TABLE 6.
Dataset | Reference | CNN-based approach | ACC, % | Mean Average Precision, % |
---|---|---|---|---|
PFID | (118) | – | 50.45 | — |
(76) | + | 70.13 | ||
UEC-Food 100 | (66) | – | 60.5 | |
(48) | + | 75 | ||
(88) | + | 81.45 | ||
(37) | + | 82.12 | ||
(77) | + | 60.9 | ||
(122) | + | 76.3 | ||
(102) | – | 82.38 | ||
(118) | – | 60.50 | ||
(126) | + | 86.51 | ||
(92) | + | 49.19 | ||
(129) | + | 89.58 | ||
(46) | + | 81.0 | ||
(93) | + | 84.52 | ||
(117) | + | 17.9 | ||
(132) | + | — | 17.5 | |
(134) | + | 60.90 | ||
UEC-Food 256 | (17) | + | 63.16 | |
(88) | + | 76.17 | ||
(125) | + | — | 31.7 | |
(126) | + | 78.60 | ||
(129) | + | 83.15 | ||
(46) | + | 72.0 | ||
(93) | + | 77.20 | ||
(116) | + | 93.0 | ||
(132) | + | — | 10.5 | |
Food-101 | (88) | + | 88.28 | |
(120) | + | 72.11 | ||
(121) | + | 58.65 | ||
(122) | + | 77.4 | ||
(123) | + | 71.12 | ||
(126) | + | 87.96 | ||
(127) | + | 86.97 | ||
(119) | – | 68.29 | ||
(128) | + | 81.65 | ||
(129) | + | 90.27 | ||
(46) | + | 80.0 | ||
(93) | + | 84.28 | ||
(131) | + | 55.3 | ||
(133) | + | 79.86 | ||
(135) | + | 80.0 | ||
(86) | + | 64.98 | ||
(136) | + | 74.02 | ||
UNIMIB 2016 | (6) | + | 78.0 | |
(99) | – | 95.9 | ||
(100) | – | 94.5 | ||
(98) | – | 93.9 | ||
(110) | + | 86.39 | ||
(96) | – | 96.27 | ||
(130) | + | 77.5 | ||
VIREO Food-172 | (37) | + | 82.06 | |
(131) | + | 75.1 | ||
(117) | + | 24.2 | ||
Madima 2017 | (103) | + | 93.33 | |
(97) | + | 57.1 | ||
FOOD-5K | (133) | + | 99.0 | |
(86) | + | 98.8 | ||
(38) | + | 99.2 | ||
Food-11 | (133) | + | 89.33 | |
(86) | + | 91.34 | ||
(38) | + | 83.6 |
ACC, accuracy; CNN, convolutional neural network; PFID, Pittsburgh Fast-food Image Dataset; –, not using a CNN-based approach; +, using a CNN-based approach.