estimated using appropriate nutritional
databases.

is represented by each food region (19). In the case of using
convolutional neural networks (CNNs) for feature extraction
(6), the intermediate or last layers of the CNNs extract the
appropriate features. These CNN-extracted features are then
fed either to shallow machine-learning classifiers, such as
support vector machines (SVMs) or to the last layers of the
CNNs for classification (6). Sometimes, between the feature
extraction and classification phases, the dimensionality
reduction phase takes place (20), which can improve the
accuracy of the classification task by reducing the number
of input features. Finally, the volume of each food region
(21) is calculated and the energy or nutrients of the depicted
meal are estimated using available nutritional databases
(22).

Publicly available food datasets
To compare different IBFRS on dietary assessment, publicly
available food datasets (PAFDs) have been released recently,
which are used as input to these systems. The main attributes
of the PAFDs for food image recognition are presented
in Table 1.

The first PAFD is the Pittsburgh Fast-food Image Dataset
(PFID), which was released in 2009. The PFID depicts 101
different foods from popular fast-food chains. Since many
food items can be confused with others as they may differ
only in terms of the filling, the 101 food categories have been
merged into 7 broad fast-food categories (23).

The UEC-Food 100 dataset depicts 100 different Japanese
food categories (24), whereas the UEC-Food 256 dataset,
which is an extension of the UEC-Food 100 dataset, depicts
256 different food categories from Japan and other countries
(25). Both datasets contain single and multiple items per im-
age. The existence of multiple items in the image encumbers
the food-recognition task.

The UNICT-FD889 dataset consists of 889 food categories
of different national cuisines (e.g., Italian, English, Thai,
Indian, Japanese, etc.) (26), whereas UNICT-FD1200, which
is an extension of UNICT-FD889, consists of 1200 distinct
dishes. Each food category has been acquired under varying
geometric and photometric conditions (27).

The NTU-FOOD dataset depicts 50 categories of multi-
ethnic food. Each category contains 100 images, either from
the user’s mobile phone or from Internet web collections (28).

The ETHZ Food-101 or Food-101 dataset depicts the 101
most popular food categories from the foodspotting.com site.
The Food-101 dataset is a very large food-image dataset with
101,000 images. The training set of images has not been
cleaned; therefore, they still contain some amount of noise,
either as intense colors or as wrong labels (29).

The Ambient Kitchen dataset contains 1800 images of 12
food ingredients that have been used to cook a full meal (30).

The UPMC Food-101 dataset (31) depicts the same 101
categories as the Food-101 dataset (29), but they are chosen
from the results of the Google Search Engine when using the
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name of the class followed by the word “recipe”. The images of
the UPMC Food-101 dataset are less noisy and more relevant
to the depicted class than the Food-101 dataset (31).

The uniqueness of the Dishes dataset is that it includes
restaurant and geographic information about the depicted
food dishes. The images of 3832 categories of restaurant
dishes have been collected from a restaurant reviewing site
(32).

The Menu-Match dataset consists of 41 categories of food
from 1 Asian, 1 Italian, and 1 soup restaurant. The dataset
contains 646 images of 1386 food items divided in 41 food
categories. The uniqueness of the Menu-Match dataset lies
in that it contains additional nutritional information and
images depicted in a real setting (33).

The FooDD dataset consists of images of 23 food cate-
gories taken with different cameras under different lighting
conditions. The food images have been divided into 2
different collections, single and mixed food portions (34).

The UNIMIB 2015 database is composed of 2000 tray
images with multiple foods from a canteen environment and
contains 15 food categories. UNIMIB 2015 is the only PAFD
that can be used for food recognition and leftover estimation.
UNIMIB 2015 contains images from the beginning as well as
the end of the meal (35). UNIMIB 2016 (6) is created with
the same principles as UNIMIB 2015 and it is composed of
1027 tray images with multiple foods that are divided in 73
food categories.

The Instagram800K dataset is collected using the Insta-
gram API. A total of 808,964 images with the most popular 43
food-related tags, such as #lunch and #foodie, and the most
popular 53 food items, such as #pasta and #steak, and their
metadata are included in this dataset (36).

EgocentricFood contains images taken by a wearable
vision camera, including a total of 9 different food-related
classes totaling 5038 images and 8573 bounding boxes
indicating the location of the food item in the photo. This
dataset is the first PAFD that can be used for 2 different tasks:
food recognition and food detection, as well as localization
inside the plate (17).

VIREO Food-172 contains 172 categories of Chinese food
and 353 labeled ingredients. The singularity of this dataset is
that it includes both food category and ingredients (37).

The FOOD-5K has been created for the task of classifying
food from nonfood images (38).

FOOD-11 contains images of 11 categories, such as dairy,
bread, egg, dessert, meat, fried food, pasta, seafood, rice,
vegetables/fruit, and soup (38).

NTUA-Food 2017 (39) contains images that are collected
from the web, the Food-101 dataset (29), and the UEC-
Food 256 dataset (25). The images are organized in 8 broad
categories with macronutrient content that leads to different
postprandial fluctuations of blood sugar, as determined by
the Hellenic Diabetes Society (39). The NTUA-Food 2017
dataset in the only PAFD that addresses the dietary needs of
people with diabetes mellitus.

The ECUST Food dataset contains food images divided in
19 categories taken with the camera of a mobile phone from

2 different views, top and side. The images also contain a coin
as a fiducial marker, which can be used for volume estimation
(40).

The Food524DB dataset (41) consists of 247,636 images
divided in 524 categories taken from the existing datasets
VIREO Food-172, Food-101, Food50 (42), and UEC-Food
256.

The Madima 2017 dataset consists of 21 categories of
food depicted in images of 80 meals. This dataset provides
segmentation and recognition maps, as well as information
that can be used as ground truth for volume estimation (43).

The ChineseFoodNet dataset is thus far the largest image
dataset for Chinese food classification, consisting of 192,000
images divided in 208 categories (44).

The Eating Occasion Image to Food Energy dataset
contains 96 images, which contain 834 single items with the
associated calories in each food item (45).

The ChinaFood-100 dataset is created for classification
purposes of Chinese food (22). This dataset contains rich
information about each food category including its calories,
proteins, fat, carbohydrates, vitamins, and micronutrients.

