Skip to main content
. 2022 Jul 8;13(6):2590–2619. doi: 10.1093/advances/nmac078

TABLE 1.

Publicly available food datasets used as input to image-based food recognition systems

No. Name Year Food categories, n Total number of images, n Food items in each image Cuisine Reference
1 Pittsburgh Fast-food Image Dataset (PFID) 2009 61 1089 Single Fast food (23)
2 UEC-Food 100 2012 100 10,000 Single and multiple Japanese (24)
3 NTU-FOOD 2012 50 5000 Single Multiethnic (28)
4 UNICT-FD889 2014 889 3583 Single Multiethnic (26)
5 Food-101 2014 101 101,000 Single Multiethnic (29)
6 UEC-Food 256 2014 256 31,397 Single and multiple Multiethnic (25)
7 Ambient Kitchen 2014 12 1800 Single and multiple Multiethnic (30)
8 UPMC Food-101 2015 101 90,840 Single Multiethnic (31)
9 Dishes 2015 3832 117,504 Single Multiethnic (32)
10 Menu-Match 2015 41 646 Single and multiple Asian, Italian (33)
11 FooDD 2015 23 3000 Single and multiple Multiethnic (34)
12 UNIMIB 2015 2015 15 2000 Multiple Italian (35)
13 Instagram800K 2016 43 808,964 Single and multiple Multiethnic (36)
14 UNICT-FD1200 2016 1200 4754 Single and multiple Multiethnic (27)
15 UNIMIB 2016 2016 73 1027 Multiple Italian (6)
16 EgocentricFood 2016 9 5038 Multiple Multiethnic (17)
17 VIREO Food-172 2016 172 110,241 Single and multiple Chinese (37)
18 FOOD-5K 2016 2 5000 Multiple Multiethnic (38)
19 FOOD-11 2016 11 16,643 Multiple Multiethnic (38)
20 NTUA-Food 2017 2017 82 3248 Single Multiethnic (39)
21 ECUST Food Dataset 2017 19 2978 Single and multiple Multiethnic (40)
22 Madima 2017 2017 21 21,807 Multiple Central European (43)
23 Food524DB 2017 524 247,636 Single and multiple Multiethnic (41)
24 ChineseFoodNet 2017 208 192,000 Single and multiple Chinese (44)
25 Eating Occasion Image to Food Energy 2020 21 96 Multiple Multiethnic (45)
26 ChinaFood-100 2021 100 10,074 Single Chinese (22)
27 VIPER-FoodNet 2021 82 14,991 Multiple Multiethnic (46)