Skip to main content
. 2022 Jul 8;13(6):2590–2619. doi: 10.1093/advances/nmac078

TABLE 6.

Comparison of the performance of different image-based food-recognition systems on publicly available food datasets1

Dataset Reference CNN-based approach ACC, % Mean Average Precision, %
PFID (118) 50.45
(76) + 70.13
UEC-Food 100 (66) 60.5
(48) + 75
(88) + 81.45
(37) + 82.12
(77) + 60.9
(122) + 76.3
(102) 82.38
(118) 60.50
(126) + 86.51
(92) + 49.19
(129) + 89.58
(46) + 81.0
(93) + 84.52
(117) + 17.9
(132) + 17.5
(134) + 60.90
UEC-Food 256 (17) + 63.16
(88) + 76.17
(125) + 31.7
(126) + 78.60
(129) + 83.15
(46) + 72.0
(93) + 77.20
(116) + 93.0
(132) + 10.5
Food-101 (88) + 88.28
(120) + 72.11
(121) + 58.65
(122) + 77.4
(123) + 71.12
(126) + 87.96
(127) + 86.97
(119) 68.29
(128) + 81.65
(129) + 90.27
(46) + 80.0
(93) + 84.28
(131) + 55.3
(133) + 79.86
(135) + 80.0
(86) + 64.98
(136) + 74.02
UNIMIB 2016 (6) + 78.0
(99) 95.9
(100) 94.5
(98) 93.9
(110) + 86.39
(96) 96.27
(130) + 77.5
VIREO Food-172 (37) + 82.06
(131) + 75.1
(117) + 24.2
Madima 2017 (103) + 93.33
(97) + 57.1
FOOD-5K (133) + 99.0
(86) + 98.8
(38) + 99.2
Food-11 (133) + 89.33
(86) + 91.34
(38) + 83.6
1

ACC, accuracy; CNN, convolutional neural network; PFID, Pittsburgh Fast-food Image Dataset; –, not using a CNN-based approach; +, using a CNN-based approach.