The VIPER-FoodNet dataset consists of 14,991 images of
multiethnic food categorized in 82 classes (46).

Image-based food-recognition systems
In the following subsections, information about the imple-
mentation of the several phases of IBFRS is presented.

Image depiction
As described in the Introduction, initially, the user depicts
the meal to be consumed with the camera of his/her mobile
device. The camera of the mobile device can affect the results
of the food-recognition task in terms of its lens, hardware,
and software (34). One (16, 47, 48) or 2 (21, 49) photographs
taken from different angles can be used for the depiction of
the meal. Using only 1 image can reduce the user’s burden
but does not carry sufficient information and makes the 3D
reconstruction and volume estimation phases more difficult.
When 2 images are taken, the first image, taken from the
top, can be used to estimate the food area, and the second
image, taken from the side, can be used to estimate the height.
However, when capturing the dish from the side, occlusions
may occur, while the assumption that all the food items
have a constant height may introduce large errors in volume
estimation (50). Therefore, another approach was introduced
that takes 2 images from the sides of the plate and then uses
a reference object to match key points between the 2 images.
The disparity among the pixels of the 2 images has been used
to provide the depth of the food items (50).

Depending on the food recognition system, to enable food
volume estimation the user might have to include in the
photo a reference object of known dimensions, such as a
fiducial marker (51), a coin (52), a credit card (50), the user’s
thumb, a circular plate, bowl, or cup. A fiducial marker, a
coin, or the user’s thumb may be used for spatial calibration
of the camera. To deal with varying lighting conditions, a
colorful fiducial marker may be placed in the image for
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photometric calibration. A circular plate, bowl, or cup of
known dimensions may be used to enable volume estimation
by multiplying the width of the food item with the known
depth of the plate, bowl, or cup. The use of a credit card,
although adopted in some studies, should be avoided for
security reasons. To optimize the food-segmentation process
the user might be asked to draw bounding boxes, polygons
(6), or mark specific touch points in the scene.

To simplify food-volume estimation, some applications
also use a thermal camera for the representation of the
meal, since it can provide information about the depth of
the food items (49, 53). This approach, although it requires
additional equipment, might prove to be very accurate
in terms of volume error. Other types of cameras, such
as laser, multispectral, and hyperspectral cameras, have
been successfully adopted for food items and ingredients
recognition (54–56). For example, oil and vinegar dressings
in salads have been recognized with a multispectral camera,
achieving high values of accuracy (56).

To achieve better recognition performance many existing
approaches leverage additional contextual information, such
as geographical information (GPS coordinates from the user’s
mobile phone) about the restaurant in which the meal was
depicted (47) or temporal information about the eating time
(57) or information about food sharing when several persons
are involved (58).

Segmentation
The accurate estimate of caloric content in the user’s meal is
primarily dependent on well-defined food regions. The first
step is to extract dish regions. Next, food regions that are
expected inside the detected dish region are localized.

The challenges for segmentation inherent to food images
are numerous. Often, different ingredients are mixed and
cannot be optically divided, such as ingredients in a salad,
soup, or burger, or ingredients mixed with rice or pasta.
Small variability in the color, shape, and texture of different
food items can also impede segmentation, such as small
differences between toasted bread and roast beef.

Another challenge for segmentation in general is the
lack of widely accepted evaluation metrics. One standard
way of evaluating the accuracy of an image segmentation
algorithm is to manually segment the image of interest and
compare it with the algorithm-generated segmented regions
in terms of overlap (59). However, manual segmentation is
particularly subjective and very unlikely to be reproducible.
Moreover, an accurate evaluation of segmentation methods
should include sensitivity and specificity metrics, such as
the Dice Similarity Coefficient (60), and not solely absolute
volume-based statistical evaluations, which is unfortunately
not the case for most of the published articles.

Dish detection
For the detection of the dish, edge detection methods can
be used, which are easy to implement but susceptible to
noise and artifacts, as well as sensitive to the orientation
of the boundary (48). Ellipse-based and circle-based Hough

transform has also been used for dish detection, since the
shape of the dish does not vary significantly (35).

Segmentation techniques for food items
Several segmentation methods have been implemented for
food recognition (Figure 3), which can be divided in the
following main categories: manual (6), thresholding (61),
clustering (48), region-based (53), graph-based (62), based
on a Sobel operator (63), hierarchical (49), color-based
(52), texture-based, thermal thresholding (53), and based on
CNNs (17).

In manual segmentation with polygons (6), the user draws
boundaries around the food items with polygons. Manual
segmentation is easily implemented, but, on the other hand, it
is dependent on the user and time-consuming. Segmentation
using the intervention of the user in the form of touch
points has also been proposed (50). The results show that
this minimal user intervention can improve the precision of
segmentation.

Thresholding methods assign pixels to different levels of
color intensity (61). These color levels may be defined by an
expert or derived by an analytic expression. These methods
are simple to implement; however, in the case of noisy images,
they produce unsatisfactory segmentation results. Moreover,
the optimal threshold is difficult to calculate since it is
dependent on several factors, such as the image properties
and the type of camera.

Learning-based segmentation techniques gather pixels
with alike properties, such as intensity and location, into
sets that represent distinct food items. Such segmentation
methods are based on k-means clustering (64) and divide all
of the pixels within the target dish bounding box into foods,
dish, and background, assuming that the order of the regions
from the center to the outside are always foods, dish, and
background (48). Clustering methods can be very effective,
especially when the shapes of the food items are nonconvex
and the background is heterogeneous.

Region-based segmentation methods can be further di-
vided into 2 subgroups: region growing and graph-based
methods. Region growing methods start with the selection of
a starting point (seed) location by the user, then combining
the mean and SD of the color intensities of the pixels within
an area, with a homogeneity metric, a decision is made
whether a new pixel is going to be included into the area
depending on its similarity with the statistics of the afore-
mentioned area. Nonparametric region growing/merging
segmentation has been used for food recognition, although
region growing methods suffer from the fact that their
results may differ significantly with a different homogeneity
criterion or a different initial seed location (65).

