Skip to main content
. 2022 Jul 8;13(6):2590–2619. doi: 10.1093/advances/nmac078

TABLE 4.

List of image-based food-recognition systems for dietary assessment based on hand-crafted features and “shallow” classifiers on publicly available food datasets1

Reference User input-preprocessing Segmentation Feature extraction Dimensionality reduction Classification Volume estimation Datasets and performance
(28) Depth camera SIFT, LBP, Gabor, and color features SVM  — NTU-FOOD ACC = 62.7%
(26) Bag of Textons, PRICoLBP, and SIFT Near duplicate image retrieval UNICT-FD889 MAP = 67.5%
(30) k-Means clustering SURF, shape, and color features Borda count scheme Ambient Kitchen Precision = 86.29% Recall = 83.61%
(118) Superpixel Linear Distance Coding and Locality-constrained Linear Coding, mid-level features SVM PFID ACC = 50.45%UEC-Food 100 ACC = 60.50%
(66) Superpixels segmentation Mid-level food parts approach SVM  — UEC-Food 100 ACC = 60.50%
(102) SIFT, SURF BOF SVM  — UEC-Food 100 ACC = 82.38%
(119) Metric forests  — Food-101 ACC = 68.29%
(27) SIFT, PRICoLBP, Textons, anti-Textons BOF ANN with χ2distance  — UNICT-FD1200 ACC = 93.04%
(96) Wavelet kernel-based Wu-and-Li Index Fuzzy clustering Whale Levenberg Marquardt ANN  — UNIMIB 2016 ACC = 96.27%
(99) Multiple hypothesis segmentation: salient region detection, multi-scale segmentation and fast rejection Color, texture and local neighborhood pixel features ANN  — UNIMIB 2016 ACC = 95.9%
(100) Canny edge detection, multi-scale segmentation, fast rejection of background pixels Color, texture, SIFT, and SURF features 3-Layer ANN  — UNIMIB 2016 ACC = 94.5%
(98) Local variation segmentation Color, texture, local descriptors: SIFT and Multi-scale Dense SIFT (MDSIFT) Multi-kernel SVM UNIMIB 2016 ACC = 93.9%
(33) Color features, HOG, SIFT, LBP, Locality-constrained Linear Coding Bag-of-Words SVM  — Menu-Match Recall = 83%Calorie estimation Absolute error = 232 ± 7.2
(35) Plate detection with Hough transform Color and Edge Directivity Descriptor (CEDD), Gabor features, LBP, Local Color Contrast Chromaticity moments, Complex Wavelet features KNN  — UNIMIB 2015 (CEDD) ACC = 99.05%
1

ACC, Accuracy; ANN, artificial neural network; BOF, bag-of-features; HOG, histogram of oriented gradients; KNN, k-nearest neighbors; LBP, local binary patterns; MAP, mean average precision; PFID: Pittsburgh fast-food image dataset; PRICoLBP, pairwise rotation invariant co-occurrence local binary patterns; SIFT, scale-invariant feature transform; SURF, speeded up robust features; SVM, support vector machine.