Graph-based segmentation methods, such as normalized
cuts (62), super pixel segmentation (66), and graph-cut
segmentation (67), are implemented by creating a weighted
graph (i.e., a structure consisting of a set of objects connected
with edges in pairs, where each vertex corresponds to a
pixel or a region of the image and the edges represent
the strength of the similarity between the vertexes). After
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FIGURE 3 Summary of segmentation methods used for the food-segmentation task in image-based food-recognition systems. (A) Initial
image of plate with user’s meal. (B) Manual segmentation of initial image. The user draws a line/border/polygon manually around each
food item. (C) Hierarchical segmentation of initial image. Hierarchical segmentation starts with an initial over-segmentation, where almost
every pixel defines a different region, and gradually constructs finer segmented regions based on a specific criterion. (D) Saliency-aware
segmentation of initial image. Saliency-aware segmentation uses spatial, color, and statistical features of food areas to enhance food
regions and suppress nonfood regions. (E) Thresholding segmentation of initial image. A binary image is created where all pixels with
color intensity above the predefined threshold are depicted with 1 color (e.g., white) and could indicate the background area, and all
pixels below the threshold are depicted with another color and could indicate the food area. (F) Clustering segmentation of initial image.
Pixels of food items are grouped into groups/clusters depicted by different color (e.g., 4 groups/colors are created in this example). (G)
Segmentation of initial image based on Sobel operator. Edges of food items can be estimated by applying the Sobel operator to every
pixel of the image (i.e., convolving the matrix on the left with the respective 3 × 3 matrix of the image for every pixel). After the
convolution, areas in the image where the color intensity of the pixels change rapidly denote the border of a food item. (H)
Color/texture-based segmentation of initial image. Color/texture-based segmentation assumes that regions of pixels that share similar
color/texture properties in the image correspond to meaningful objects. The first cluster depicts the plate and the background. (I)
Color/texture-based segmentation of initial image. The second cluster depicts the sauce. (J) Color/texture-based segmentation of initial
image. The third cluster depicts the spaghetti. (K) Thermal clustering of initial image. Dynamic thermal thresholding can be applied for the
discrimination of food from the plate and the background, since food is hotter than the other elements of the image. (L) Region-based
segmentation of initial image. Starting points (seeds) of different areas are depicted with dots. Then, the algorithm expands the initial
areas around the starting seeds with pixels in their neighborhood that fulfill a criterion based on a homogeneity metric. (M) Segmentation
based on CNNs on initial image. CNNs were used for food localization by identifying the pixels that might belong to a food item. A binary
image is created where all pixels that are categorized by the CNN as a food item are depicted with white color, whereas all the remaining
pixels that are categorized as background are depicted with black color. CNN, convolutional neural network.
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the graph construction, edges are eliminated in order to
minimize an energy function. Graph-based segmentation
methods produce, in general, optimal results but fail to
address noisy images and are not very robust.

Boundary-based methods, such as active contours, start
initially with a curve around an object and move towards the
object’s edges according to the value of an energy function. A
major drawback of active contours methods is that they rely
heavily on the location of the initial curve (68).

Segmentation based on the Sobel operator has also been
proposed for food segmentation (63). Edges of food items
can be estimated by applying the Sobel operator to the whole
image. Areas in the image where the color intensity of the
pixels change rapidly denote an edge (i.e., a border of a food
item). The computation of the Sobel operator is based either
on a gradient vector or its norm and is inexpensive, but the
calculation of the gradient approximation is relatively coarse,
especially for high-frequency variations in the image.

Hierarchical segmentation has also been used in several
diet-monitoring systems (49, 53). Hierarchical segmentation
starts with an initial over-segmentation, where almost every
pixel defines a different region, and gradually constructs
larger segmented regions that depict food items. The effec-
tiveness of hierarchical segmentation highly depends on the
selection of parameters, such as the scale, the measure of
goodness-of-fit, and of segmentation complexity.

Color-based segmentation assumes that regions of pixels
that share similar color properties in the image correspond to
meaningful objects (50, 52). A drawback of these methods is
that segmentation results differ when different color spaces
are used, and that food items with similar color with the
plate or the background may not be distinguished from
them.

Texture-based segmentation methods use the features of
the microstructure of the food item. Texture features, such as
Haralick’s co-occurrence matrices, might be computationally
intensive, and texture-based segmentation might be coarse
and may need refining. Therefore, texture-based segmenta-
tion methods are often part of several-phase segmentation
techniques (34).

In the case that foods and their containers have similar
colors and textures, defining food boundaries might be
a very complex task. To tackle these problems, saliency-
aware segmentation has been proposed, where spatial, color,
and statistical features of food areas are used to enhance
food regions and suppress nonfood regions. A limitation of
this method is the inability to locate food items when no
container is present in the image (69).

When a thermal camera is available, dynamic thermal
thresholding can be applied for the discrimination of food
from the plate and the background (49, 53), since food is
supposed to be hotter than both of these. The combination
of color and thermal images to segment food items can
ameliorate the segmentation results, especially in cases where
the plate color or shape is similar to that of a food item.
However, the addition of a thermal camera to a smart phone
might be inconvenient for the user.

Another recently proposed approach in segmentation is
based on CNNs. CNNs can leverage image segmentation
by learning complex spatial patterns. The existence of large
annotated datasets has led to the great improvement in the
performance of these models. CNNs have been used for food
localization by identifying the pixels that might belong to a
food item (17). A specific layer of the CNN, a Global Average
Pooling layer, is used to create food activation maps [FAMs;
i.e., heat maps of probabilities that denote if a pixel belongs
to a food item (foodness scores)]. The performance of these
methods seems to be superior to traditional segmentation
methods (17).

Feature extraction
The challenges associated with classifying correctly different
food classes lie also on the features/descriptors that de-
scribe the respective food regions. A feature/descriptor is a
characteristic value that describes a certain visual property
of an image. A feature is global if it characterizes the
whole image or local if it characterizes specific regions
of the image. The extracted features from the regions of
interest should be similar for items of the same food
class under different lighting or serving conditions and
different for items of different food categories. Several
kinds of features/descriptors have been implemented for the
food-recognition task trying to adopt the above principles
and are divided into 2 main approaches—hand-crafted
descriptors or descriptors extracted from the inner layers of
CNNs.

Hand-crafted features can be further divided into color,
texture, size, and shape features. Color features are numbers
that denote the color intensity of a pixel. For example, the
triple (0.8, 0.3, 0.3) in red-green-blue (RGB) color space
denotes a shade of red, since the first component of the
triple, which refers to the red channel, has a large value near
1. The values of the 3-color components in RGB lie in the
range [0, 1]. Color features are rotation invariant features.
Most commonly used color spaces in food recognition are
RGB, hue-saturation-value (HSV), and LAB (L for lightness
and A and B for the color opponents green-red and blue-
yellow) (70–72). While RGB is the most commonly used
color space, HSV is particularly intuitive and LAB is device
independent.

Another effective representation of the color content of
an image is color histograms—namely, RGB, HSV, and LAB
histograms (73). A color histogram is a diagram that shows
the number of pixels that have a specific color value for each
of the available color values. Color histograms are easy to
compute and intuitive, but have high dimension, do not take
pixel spatial information into account, and are sensitive to
noise.

Other representations are color moments, which encode
both shape and color information and are effective under
changing scaling, rotation, and lighting conditions. Color
moments are numbers that measure the distribution of color
in an image, such as the mean, SD, and skewness of the
color intensities. However, color moments cannot handle
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occlusion very successfully and do not take into account
spatial information. For food-recognition purposes, color
moments have been also combined with Local Orientation
Descriptors (52).

Computer vision systems inspired by the human visual
perception system also use texture features to identify objects.
Image texture may be described by the calculation of a
set of statistical measures from the distributions of pixels’
color intensities values, taking into account spatial relations
between pixels. First-order statistics are properties of indi-
vidual pixel values, such as average and variance, whereas
second- and higher-order statistics are properties of 2 or
more pixel values, taking into account the spatial interaction
between pixels, such as co-occurrence features and gray-level
differences. Other common texture features are local binary
patterns (LBPs) (19, 70, 71) and their variation, Pairwise Ro-
tation Invariant Co-occurrence LBP (PRICoLBP) (27). LBPs
can be calculated by taking the histogram of the binary words
that are produced by comparing each pixel’s intensity with the
intensity of its neighbors. PRICoLBP’s advantage over LBP
is that it is invariant to global illumination changes. Texture
primitives, such as edges, may also be extracted to describe
an object with appropriate filters such as a Laplacian-of-
Gaussian or a Difference-of-Gaussian filter. Texture features
described above are meaningful and can be extracted from
any region of any shape without losing significant informa-
tion. On the other hand, they are sensitive to noise and
distortions. Spectral-based texture features, such as Binary
Gabor Patterns and the MRS4 filter bank (70), capture the
frequency content of the image. Spectral-based features are
robust but have no semantic meaning. Another category of
features, Textons and anti-Textons, have been also used for
food recognition (27). Textons are hypothetical elements of
pre-attentive perception, such as line segments and elongated
blobs, that can yield texture discrimination. Anti-Textons
encode spaces between Textons. Textons and anti-Textons
are invariant to positional and scaling transformations. Other
features, such as local phase quantization (LPQ), which are
robust to image blurring, and local configuration pattern
(LCP), which is a rotation invariant descriptor, have been
combined and it has been proven that they are highly
discriminative for food recognition (70). Other texture
features, such as histogram of oriented gradients (HOG), and
its variation RootHOG, and Gradient Orientation Spatial-
Dependence Matrix (GOSDM) descriptors explore local
structures with low-level characterization, such as coarseness
and contrast, and basic visual elements, such as dots, lines,
and circles (25, 74).

Shape features, such as physical area, diameter, and
eccentricity, are less frequently used, since they presume that
food items have regular shapes.

Deep learning architectures, such as CNNs, have seen a
rapid increase in their use recently due to the availability
of large image datasets and fast computing hardware, such
as GPUs. CNNs are multi-layered artificial neural networks
inspired by the way the visual cortex works and are used
for feature extraction and supervised classification. They

were established in ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) 2012, where they improved
classification accuracy compared with hand-crafted feature
extraction methods (75). To avoid training CNNs, which are
computationally very expensive and require large datasets,
a pretrained CNN model can be used for feature extrac-
tion and then another simpler classifier can be used for
classification (transfer learning) (70, 76). In the current
literature, the CNN-based features are obtained as the output
of the intermediate (6) or output (76, 77) layers of trained
deep CNNs and make significant improvements over the
traditional descriptors (6, 76, 77).

The CNNs’ 3 main types of layers are convolutional,
pooling, and fully connected. Convolutional layers consist
of different kinds of filters that represent certain features,
such as edge orientation and frequency. The deeper the
convolutional layer, the more complex are the learned
features. The pooling layers decrease the dimensions of the
input data. The fully connected layers compose higher-level
representations of their input data from the other layers
(75).

The most commonly used CNNs for feature extraction are
the 3 winners of the ILSVRC: AlexNet (2012), GoogLeNet
(2014), and ResNet (2015). AlexNet consists of 5 convolu-
tional layers and 3 fully connected layers. It provides less
complex features, since it has only 5 convolutional layers,
but is faster in terms of running times (78). GoogLeNet has
22 layers, whereas ResNet is the deepest, since it has 152
layers. GoogLeNet, although deeper than AlexNet, has less
parameters (4 million) than AlexNet (60 million) (79). The
runner-up at the ILSVRC 2014 was the VGGNet, a CNN that
consists of 19 layers. VGGNet is preferably used for feature
extraction, since it has 16 convolutional layers and can obtain
very complex representations of an image, but is very slow in
terms of training times, since it has 138 million parameters
(80). ResNet, although deeper than VGGNet, is less complex
than VGGNet, since it is based on a “skip connections”
technique (81).

Dimensionality reduction
Classification results of food images in dietary intake moni-
toring systems can be improved when the dimension of the
extracted feature vector is reduced. Moreover, such a limited
amount of descriptors could be ideal for applications on mo-
bile devices, which have limited computational power. The
use of the Bag-Of-Features (BOF) model (20, 27, 52), which
is inspired by the Bag-Of-Words model for text classification,
has been reported to greatly improve classification accuracy
in food-recognition tasks. The BOF model groups together
the extracted visual features in clusters. The centroids of
these clusters are called codewords. The frequency of the
codewords in an examined image are used to represent this
image in the BOF model.

Dimensionality reduction is also implemented using the
Fisher Vector approach, or its descendants, such as the
Vector of Locally Aggregated Descriptors (VLAD), since it
is an extension of the BOF model, which can achieve even

Image-based food-recognition systems 2599



better results in classification, due to the fact that it uses an
alternative patch encoding strategy based on the deviation of
patches from a universal Gaussian mixture model. Another
advantage of the Fisher Vector representation is that it
achieves very good results even with linear classifiers and
can be compressed with a minimal loss of representation
accuracy (25, 82).

Another method that has been implemented is the
Orthogonal Matching Pursuit (OMP), which can be used
for the construction of overcomplete dictionaries for sparse
representations. The update of the dictionary is performed in
parallel with the update of the sparse representation; thus, the
convergence is accelerated and the flexibility of the method is
increased (73).

Classification
Classification of food images depends heavily on the
descriptors used. Moreover, the values of the classifiers’
hyperparameters influence significantly the final result. The
food image datasets used for the training of the algorithms
also play an important role in the final classification result.
To achieve good classification performance, the designer of
an IBFRS should take all these aspects into account.

Several “shallow” classifiers, such as artificial neural
networks (ANNs), SVMs, k-nearest neighbors (KNN), naive
Bayes, and random forests (RFs), have been used in combi-
nation with hand-crafted features or CNN-based features for
classification of food images (Table 2).

ANNs are inspired by the way biological neural networks
work and are typically organized in weighted interconnected
layers (71, 83). ANNs may perform well, even when there
is a nonlinear relation between the input and the output.
However, neural networks’ performance depends upon sev-
eral parameters, such as the input features, the activation
functions of the neurons, the weights of the connections,
and the overall network architecture. Moreover, they are
characterized by a low speed of computation and the lack of
ability to explain the output so that the human expert can
understand the inner laws of the results.

SVMs (20, 52, 66, 76, 84) and their variations (19, 70, 85)
represent the input instances in such a way that the instances
of different classes are separated by a clear gap that is as
wide as possible in the transformed feature space. SVMs can
also represent a nonlinear relation between the input and the
output; they are, however, binary classifiers. Therefore, for
the food-recognition task, which is a multiclass problem, the
need to transform the problem to a set of multiple binary
classification problems emerges.

Statistical approaches, such as the Bayesian networks
(71), are characterized by the ability to take into account
prior knowledge about the domain of interest, in terms of
structural relations among its features. Bayesian models are
often less accurate than other more sophisticated artificial
intelligence methods, such as ANNs and SVMs. Moreover,
Bayesian models are not suitable for datasets with many
features, since the construction of a very large network is
impossible in terms of computation time and memory space.

The KNN classifier (27) assigns an object to the class that
is the most common among its k nearest neighbors, where k
is a small integer. KNN classifiers are sensitive to the choice
of the integer k and the distance function that defines the k
nearest neighbors.

RFs are ensembles of decision trees (type of tree C4.5).
An ensemble is a group of classifiers that are combined
with a rule, such as majority voting, to assess an instance of
the examined dataset. RFs achieve a very good combination
of accuracy and speed and are comprehensible by humans,
but, since most decision tree algorithms divide the output
space in hyperrectangles, their performance is deteriorated
for problems that require diagonal partitioning (86).

On the other hand, deep learning algorithms, such as
CNNs, can be used for the food-classification task (6, 17,
22, 47, 48, 87–91). Pretrained CNNs on a large image
dataset can be retrained (fine-tuning) in order to differentiate
several layers, so that they are adjusted to the specific food-
recognition task. Recently, even ensembles of CNNs have
been constructed for classification (92, 93). CNNs have
shown superior results over other shallow classifiers in many
PAFDs, as will be shown in the following section "Image-
based food-recognition systems using publicly available
datasets as input".

Volume, calories, and nutrients estimation
Volume, calories, and nutrients estimation is the less ad-
dressed phase of an IBFRS. Challenges that hinder achieving
excellent performance in this step are the lack of appropriate
annotated datasets and the difficulty in obtaining depth
information from a 2-dimensional image.

A simple approach for the stage of the volume estimation
is to multiply the height with the depth of the food object (94).
When a depth camera is available, the differences of depth
values between the empty tray and the tray before/after eating
can be used to estimate the volumes of the foods (95). When
a reference object is included in the photo of the meal, such as
the thumb of the user or a coin or a reference card, comparing
the reference object dimensions with meal dimensions can
lead to volume estimation (48, 52). Another approach is to
match each food object to a predefined shape, such as a
cylinder or a prism (16). A structured light system consisting
of a laser module and a diffraction lens was also implemented
for volume estimation (55).

After volume estimation, the total calories of the depicted
food items can be estimated using the volume of each
item multiplied by its density and the calories that match a
predefined mass in appropriate nutritional databases (37, 96–
100). In another approach, calorie estimation was conducted
using a Support Vector Regressor with a BOF model on
hand-crafted features (color and texture) (33). Nutrients,
such as protein, fiber, calcium, vitamin C, and iron, were
estimated by using as input the top-5 food categories that
the classifier recognized in the previous step of the IBFRS
and appropriate food databases with information for each
food category (22). Since excess calorie and salt intake may
lead to cardiovascular disease, calorie content along with
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TABLE 2 Summary of classification methods used for the food-recognition task in image-based food-recognition systems

Classification method Depiction Pros Cons

Artificial neural network (ANN) � Can achieve high
recognition accuracy
over 80% even when
there is a nonlinear
relation between the
input and the output

� Dependent on many
parameters

� Low speed of
computation

� Lack of interpretation of
results

Support Vector Machine (SVM) � Can achieve high
recognition accuracy
over 80% even when
there is a nonlinear
relation between the
input and the output

� Binary classifiers

Naive Bayes (NB)
� Can take into account

prior knowledge about
the domain in interest

� Less accurate than
other machine-learning
algorithms, such as
ANNs

� Unsuitable for large
number of features

K-nearest neighbor (KNN) � Easily implemented
without the need for
large computational
resources during
execution

� Sensitive to the choice
of parameters

Random forest (RF) � Accuracy
� Speed
� Comprehensible by

humans —

Convolutional neural network
(CNN)

� Optimal results � Large datasets for
training

sodium content were estimated from food images with a
multi-task CNN. The multi-task CNN was trained using an
appropriately annotated dataset with ingredients and salinity
information for each image (101).

Performance evaluation metrics
The performance of IBFRS for dietary assessment is eval-
uated using several metrics, such as the Accuracy (Acc),
the Precision (Pr), the Recall (Re), the Mean Average
Precision (MAP), the F-measure, and the Mean Absolute
Percentage Error (MAPE) described in Table 3 (13). In image
classification, accuracy is the number of correctly classified
images divided by the total number of examined images. In

TABLE 3 Performance evaluation metrics

Accuracy = T P+T N
T P+T N+FP+FN

Precision = T P
T P+FP

Recall = T P
T P+FN

F − measure = 2
Recall−1+Precision−1

Mean Absolute Percentage Error = 100
n

n∑

t=1

|At−Pt|
At

binary classification, where there are 2 classes, the positive
and the negative class, to better understand the performance
of the classifier 4 numbers are important: true positives
(TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs). TP denotes the number of instances that
have a positive label and are classified as belonging to the
positive class, TN denotes the number of instances that have
a negative label and are classified as belonging to the negative
class, FP denotes the number of instances that have a negative
label and are classified as belonging to the positive class, and
FN denotes the number of instances that have a positive
label and are classified as belonging to the negative class.
In binary classification, accuracy is the sum of TP and TN
divided by the sum of TP, TN, FP, and FN. An accuracy over
70% denotes a good classification model and an accuracy
over 80% an excellent model. However, accuracy cannot be
trusted alone when the used dataset is imbalanced—that is,
1 class of the examined images has very few instances in
comparison with other classes. Therefore, in such cases, the
calculation of other metrics, such as precision and recall,
is very important. Precision is the fraction of samples that
were correctly assigned to the positive class by the model
to the total number of samples that were assigned to the
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positive class by the model and recall shows the fraction
of samples assigned to the positive class by the model that
actually belongs to the positive class. MAP is based on the
plot of Precision as a function of Recall. MAP is near 1.0 when
the model can correctly handle the prediction of the positive
class. F-measure is the harmonic mean of precision and
recall. An F-measure equal to 1 indicates perfect precision
and recall, while an F-measure equal to zero denotes that
either precision or recall is zero. The MAPE is a measure of
the accuracy of a prediction model and its formula is given
in Table 3, where Atis the ground truth value and Pt is the
predicted value.

Image-based food-recognition systems using publicly
available datasets as input
Table 4 contains systems that use hand-crafted features and
shallow classifiers tested on PAFDs, whereas Table 5 presents
systems that use CNNs in 1 or more steps of an IBFRS
tested on PAFDs. Table 6 shows a collection of the best
performances of different studies on the public datasets that
are mentioned by more than 1 study in the recent literature.

Among the 59 studies that used public datasets as input
to the IBFRS for dietary assessment, 14 (24%) studies
used hand-crafted features and “shallow” classifiers and
45 (76%) studies used CNNs in 1 of the phases of the
IBFRS. Among these 59 studies, 17 (29%) used the Food-
101; 16 (27%) the UEC-Food 100; 11 (19%) the UNIMIB
2016; 9 (15%) the UEC-Food 256; 3 (5%) the FOOD-5K,
the Food-11, and the VIREO Food-172; 2 (3%) the PFID
and the Madima 2017; and 1 (2%) the UNICT-FD1200,
the EgocentricFood, the FooDD, the NTUA-Food 2017, the
ChinaFood-100, the VIPERFoodNet, the UPMC Food-101,
the ChineseFoodNet, the NTU-FOOD, the UNICT-FD889,
the Ambient Kitchen, the Dishes, the Menu-Match, the
UNIMIB-2015, the Instagram 800 K, the ECUST Food, the
Food524DB, and the Eating Occasion Image to Food Energy
public dataset.

Among the 14 studies that used hand-crafted features
and “shallow” classifiers on public datasets, 7 (50%) studies
used Scale-Invariant Feature Transform (SIFT) features as
input to the “shallow” classifiers. Color features were also
frequently used (7 studies; 50%). Dimensionality reduction
was implemented in 3 (21%) of these studies with the BOF
and the Bag-Of-Words methods. For classification purposes,
ANN (4 studies; 29%) and SVM (6 studies; 43%) were the
most frequently adopted “shallow” classifiers. Among these
studies, a modified ANN achieved the best classification
results (ACC = 96.27%) on the UNIMIB 2016 public
dataset (96) and an SVM achieved the best classification
performance (ACC = 82.38%) on the UEC-Food 100 public
dataset (102).

Among the 45 studies that used CNNs in 1 of the phases
of the IBFRS, 3 (7%) of them used fiducial markers to aid
the photometric calibration and the volume estimation phase
of the system. Seven (16%) studies used CNNs also in the
segmentation or food localization phase. Other seldomly
used methods were manual segmentation, clustering, and

canny edge detection. Among these 45 studies, 28 (62%) used
CNNs for feature extraction, since CNNs can extract very
rich image descriptors. On the other hand, only 4 studies
(9%) used hand-crafted color and texture descriptors in the
feature extraction phase. Dimensionality reduction was not
adopted, with the exception of 2 studies (4%) that used
the Bag-Of-Words method. Classification was implemented
with CNNs in 35 (78%) studies. CNNs were also used
for the final volume estimation phase in 1 study (2%)
(103).

CNNs outperformed shallow classifiers combined with
hand-crafted features in 8 out of 9 public datasets (PFID,
UEC-Food 100, UEC-Food 256, Food-101, VIREO Food-
172, Madima 2017, FOOD-5K, and Food-11) that were
used in more than 1 study as input to the IBFRS (Table 6)
due to their ability to conceive complex spatial relations of
pixels in images. The only exception was the classification
performance of a modified Whale Levenberg Marquardt
ANN on the UNIMIB 2016 (96), which outperformed
all other “shallow” and deep approaches. This inferior
performance of the CNNs on the UNIMIB 2016 dataset can
be attributed to the small number of images (1027) of this
dataset in comparison to the other public datasets (e.g., UEC-
Food 100 contains 10,000 images and Food-101 contains
101,000 images).

Image-based food-recognition systems supporting
dietetic professional practice
Going beyond the systematic review, we searched the
literature to find supportive evidence for the benefits of the
application of IBFRS in dietetic professional practice. During
the last decade over 10,000 mobile phone applications have
been developed for weight management and diet monitoring
(104). Since mobile devices, such as mobile phones and
tablets, started carrying a camera, it was soon realized that
they could be used towards improving dietary assessment
and monitoring. Initially, mobile applications used static im-
ages and there is important evidence that they ameliorated di-
etetic practice. For example, researchers used photos of meals
and snacks taken with mobile phones to encourage children
to increase their fruit and vegetable consumption (105). In
this way, by using mobile applications that capture photos
of the consumed meals, dietitians can monitor children’s
nutrition against obesity and related chronic diseases, such
as hypertension and impaired glucose tolerance. In another
study, the challenges of diet monitoring of adolescents with
intellectual and developmental disabilities were confronted
by prompting them to use a mobile device to take photos of
all food and beverages they consumed over a specified period
(106). Photo-assisted records improved the overall estimates
of energy and macronutrient intake compared with food
records completed by proxies (parents). The latest advances
in the field of mobile applications for weight management
and diet monitoring concern the embedding of IBFRS relying
on computer vision approaches. Examples of such diet-
related mobile applications that embed an IBFRS module
for supporting dietetic professional practice are shown in
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Table 7. Based on the available data, these applications are
used by thousands up to millions of users.

As mentioned above, a foremost domain of the application
of IBFRS is diet monitoring for improving the management
of chronic diseases, such as diabetes. According to the
Agency for Healthcare Research and Quality, several mobile
applications for diabetes self-management were associated
with improvement in important biomarkers, such as glycated
hemoglobin (HbA1c) (107). Vasiloglou et al. implemented
an IBFRS, GoCARB, and compared it with 6 experienced
dieticians in terms of estimating the carbohydrate intake
content of individuals with diabetes (108). It was found that
the IBFRS estimated the carbohydrate content with the same
accuracy as the professional nutritionists. In this way, the
IBFRS GoCARB may be an invaluable tool towards diabetes
self-management by offering individuals with diabetes the
option of an easy-to-use, accurate, and almost real-time esti-
mation of the carbohydate content of their plated meals (108).
In another study, a mobile nutritional management program
integrated into the web-based program, Diabetes Mellitus
Dietary Management Guide (DMDMG), for individuals with
diabetes was implemented by Ahn et al. (109). The program
was evaluated in terms of nutrition knowledge, dietary
attitude, eating behavior, and diet intake with individuals
with diabetes who used the system and non-users for 1 mo.
The study results showed that the program users showed
increased healthful dietary behavior. In addition, more users
had higher nutrition knowledge scores after the 1-mo trial
than non-users. Moreover, dietary intake of calcium and
sodium significantly increased in the non-user group, while
the user group did not show significant changes. The results
of this study show that the program had created positive
changes in patients’ dietary life (109).

Geriatrics is another area where IBFRS can play an
important role by aiding the dietary assessment of elderly
patients. A dataset of self-acquired images from individuals
with Parkinson disease taken with a mobile phone camera
was collected, and the CNN using this dataset as input
achieved a good accuracy, encouraging the implementation
of mobile applications using real-world images (110).

IBFRS can also be used in the hospital setting to measure
patients’ food consumption and to inform the dietitian if
patients’ nutritional needs are adequately met (111). For
example, an application was developed that gave the ability to
the patients to capture with a mobile device their initial food
serving and their leftovers (112). The images were then sent
to the hospital server and were analyzed by dietitians towards
food intake estimation.

Diet-related mobile apps are also used by sports dietitians
for supporting athletes for better health and athletic perfor-
mance. According to the study by Jospe et al. (113), 32.4% of
sports dietitians who participated in the study used mobile
diet-related apps to help athletes assess and track their dietary
intake. One of the most frequently used mobile apps by sports
dietitians in this study was “Lose It,” which has an IBFRS
module. The participating sports dietitians stated that the
mobile diet-related apps were very or somewhat effective in
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TABLE 6 Comparison of the performance of different image-based food-recognition systems on
publicly available food datasets1

Dataset Reference
CNN-based
approach ACC, %

Mean Average
Precision, %

PFID (118) – 50.45 —
(76) + 70.13

UEC-Food 100 (66) – 60.5
(48) + 75
(88) + 81.45
(37) + 82.12
(77) + 60.9

(122) + 76.3
(102) – 82.38
(118) – 60.50
(126) + 86.51
(92) + 49.19

(129) + 89.58
(46) + 81.0
(93) + 84.52

(117) + 17.9
(132) + — 17.5
(134) + 60.90

UEC-Food 256 (17) + 63.16
(88) + 76.17

(125) + — 31.7
(126) + 78.60
(129) + 83.15
(46) + 72.0
(93) + 77.20

(116) + 93.0
(132) + — 10.5

Food-101 (88) + 88.28
(120) + 72.11
(121) + 58.65
(122) + 77.4
(123) + 71.12
(126) + 87.96
(127) + 86.97
(119) – 68.29
(128) + 81.65
(129) + 90.27
(46) + 80.0
(93) + 84.28

(131) + 55.3
(133) + 79.86
(135) + 80.0
(86) + 64.98

(136) + 74.02
UNIMIB 2016 (6) + 78.0

(99) – 95.9
(100) – 94.5
(98) – 93.9

(110) + 86.39
(96) – 96.27

(130) + 77.5
VIREO Food-172 (37) + 82.06

(131) + 75.1
(117) + 24.2

Madima 2017 (103) + 93.33
(97) + 57.1

FOOD-5K (133) + 99.0
(86) + 98.8
(38) + 99.2

Food-11 (133) + 89.33
(86) + 91.34
(38) + 83.6

1ACC, accuracy; CNN, convolutional neural network; PFID, Pittsburgh Fast-food Image Dataset; –, not using a CNN-based approach;
+, using a CNN-based approach.
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TABLE 7 Popular diet-monitoring or weight-management mobile
applications that embed an image-based food-recognition system
module

Mobile application name Downloads, n

LoseIt >10,000,000
MyNetDiary >1,000,000
Foodvisor >500,000
Bitesnap >100,000
Calorie Mama AI >100,000
Ate Food Journal >100,000
See How You Eat >100,000
MealLogger >50,000

assisting them to assess their clients’ diet or even to assist
their clients to assess their own diet (113). Costello and col-
leagues (114) guided elite adolescent athletes to record their
energy intake via an estimated food diary and the application
“Snap-n-Send,” which incorporates an IBFRS, combined
with a 24-h dietary recall interview. Their dietary intake was
fully provided and weighed by the research team in advance.
The results of this study were promising since they show the
ability of the mobile application “Snap-n-Send” to accurately
determine the dietary intake of the athletes (114). Simpson
and colleagues (115) presented the feasibility of the mobile
app, MealLogger, embedding an IBFRS module, to increase
knowledge and promote healthy nutritional behaviors within
a group of elite athletes. During this study, participants
reported a highly positive experience of application use. They
reported positive changes in dietary behaviors based on in-
app education. All participants preferred this method to
traditional methods of dietary analysis (115).

Discussion
Diet-monitoring systems can help the experts (e.g., medical
professionals, nutritionists) and the individual to understand
his/her eating habits and behavior, and therefore improve
his physical condition, while reducing the risk of the
development of diet-related diseases.

Manual record-keeping and recall methods, such as
food records, 24-h dietary recall, and FFQs, and mobile
applications, such as MyFitnessPal, have been proposed by
the experts for food-intake monitoring, since they are simple
to follow and costless (5). However, they are tedious and
individuals often fail to be accurate and to comply with
such tools for a long period of time. On the other hand,
automatic record-keeping approaches, such as methods that
use a camera of the user’s mobile device, seem to simplify
the process. In particular, methods that combine a camera on
the user’s mobile device with computer vision and machine-
learning techniques are very easy to use by individuals and
more objective, since they do not rely on the ability of the
individual to remember or assess the macronutrient content
of the consumed meal. Moreover, research studies have
shown that dietary monitoring of individuals with diabetes
and the elderly might improve by using IBFRS (108–110).
In addition, other research studies have shown that athletes’

dietary monitoring and nutrition education were improved
by using such IBFRS (113–115). Moreover, in the study by
Furtado (116), when the performance of a human reviewer
was compared with the performance of an automatic food-
recognition approach based on CNNs, it was proven that the
human reviewer was inferior to the automatic approach when
the food items that were presented were unknown to him/her
previously (i.e., before training for that survey).

Limitations of these systems might be attributed to the
lack of appropriate input datasets. Thus, for the optimization
of these automated systems’ performance, appropriate food
datasets need to be publicly available. Two large PAFDs,
Food-101 and VIREO Food-172, consist of fast-food and
Chinese food only, respectively (37). Moreover, until now,
less than 10 different cuisines have been included in the
existing PAFDs. Thus, the need for the creation of more novel
datasets from cuisines from all over the world is obvious. It is
also important that some of the novel datasets should be large
enough for the training of CNNs. In addition, there is a need
for food datasets related to the diet of people suffering from
metabolic diseases, such as diabetes or metabolic syndrome,
originating from different countries. Our analysis of IBFRS
also shows the emerging need for creating future public
food datasets that contain additional information for food
images, such as ingredients, nutrients, sodium content, or
cooking methods, to enable better tracking of dietary goals of
individuals and chronic disease prevention and management.
It is also obvious that it is very important for accurate dietary
assessment that more datasets, apart from UNIMIB 2015,
should be created that also contain both initial and leftovers
images of meals.

To tackle the lack of datasets from local cuisines, another
approach could also be adopted, as proposed by Chen et al.
(117), where unknown food items can be recognized with
respect to previously known food items. In Chen et al. (117),
graph CNNs were trained to recognize previously unseen
ingredients by using relations between known and unknown
ingredients. Three kinds of relations were adopted: hierarchy
(parent–child), attributes (color, shape, cooking method) and
co-occurrence.

Observing the best results of the classification accuracy for
the PAFDs in Table 6, it can be deduced that they are achieved
with the use of CNNs. Although CNNs are demanding in
terms of size of training datasets, specifications for CPUs or
GPUs, the large number of parameters, and long running
times, their performance justifies their expanded use (75).
Thus, since CNNs prove to be effective for the segmentation,
feature extraction, and classification steps, more applications
should focus on their exploitation for the creation of more
sophisticated methods.

Existing systems have already shown impressive results,
as shown in Tables 4 and 5, but there are still open issues
that should be tackled in the near future. A first step for
the improvement in current diet-monitoring systems is to
take into account additional information apart from the
food images, such as the user’s dietary history, dietary goals
and targets, wellness/illness including medication uptake,
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allergies, and time of uptake of each meal information,
and thus personalize the diet-monitoring application. Diet-
monitoring applications could be also expanded in order to
give the opportunity to the user to add new personal images
or new food categories on the training food image database
from the user’s daily routine.

Finally, the embedding of more sensors, such as ac-
celerometers and gyroscopes, or other types of cameras, such
as thermal and depth cameras, in the next generations of
mobile devices could improve the existing diet-monitoring
applications in terms of volume estimation.

In conclusion, this systematic review provides an overview
of diet-monitoring systems for the reduction in the risk of
diet-related chronic diseases. Studies describing dietary as-
sessment systems based on a camera on the user’s mobile de-
vice combined with computer vision and machine-learning
techniques have been thoroughly examined and the methods
used as well as the performance achieved are described
in the previous sections. Diet-monitoring systems can be
broken down into the following phases: image depiction,
segmentation, feature extraction, dimensionality reduction,
classification, and volume and calories estimation. For
the optimization of the systems’ performance, appropriate
PAFDs need to be constructed. From evaluation metrics, it
can be observed that food-recognition systems have evolved
and the segmentation, features extraction, and classification
performance have improved by using CNNs. For example,
the classification accuracy achieved on the Food-101 dataset
increased from 55.3% to 90.27% with the use of CNNs.
Several studies show that the professional dietitian and the
individual can benefit from such systems in terms of diet
monitoring and nutrition self-education. However, despite
the progress that has been done, challenges regarding the
methods applied and the creation of appropriate public food
datasets remain.
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